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Abstract  

As global population growth accelerates, demand for agricultural products has surged, 

leading to higher production, rising costs, increased water use, and food shortages. This 

study proposes a sustainable agricultural supply chain network that prioritizes water 

conservation while meeting customer needs. A mathematical model optimizes a closed-

loop supply chain, maximizing demand for agricultural products and compost. The model 

minimizes costs, maximizes customer satisfaction, and reduces water consumption, 

ensuring sustainability. A stochastic programming approach manages supply and demand 

uncertainties through scenarios. Results show that increasing customer satisfaction raises 

costs and water use. For example, increasing the customer importance factor from 0.2 to 

0.8 increases total costs by 4.53% and water use by 43.75%, highlighting the sensitivity 

of water use to customer satisfaction. Reducing processing center capacity decreases water 

use but increases costs and reduces customer satisfaction. A 50% reduction in capacity 

raises costs by 56.41%, decreases customer satisfaction by 4.44%, and reduces water use. 

Water use reductions vary by stage: a 50% reduction in agricultural production cuts total 

water use by 32.33%, while similar reductions in processing and composting yield smaller 

decreases of 17.86% and 28.32%, respectively. This underscores agricultural production 

as the most water-intensive phase. The model’s effectiveness is demonstrated through 

numerical examples and sensitivity analyses. Metrics such as the Number of Pareto Fronts 

(NPF) and Maximum Spread Index (MSI) are used to compare solutions. This study 

emphasizes aligning sustainable production, resource conservation, and customer needs to 

create a resilient agricultural supply chain. 
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Introduction 

 

The agricultural products supply chain has evolved not only to address recycling, the sale of 

organic products, and the reduction of environmental pollution but also to incorporate social 

aspects, such as water conservation. Over recent decades, corporate attention to environmental 

issues and the need to comply with governmental regulations have given rise to the concept of 
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sustainable development. Sustainable development encompasses three key dimensions: 

economic, social, and environmental sustainability, integrated within the supply chain (Carter 

& Rogers, 2008). Notably, the seventh goal of the Sustainable Development Goals (SDGs) 

specifically targets the reduction of food waste and losses (Cordova & Celone, 2019). 

In response to environmental challenges, such as carbon dioxide emissions and pollution, as 

well as social concerns like customer satisfaction, job creation, and energy consumption 

optimization, a new paradigm known as the sustainable supply chain has emerged. This 

approach simultaneously addresses environmental, economic, and social considerations 

(Waltho et al., 2019). Among these, environmental issues are of paramount importance, second 

only to economic factors. Governments have mandated producers to collect and manage 

recyclable goods to reduce CO2 emissions, leading to the integration of reverse supply chain 

management with traditional supply chain practices (Bagheri Tofighi et al., 2024). The reverse 

supply chain focuses on managing the flow of goods returned by customers. The combination 

of these two supply chains, along with sustainability principles, has given rise to the concept of 

the sustainable closed-loop supply chain. This framework not only addresses sustainability 

dimensions but also enables the reuse of returned products (Kazemi et al., 2019). 

The sustainable closed-loop supply chain has been applied across various industries, 

including automotive parts, electronics, manufacturing, and perishable goods. Among these, 

agricultural products are particularly significant, especially when considering factors such as 

water consumption optimization. The sustainable agricultural supply chain is designed to 

produce and distribute food in an environmentally and socially responsible manner. It 

encompasses processes that minimize environmental harm, conserve natural resources, promote 

fair labor practices, and comply with government regulations (Routroy & Behera, 2017). Key 

components of this supply chain include agricultural practices, efficient transportation, 

packaging and waste management, standards, farmer collaboration, local and fair trade, and 

consumer awareness. Managing these components requires a systematic approach that 

optimizes economic, social, and environmental aspects while addressing water consumption 

management (Mashreghi et al., 2023). 

Rapid population growth in recent decades has significantly increased the demand for 

agricultural and food products. To address food security concerns, production within the 

agricultural supply chain has intensified. However, this increase in production has also led to 

higher levels of waste, necessitating the adoption of closed-loop supply chains for recycling 

and reusing waste materials (Alidadi Talkhestani et al., 2023). 
Moreover, the overproduction of agricultural products contributes to issues such as 

greenhouse gas emissions and excessive water consumption on agricultural lands. These 

challenges create ripple effects throughout the supply chain, impacting intermediaries at 

subsequent network levels. Water plays a critical role in agricultural supply chains, as it is 

essential for food security and crop production. Currently, over 70% of global freshwater is 

used for agriculture, primarily for irrigation. Asia, accounting for approximately 2.17 trillion 

cubic meters of water annually, is the largest consumer of water in the agricultural sector, 

highlighting the sector's economic importance on the continent (Russo et al., 2014). By 2050, 

the global population is projected to exceed 10 billion, leading to a 50% increase in demand for 

agricultural products and a 15% rise in freshwater requirements for production. 

Climate change and excessive water consumption have caused freshwater shortages in many 

regions worldwide, making water conservation a critical priority. This study proposes a 

sustainable closed-loop supply chain network for agricultural products under uncertain 

conditions. The network includes producers, processing centers, distribution centers, collection 

centers, compost centers, and primary and secondary customers. Primary customers demand 

processed products, while secondary customers demand compost products. The model 

incorporates three objective functions: (1) minimizing total network costs (economic 
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sustainability), (2) maximizing customer satisfaction (social sustainability), and (3) minimizing 

water consumption (environmental sustainability). 

In today’s volatile markets, parametric uncertainty significantly impacts optimization 

problems, particularly in strategic decision-making contexts such as Supply Chain Network 

Design (SCND). Agricultural supply chains are inherently complex and vulnerable due to the 

perishable nature of the products. Uncertainty permeates all levels of the supply chain, from 

suppliers to end customers. However, many optimization models in the literature assume 

deterministic parameters, which is unrealistic in practice. 

Our proposed supply chain network accounts for uncertainties in both customer demand and 

product supply. These uncertainties arise from external factors such as public health crises, 

shifts in customer preferences, or droughts. Managing demand uncertainty is crucial, as it can 

lead to increased costs, excess inventory, surplus production capacity, and intangible costs such 

as reputational damage and reduced customer satisfaction. Since customers are the ultimate 

endpoint of the supply chain, meeting their demand is critical for overall satisfaction. 

To address uncertain demand and supply parameters, we employ stochastic programming, 

utilizing historical data to manage uncertainty. Given the complexity of supply chain network 

design problems, we adopt an exact solution method. Specifically, we use the Augmented 

Epsilon Constraint method to solve the multi-objective model, which includes minimizing total 

costs, maximizing customer satisfaction, and reducing water consumption. This method is well-

suited for handling multi-objective optimization and generating efficient solutions. 

While sustainable closed-loop supply chain networks have been applied to various goods, 

including perishable and non-perishable items, their application to agricultural products with 

inherent demand and supply uncertainties remains underexplored. Furthermore, existing 

research on sustainable closed-loop supply chains for agricultural products has not adequately 

addressed water consumption reduction, a critical issue for societies. Our study aims to fill these 

gaps and advance the field. The key innovations of this research are summarized as follows: 
1. Holistic Sustainability Approach: The study integrates all three dimensions of 

sustainability—economic, social, and environmental—within the closed-loop supply chain 

network for agricultural products, ensuring a balanced approach to decision-making. 

2. Handling Uncertainty: Unlike deterministic models, this research incorporates demand and 

supply uncertainty using stochastic programming, enhancing the robustness of decision-

making under real-world conditions. 

3. Water Consumption Reduction: The study explicitly addresses water consumption 

minimization, contributing to environmental preservation and societal well-being. 

 

Literature Review 

 

The agricultural product supply chain plays a pivotal role in managing the production and 

distribution of agricultural goods to customers. Numerous studies have explored this field, 

addressing both deterministic and uncertain parameters such as demand, supply, and 

transportation costs. However, most studies have overlooked the issue of agricultural waste. 

While a few studies have examined this issue within the context of closed-loop supply chain 

networks, these investigations have typically been conducted in isolation. This section provides 

a review of the most significant contributions in the existing literature. 
 

Deterministic Models of Agricultural Product Supply Chain Networks 

This section examines deterministic models of agricultural product supply chain networks. 

Zhao and Duo (2011) proposed a mixed-integer programming model to determine optimal 

facility locations, select production capacities, and choose transportation modes with the aim 

of minimizing total costs in the food-agricultural supply chain. Due to the complexity of the 
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optimization problem, the authors developed a Particle Swarm Optimization (PSO) approach, 

which outperformed binary PSO in solving the problem. Accorsi et al. (2016) proposed a linear 

programming model to balance logistics costs and carbon emissions in the agricultural-food 

ecosystem, highlighting the interdependence of infrastructure, production, distribution, and 

environmental resources. 

De Keizer et al. (2017) investigated the design of a logistics network for perishable products 

with a quality decline period. The operational period of logistics, as well as environmental 

conditions during these operations, significantly affect the performance of the logistics network 

for fresh agricultural products. Orjuela-Castro et al. (2022) addressed the major challenges in 

modeling the perishable food supply chain, including delivery time, specific food biophysical 

conditions, food losses, etc. The authors proposed a multi-objective, multi-echelon, and multi-

product model for designing logistics networks for perishable food. Finally, the authors applied 

it in a case study concerning the perishable fruit supply chain. Goodarzian et al. (2023) 

developed a mixed-integer linear programming model for the sustainable production-

distribution-routing problem in an agricultural supply chain considering 𝐶𝑂2 emissions. Their 

objective was to minimize total costs, minimize water consumption, and maximize social 

impacts. For this purpose, four metaheuristic algorithms were chosen to solve the problem, and 

the results showed that the Simulated Annealing (SA) and the PSO algorithms provide more 

acceptable results within a reasonable time frame. Fathi et al., (2024) proposed a multi-stage 

model for sustainable supply chain network design. After an overview of operations research 

methods for sustainable supply chain network design, this study proposed a hybrid method 

based on multi-criteria decision-making (MCDM) and optimization techniques in operations 

research. Modak et al., (2024) designed a two-step fresh agricultural products supply chain with 

only one retailer and one producer. The fresh agricultural products are produced and processed 

by the manufacturer, who then supplies it to the retailer. The manufacturer simultaneously 

operates an online/e-tail channel to sell its product. 

 

Uncertain Models of Agricultural Product Supply Chain Networks 

Uncertain models of agricultural supply chain networks are examined in this section. 

Motevalli-Taher et al. (2020) proposed a multi-objective model to minimize total costs and 

water consumption while maximizing job opportunities. They used Goal Programming to 

consolidate the objectives and addressed demand uncertainty for wheat flour through 

simulation. Jouzdani and Govindan (2021) developed a multi-objective model to optimize 

costs, energy consumption, and traffic density. They modeled product lifetime uncertainty as a 

Weibull random variable and considered refrigerated trucks as a decision variable to influence 

food spoilage. Their results show that focusing on economic aspects can increase environmental 

impact by up to 120% for highly perishable products and social impact by up to 51% in 

congested road networks. 

Baghizadeh et al. (2022) proposed a mathematical model for designing a sustainable supply 

chain of highly perishable agricultural products (strawberries). This model is a multi-objective 

and multi-product Mixed Integer Nonlinear Programming (MINLP) that considers economic, 

social, and environmental objectives to cover all aspects of sustainability. The authors used the 

robust fuzzy approach to control uncertain parameters. Additionally, the authors utilized the 

epsilon-constraint method for simultaneous optimization of three objective functions. Gholian-

Jouybari et al. (2023) investigated metaheuristic algorithms for a sustainable agricultural supply 

chain considering marketing strategies under uncertainty. To achieve this, the authors 

developed a multi-objective two-stage stochastic programming model, the effectiveness of 

which was validated through a case study on saffron trade using the LP-Metric method. To 

address the complexity of the problem, the authors utilized a modified version of the Keshtel 

algorithm as a metaheuristic approach. Daneshvar et al. (2023) presented a distribution network 
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model for agricultural products with high perishability to corruption under conditions of 

uncertainty. The proposed model consists of three levels: suppliers, distribution centers, and 

retailers, where suppliers can fulfill retailers' demands directly or indirectly. The authors 

controlled the uncertain demand using the robust fuzzy approach and showed that with 

increasing uncertainty, the costs of supply, distribution, holding, and ordering increased. 

Rahbari et al., (2024) investigated the closed-loop supply chain of canned food in uncertain 

conditions. One of the main features of the problem is to use the canned food waste to increase 

profitability during the COVID-19 pandemic. In addition, the Robust Probabilistic Chance 

Constrained Programming (RPCCP) approach is presented to face the uncertainty of the 

problem. 

 

Closed-Loop Models of Agricultural Product Supply Chain Networks 

These models include a cycle from production to consumption, and then recycling or reusing 

waste. Jabarzadeh et al. (2020) proposed a multi-objective sustainable closed-loop supply chain 

for agricultural products. The authors defined production, distribution, and customer levels to 

meet customer demand, as well as composting centers and compost markets to better utilize 

returned products. The proposed model attempted to minimize the total cost of the sustainable 

closed-loop supply chain, increase responsiveness to customer demand, and minimize 𝐶𝑂2 

emissions. This study utilized deterministic data. Chouhan et al. (2021) proposed a 

mathematical model for a multi-echelon closed-loop supply chain for the sugarcane industry. 

Their main objective was to optimize the total costs of the agricultural supply chain network 

using heuristic algorithms.  

Alinezhad et al. (2022) presented a bi-objective, multi-period, multi-product, and multi-

echelon supply chain network model for the food industry. Their aim was to simultaneously 

maximize the profit of the supply chain network and the customer satisfaction. Due to the 

uncertainty of the mathematical model, the authors used fuzzy programming to control 

uncertain data. Additionally, the authors utilized the LP-Metric method to form the Pareto front 

and achieve efficient solutions. Seydanlou et al. (2022) designed a multi-objective optimization 

model for a closed-loop supply chain network for the olive oil industry and utilized hybrid 

metaheuristic algorithms to solve the problems. Their objectives were to minimize total costs, 

minimize carbon dioxide emissions, and maximize job opportunities. For this purpose, the 

authors analyzed the mathematical model using the epsilon-constraint method for small-scale 

numerical examples and employed different algorithms to solve large-scale problems. Salehi-

Amiri et al. (2022) examined an optimization model for the avocado supply chain. In this study, 

only two aspects of sustainability, economic and social, were considered, and the environmental 

aspect was not taken into account. The authors also aim to increase job opportunities in this 

research. 

Rajabi-Kafshgar et al. (2023) developed a new mixed integer linear mathematical model for 

an agricultural supply chain network to minimize the total fixed and variable costs of the closed-

loop supply chain. To address the proposed model, the authors employed both traditional and 

recent efficient and well-known metaheuristic algorithms. The results showed that the genetic 

algorithm is more efficient than other algorithms. Gholipour et al. (2024) designed a sustainable 

closed-loop supply chain for pomegranates. The authors were able to return pomegranate peels 

and discarded pomegranates into the supply chain for recycling using reverse logistics. Gholian-

Jouybari et al., (2024) proposed a new mixed-integer linear programming model to propose an 

agri-food supply chain network design for the coconut industry under sustainable terms. This 

study mainly aims to solve a multi-objective closed-loop supply chain, considering both 

forward and reverse product movements. The model attempts to manage the net present value 

of total cost for specific planning horizons while monitoring environmental pollution and job 

opportunities within the network. 
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Table 1. Summary of the agricultural supply chain network design studies 
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Jabarzadeh 

et al. (2020) 

Minimizing 

total cost 

Maximizing 
customer 

satisfaction 

Minimizing 

𝐶𝑂2 emissions 
   D Fruit  LP-metric 

Motevalli-

Taher et al. 
(2020) 

Minimizing 

total cost 

Maximizing 

Job 
opportunity 

Minimizing 

Water 
consumption 

   S Wheat  GP 

Chouhan et 

al. (2021) 

Minimizing 

total cost 
     D Sugarcane  

GA-SA-

RDA-KA 

Alinezhad et 
al. (2022) 

Maximizing 
profit 

Maximizing 

customer 

satisfaction 

    FP Food  LP-metric 

Seydanlou 
et al. (2022) 

Minimizing 
total cost 

Maximizing 

Job 

opportunity 

Minimizing 

𝐶𝑂2 emissions 
   D Olive  

SA-GA-
EMA-VCS 

Baghizadeh 
et al. (2022) 

Minimizing 
total cost 

Maximizing 

Job 

opportunity 

Minimizing 

𝐶𝑂2 emissions 
   

FP - 
RO 

Strawberry  ε-constraint 

Salehi-
Amiri et al. 

(2022) 

Minimizing 

total cost 

Maximizing 
Job 

opportunity 

    D Avocado  Exact 

Daneshvar 

et al. (2023) 

Minimizing 

total cost 
     

FP - 

RO 

Agricultural 

product 
 

GA-AOA-

WOA 

Rajabi-

Kafshgar et 
al. (2023) 

Minimizing 

total cost 
     D 

Agricultural 

product 
 GA-SA-PSO 

Goodarzian 

et al. (2023) 

Minimizing 

total cost 

Maximizing 

customer 
satisfaction 

Minimizing 

Water 
consumption 

   D 
Agricultural 

product 
 

GA-SA-

PSO-KA 

Gholian-

Jouybari et 
al. (2023) 

Maximizing 

profit 

Maximizing 

customer 
satisfaction 

Minimizing 

Water 
consumption 

   TSSP Saffron  
LP-Metric 

MOKA 

Gholipour et 
al. (2024) 

Minimizing 
total cost 

Maximizing 

customer 

satisfaction 

Minimizing 
supply risk 

   D Pomegranate  

NSGA-II 

MOPSO 

GAMS 

Fathi et al., 
(2024) 

Minimizing 
total cost 

Maximizing 

customer 

satisfaction 

Minimizing 

𝐶𝑂2 emissions 
   D 

Agricultural 
product 

 LP-Metric 

Modak et 

al., (2024) 

Maximizing 

profit 
     D 

Agricultural 

product 
 Exact 

Gholian-
Jouybari et 

al., (2024) 

Minimizing 

total cost 

Maximizing 
customer 

satisfaction 

Minimizing 

𝐶𝑂2 emissions 
   D coconut  NSGA-II 

Rahbari et 
al., (2024) 

Minimizing 
total cost 

     RO 
Canned 
product 

 Exact 

This Study 
Minimizing 

total cost 

Maximizing 

customer 

satisfaction 

Minimizing 

Water 

consumption 

   SP 
Agricultural 

product 
 

Augmented 

ε-constraint 

Abbreviations: “ D: Deterministic ; S: Simulation ; FP: Fuzzy Programming ; RO: Robust Optimization ; SP: Stochastic 

Programming ; TSSP: Two-Stage Stochastic Programming ; GP: Goal Programming ; GA: Genetic Algorithm ; SA: Simulated 

Annealing ; KA: Keshtel Algorithm ; RDA: Red Deer Algorithm ; EMA: Electromagnetism-like Algorithm ; VCS: Virus 

Colony Search Algorithm ; WOA: Whale Optimization Algorithm ; PSO: Particle Swarm Optimization ; MOPSO: Multi-

Objective Particle Swarm Optimization ; AOA: Arithmetic Optimization Algorithm ; MOKA: modified Keshtel Algorithm ; 

NSGA-II: Non-Dominated Sorting Genetic Algorithm of kind II ” 

 

Table 1 summarizes key studies on agricultural supply chain network design. While many 

papers have explored agricultural supply chains, few have specifically addressed closed-loop 

or reverse logistics for agricultural products. Moreover, the literature reveals a limited focus on 

sustainable closed-loop supply chain networks tailored for agricultural products. 
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In recent years, researchers have increasingly directed their attention toward integrating 

sustainability aspects (economic, social, and environmental) within closed-loop agricultural 

supply chains. On the other hand, it is essential to recognize that although many papers across 

various industries have discussed reducing water consumption as a critical dimension of 

sustainability, no cases have explicitly considered this issue within a closed-loop agricultural 

supply chain. Surprisingly, even in the agricultural sector, where water scarcity is a pressing 

concern, addressing and effectively meeting the challenge of reducing water consumption 

remains insufficient. Despite this, three studies by Motevalli-Taher et al. (2020), Goodarzian et 

al. (2023), and Gholian-Jouybari et al. (2023) stand out. However, none of these studies 

specifically incorporated the objective of reducing water consumption in a sustainable closed-

loop supply chain for agricultural products, especially considering the uncertainty associated 

with demand and supply parameters. Additionally, stochastic programming methods were not 

utilized to manage uncertainty in these investigations. 
 

Problem Definition 

 

The proposed model in this study represents a sustainable closed-loop supply chain for 

agricultural products. The network comprises the following key components: 

1. Agricultural Producers: These include orchards, farms, and other sources of agricultural 

products. 

2. Processing Centers: These facilities add value to raw agricultural products through sorting, 

packaging, and other processing activities. 

3. Distribution Centers: Responsible for wholesaling and retailing both processed agricultural 

products and compost. 

4. Collection Centers: These centers collect agricultural waste from various stages of the supply 

chain. 

5. Compost Centers: Transform agricultural waste into enriched fertilizer for reuse. 

6. Final Customers: The endpoint of the supply chain, consisting of primary customers 

(demanding processed products) and secondary customers (demanding compost). 

Figure (1) illustrates the structure and flow of this sustainable closed-loop supply chain 

network. The process begins with agricultural producers, who supply raw products. Healthy 

products suitable for processing and sale are transferred to processing centers, while agricultural 

waste is sent to collection centers. At the processing centers, the healthy products are sorted 

and processed, though some waste may still occur due to perishability or packaging issues. The 

processed products are then sent to distribution centers, where they are sold to primary 

customers. However, some processed products may also be wasted at this stage. 

In the reverse supply chain, collection centers gather waste from producers, processing 

centers, and distribution centers. This waste is transported to composting centers, where it is 

converted into compost. The final products—processed goods for primary customers and 

compost for secondary customers—are distributed through the distribution centers. 

This sustainable closed-loop supply chain optimizes resource utilization, minimizes waste, 

and enhances both environmental and economic sustainability by integrating forward and 

reverse logistics. 

In the agricultural supply chain network, both customer demand for processed products and 

compost, as well as the supply of agricultural products by producers, are subject to uncertainty. 

Supply uncertainty arises from factors such as drought, low rainfall, and other environmental 

conditions, while demand uncertainty can be influenced by market fluctuations and consumer 

behavior. These uncertainties significantly impact network design decisions, making it essential 

to account for them in the model. 



264  Mohammadi et al. 

 
Figure 1. schematic of the sustainable closed-loop supply chain of agricultural products. 

 

To address the uncertainty in demand and supply, this study employs stochastic 

programming. Each scenario is assigned a probability of occurrence, which is incorporated into 

the problem formulation. Additionally, the model is based on the following key assumptions: 

1. The mathematical model is single-product and multi-period. 

2. Multiple vehicles are available for transporting products between different levels of the 

supply chain. 

3. The quantities of agricultural product demand and supply are uncertain. 

4. The locations of customers, production centers, composting centers, and distribution centers 

are fixed, with predefined capacities. 

5. Both processed agricultural products and compost can be stored at distribution centers. 

6. Water consumption during transportation is considered negligible. 

7. Primary and secondary customers are assigned different importance coefficients to reflect 

their varying priorities. 

Given the above assumptions, the considered model for the sustainable closed-loop supply 

chain of agricultural products aims to optimize three objective functions. These objective 

functions include, minimizing total costs, maximizing customer satisfaction by reducing unmet 

demand, and minimizing water consumption in the production, processing, and composting 

stages, respectively. It is important to note that reducing the volume of production, processing, 

and composting of agricultural products directly correlates with lower water consumption. This 

indicates that water usage is inherently dependent on production levels. However, the second 

objective function introduces a trade-off, as it aims to maximize customer satisfaction by 

minimizing product shortages, which may require higher production volumes. 

In contrast, the first objective function involves decisions related to facility location and 

inventory management, making it difficult to establish a clear linear relationship between the 

first and third objective functions. This highlights the complexity of balancing economic, social, 
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and environmental objectives within the model. 

The simultaneous optimization of the three objective functions is designed to support 

decision-making regarding the location variables of processing and collection centers, as well 

as tactical decisions such as production quantities, the volume of products transported between 

network levels using various vehicles, and the quantities of processed and composted products 

stored in distribution centers. To model the problem, the following elements are defined: 

indices, parameters, and decision variables. 

 
Table 2. Sets and indices. 

Indices Definition 

i Set of producers; 𝑖 = 1,2, … , 𝐼 

j Set of processing centers; 𝑗 = 1,2, … , 𝐽 

k Set of distribution centers; 𝑘 = 1,2, … , 𝐾 

𝑐1 Set of primary customers; 𝑐1 = 1,2, … , 𝐶1 

𝑐2 Set of secondary customers (compost market); 𝑐2 = 1,2, … , 𝐶2 

c Set of total customers; 𝐶1 ∪ 𝐶2 ∈ 𝐶 

l Set of composting centers; 𝑙 = 1,2, … , 𝐿 

o Set of collection centers; 𝑜 = 1,2, … , 𝑂 

t Time periods; 𝑡 = 1,2, … , 𝑇 

r Set of vehicles; 𝑟 = 1,2, … , 𝑅 

s Scenarios; 𝑠 = 1,2, … , 𝑆 

 

In this study, a scenario represents fluctuations in the supply and demand of agricultural 

products within the supply chain. These fluctuations may arise due to factors such as droughts, 

changes in imports/exports of agricultural products, and other external influences. The time 

period considered in this study is structured on a monthly basis. 

 
Table 3. Parameters. 

Parameter Definition 

𝑓𝑒𝑗  Fixed cost of processing center 𝑗 ∈ 𝐽 ($) 

𝑓𝑚𝑜 Fixed cost of collection center 𝑜 ∈ 𝑂 ($) 

𝑑𝑐𝑡𝑠 Demand of customer 𝑐1 ∈ 𝐶1 for processed products in period 𝑡 ∈ 𝑇 under scenario 𝑠 ∈ 𝑆 (Tons) 

𝑑𝑐𝑡𝑠
′  Demand of customer 𝑐2 ∈ 𝐶2 for compost products in period 𝑡 ∈ 𝑇 under scenario 𝑠 ∈ 𝑆 (Tons) 

𝜌 Importance coefficient of primary customers of agricultural products 

𝛼𝑖𝑡 Waste percentage of agricultural products during harvesting by producer 𝑖 ∈ 𝐼 in period 𝑡 ∈ 𝑇 

𝛽
𝑗𝑡

 Waste percentage of agricultural products during processing by processing center 𝑗 ∈ 𝐽 in period 𝑡 ∈ 𝑇 

𝛾
𝑘𝑡

 
Waste percentage of agricultural products during distribution and storage by distribution center 𝑘 ∈ 𝐾 in 

period 𝑡 ∈ 𝑇 

𝑐𝑝𝑖𝑡𝑠 Supply amount of agricultural products from producer 𝑖 ∈ 𝐼 in period 𝑡 ∈ 𝑇 under scenario 𝑠 ∈ 𝑆 (Tons) 

𝑐𝑑𝑗𝑡  Maximum processing capacity of agricultural products at processing center 𝑗 ∈ 𝐽 in period 𝑡 ∈ 𝑇 (Tons) 

𝑐𝑟𝑘𝑡 
Maximum distribution capacity of processed agricultural products and compost products at distribution center 

𝑘 ∈ 𝐾 in period 𝑡 ∈ 𝑇 (Tons) 

𝑐𝑠𝑜𝑡 
Maximum collection capacity of wasted agricultural products at collection center 𝑜 ∈ 𝑂 in period 𝑡 ∈ 𝑇 

(Tons) 

𝑐𝑡𝑙𝑡 Maximum composting capacity of wasted agricultural products at compost center 𝑙 ∈ 𝐿 in period 𝑡 ∈ 𝑇 (Tons) 

𝑡𝑥𝑖𝑗𝑟  Transportation cost from producer 𝑖 ∈ 𝐼 to processing center 𝑗 ∈ 𝐽 by vehicle 𝑟 ∈ 𝑅 ($) 

𝑡𝑦𝑗𝑘𝑟  Transportation cost from processing center 𝑗 ∈ 𝐽 to distribution center 𝑘 ∈ 𝐾 by vehicle 𝑟 ∈ 𝑅 ($) 

𝑡𝑧𝑘𝑐𝑟  Transportation cost from distribution center 𝑘 ∈ 𝐾 to customer 𝐶 by vehicle 𝑟 ∈ 𝑅 ($) 

𝑡𝑤𝑖𝑜𝑟 Transportation cost from producer 𝑖 ∈ 𝐼 to collection center 𝑜 ∈ 𝑂 by vehicle 𝑟 ∈ 𝑅 ($) 

𝑡𝑢𝑗𝑜𝑟  Transportation cost from processing center 𝑗 ∈ 𝐽 to collection center 𝑜 ∈ 𝑂 by vehicle 𝑟 ∈ 𝑅 ($) 

𝑡𝑝𝑘𝑜𝑟 Transportation cost from distribution center 𝑘 ∈ 𝐾 to collection center 𝑜 ∈ 𝑂 by vehicle 𝑟 ∈ 𝑅 ($) 

𝑡𝑛𝑜𝑙𝑟 Transportation cost from collection center 𝑜 ∈ 𝑂 to compost center 𝑙 ∈ 𝐿 by vehicle 𝑟 ∈ 𝑅 ($) 

𝑡ℎ𝑙𝑘𝑟 Transportation cost from compost center 𝑙 ∈ 𝐿 to distribution center 𝑘 ∈ 𝐾 by vehicle 𝑟 ∈ 𝑅 ($) 

ℎ𝑘 Holding cost of processed products at distribution center 𝑘 ∈ 𝐾 ($) 

ℎ𝑘
′  Holding cost of compost products at distribution center 𝑘 ∈ 𝐾 ($) 

𝑤𝑜𝑖𝑡 
Water consumption volume for agricultural product production by producer 𝑖 ∈ 𝐼 in period 𝑡 ∈ 𝑇 (thousand 

of liters per ton) 

𝑤𝑒𝑙𝑡  Water consumption volume required for composting products at compost center 𝑙 ∈ 𝐿 in period 𝑡 ∈ 𝑇 
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(thousand liters per ton) 

𝑤𝑗𝑗𝑡  
Water consumption volume required for processing products at processing center 𝑗 ∈ 𝐽 in period 𝑡 ∈ 𝑇 

(thousand liters per ton) 

𝑝𝑠 Probability of scenario occurrence 

 

Table 4. decision variables. 

Variable Definition 

𝐸𝑗  1 If processing center j is opened; 0 Otherwise 

𝑀𝑜 1 If collection center o is opened; 0 Otherwise 

𝑋𝑖𝑗𝑟𝑡𝑠 
Quantity of products shipped from producer 𝑖 ∈ 𝐼 to processing center 𝑗 ∈ 𝐽 by vehicle 𝑟 ∈ 𝑅 in period 𝑡 ∈ 𝑇 

under scenario 𝑠 ∈ 𝑆 

𝑌𝑗𝑘𝑟𝑡𝑠 
Quantity of processed products shipped from processing center 𝑗 ∈ 𝐽 to distribution center 𝑘 ∈ 𝐾 by vehicle 

𝑟 ∈ 𝑅 in period 𝑡 ∈ 𝑇 under scenario 𝑠 ∈ 𝑆 

𝑍𝑘𝑐𝑟𝑡𝑠 
Quantity of processed products shipped from distribution center 𝑘 ∈ 𝐾 to customer 𝑐1 ∈ 𝐶1 by vehicle 𝑟 ∈ 𝑅 in 

period 𝑡 ∈ 𝑇 under scenario 𝑠 ∈ 𝑆 

𝑍𝑘𝑐𝑟𝑡𝑠
′  

Quantity of compost products shipped from distribution center 𝑘 ∈ 𝐾 to customer 𝑐2 ∈ 𝐶2 by vehicle 𝑟 ∈ 𝑅 in 

period 𝑡 ∈ 𝑇 under scenario 𝑠 ∈ 𝑆 

𝑊𝑖𝑜𝑟𝑡𝑠 
Quantity of waste shipped from producer 𝑖 ∈ 𝐼 to collection center 𝑜 ∈ 𝑂 by vehicle 𝑟 ∈ 𝑅 in period 𝑡 ∈ 𝑇 under 

scenario 𝑠 ∈ 𝑆 

𝑈𝑗𝑜𝑟𝑡𝑠  
Quantity of waste shipped from processing center 𝑗 ∈ 𝐽 to collection center 𝑜 ∈ 𝑂 by vehicle 𝑟 ∈ 𝑅 in period 

𝑡 ∈ 𝑇 under scenario 𝑠 ∈ 𝑆 

𝑃𝑘𝑜𝑟𝑡𝑠 
Quantity of waste shipped from distribution center 𝑘 ∈ 𝐾 to collection center 𝑜 ∈ 𝑂 by vehicle 𝑟 ∈ 𝑅 in period 

𝑡 ∈ 𝑇 under scenario 𝑠 ∈ 𝑆 

𝑁𝑜𝑙𝑟𝑡𝑠 
Quantity of waste shipped from collection center 𝑜 ∈ 𝑂 to composting center 𝑙 ∈ 𝐿 by vehicle 𝑟 ∈ 𝑅 in period 

𝑡 ∈ 𝑇 under scenario 𝑠 ∈ 𝑆 

𝐻𝑙𝑘𝑟𝑡𝑠 
Quantity of compost products shipped from composting center 𝑙 ∈ 𝐿 to distribution center 𝑘 ∈ 𝐾 by vehicle 

𝑟 ∈ 𝑅 in period 𝑡 ∈ 𝑇 under scenario 𝑠 ∈ 𝑆 

𝑄𝑘𝑡𝑠 
Quantity of processed products stored at distribution center 𝑘 ∈ 𝐾 at the end of period 𝑡 ∈ 𝑇 under scenario 𝑠 ∈
𝑆 

𝑄𝑘𝑡𝑠
′  

Quantity of compost products stored at distribution center 𝑘 ∈ 𝐾 at the end of period 𝑡 ∈ 𝑇 under scenario 𝑠 ∈
𝑆 

 

Given the notations defined above, the multi-objective mathematical model for a sustainable 

closed-loop supply chain network for agricultural products under uncertainty conditions, with 

a focus on reducing water consumption, is as follows: 

 

(1) 

𝑀𝑖𝑛𝑂𝐵1 = ∑ 𝑓𝑒𝑗𝐸𝑗

𝑗∈𝐽

+ ∑ 𝑓𝑚𝑜𝑀𝑜

𝑜∈𝑂

+ ∑ ∑ ∑ ∑ ∑ 𝑝𝑠𝑡𝑥𝑖𝑗𝑟𝑋𝑖𝑗𝑟𝑡𝑠

𝑠∈𝑆𝑡∈𝑇𝑗∈𝐽𝑖∈𝐼𝑟∈𝑅

+ ∑ ∑ ∑ ∑ ∑ 𝑝𝑠𝑡𝑦𝑗𝑘𝑟𝑌𝑗𝑘𝑟𝑡𝑠

𝑠∈𝑆𝑡∈𝑇𝑘∈𝐾𝑗∈𝐽𝑟∈𝑅

+ ∑ ∑ ∑ ∑ ∑ 𝑝𝑠𝑡𝑧𝑘𝑐𝑟𝑍𝑘𝑐𝑟𝑡𝑠

𝑠∈𝑆𝑡∈𝑇𝑐∈𝐶1𝑘∈𝐾𝑟∈𝑅

+ ∑ ∑ ∑ ∑ ∑ 𝑝𝑠𝑡𝑧𝑘𝑐𝑟𝑍𝑘𝑐𝑟𝑡𝑠
′

𝑠∈𝑆𝑡∈𝑇𝑐∈𝐶2𝑘∈𝐾𝑟∈𝑅

+ ∑ ∑ ∑ ∑ ∑ 𝑝𝑠𝑡𝑤𝑖𝑜𝑟𝑊𝑖𝑜𝑟𝑡𝑠

𝑠∈𝑆𝑡∈𝑇𝑜∈𝑂𝑖∈𝐼𝑟∈𝑅

+ ∑ ∑ ∑ ∑ ∑ 𝑝𝑠𝑡𝑢𝑗𝑜𝑟𝑈𝑗𝑜𝑟𝑡𝑠

𝑠∈𝑆𝑡∈𝑇𝑜∈𝑂𝑗∈𝐽𝑟∈𝑅

+ ∑ ∑ ∑ ∑ ∑ 𝑝𝑠𝑡𝑝𝑘𝑜𝑟𝑃𝑘𝑜𝑟𝑡𝑠

𝑠∈𝑆𝑡∈𝑇𝑜∈𝑂𝑘∈𝐾𝑟∈𝑅

+ ∑ ∑ ∑ ∑ ∑ 𝑝𝑠𝑡𝑛𝑜𝑙𝑟𝑁𝑜𝑙𝑟𝑡𝑠

𝑠∈𝑆𝑡∈𝑇𝑙∈𝐿𝑜∈𝑂𝑟∈𝑅

+ ∑ ∑ ∑ ∑ ∑ 𝑝𝑠𝑡ℎ𝑙𝑘𝑟𝐻𝑙𝑘𝑟𝑡𝑠

𝑠∈𝑆𝑡∈𝑇𝑘∈𝐾𝑙∈𝐿𝑟∈𝑅

+ ∑ ∑ ∑ 𝑝𝑠ℎ𝑘𝑄𝑘𝑡𝑠

𝑠∈𝑆𝑡∈𝑇𝑘∈𝐾

+ ∑ ∑ ∑ 𝑝𝑠ℎ𝑘
′ 𝑄𝑘𝑡𝑠

′

𝑠∈𝑆𝑡∈𝑇𝑘∈𝐾

 

(2) 

𝑀𝑎𝑥𝑂𝐵2 = 100 ∗ (𝜌 ∑ ∑ ∑ ∑ ∑ 𝑝𝑠𝑍𝑘𝑐𝑟𝑡𝑠

𝑠∈𝑆𝑡∈𝑇𝑐∈𝐶1𝑘∈𝐾𝑟∈𝑅

/ ∑ ∑ ∑ 𝑝𝑠𝑑𝑐𝑡𝑠

𝑠∈𝑆𝑡∈𝑇𝑐∈𝐶1

+ (1 − 𝜌) ∑ ∑ ∑ ∑ ∑ 𝑝𝑠𝑍𝑘𝑐𝑟𝑡𝑠
′

𝑠∈𝑆𝑡∈𝑇𝑐∈𝐶2𝑘∈𝐾𝑟∈𝑅

/ ∑ ∑ ∑ 𝑝𝑠𝑑𝑐𝑡𝑠
′

𝑠∈𝑆𝑡∈𝑇𝑐∈𝐶2

) 
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(3) 

𝑀𝑖𝑛𝑂𝐵3 = ∑ ∑ ∑ ∑ ∑
𝑝𝑠𝑤𝑜𝑖𝑡𝑋𝑖𝑗𝑟𝑡𝑠

(1 − 𝛼𝑖𝑡)
𝑠∈𝑆𝑡∈𝑇𝑗∈𝐽𝑖∈𝐼𝑟∈𝑅

+ ∑ ∑ ∑ ∑ ∑
𝑝𝑠𝑤𝑜𝑖𝑡𝑊𝑖𝑜𝑟𝑡𝑠

𝛼𝑖𝑡
𝑠∈𝑆𝑡∈𝑇𝑜∈𝑂𝑖∈𝐼𝑟∈𝑅

+ ∑ ∑ ∑ ∑ ∑
𝑝𝑠𝑤𝑗𝑗𝑡𝑌𝑗𝑘𝑟𝑡𝑠

(1 − 𝛽𝑗𝑡)
𝑠∈𝑆𝑡∈𝑇𝑟∈𝑅𝑘∈𝐾𝑗∈𝐽

+ ∑ ∑ ∑ ∑ ∑
𝑝𝑠𝑤𝑗𝑗𝑡𝑈𝑗𝑜𝑟𝑡𝑠

𝛽𝑗𝑡
𝑠∈𝑆𝑡∈𝑇𝑟∈𝑅𝑜∈𝑂𝑗∈𝐽

+ ∑ ∑ ∑ ∑ ∑ 𝑝𝑠𝑤𝑒𝑙𝑡𝐻𝑙𝑘𝑟𝑡𝑠

𝑠∈𝑆𝑡∈𝑇𝑟∈𝑅𝑘∈𝐾𝑙∈𝐿

 

 𝑠. 𝑡: 

(4) ∑ ∑ 𝑍𝑘𝑐𝑟𝑡𝑠

𝑘∈𝐾𝑟∈𝑅

≤ 𝑑𝑐𝑡𝑠 ,          ∀𝑐 ∈ 𝐶1, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(5) ∑ ∑ 𝑍𝑘𝑐𝑟𝑡𝑠
′

𝑘∈𝐾𝑟∈𝑅

≤ 𝑑𝑐𝑡𝑠
′ ,          ∀𝑐 ∈ 𝐶2, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(6) 𝑄𝑘𝑡𝑠 = (1 − 𝛾𝑘𝑡)𝑄𝑘,𝑡−1,𝑠 + (1 − 𝛾𝑘𝑡) ∑ ∑ 𝑌𝑗𝑘𝑟𝑡𝑠

𝑗∈𝐽𝑟∈𝑅

− ∑ ∑ 𝑍𝑘𝑐𝑟𝑡𝑠

𝑐∈𝐶1𝑟∈𝑅

,          ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(7) 𝑄𝑘𝑡𝑠
′ = 𝑄𝑘,𝑡−1,𝑠

′ + ∑ ∑ 𝐻𝑙𝑘𝑟𝑡𝑠

𝑙∈𝐿𝑟∈𝑅

− ∑ ∑ 𝑍𝑘𝑐𝑟𝑡𝑠
′

𝑐∈𝐶2𝑟∈𝑅

, ,          ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(8) ∑ ∑ 𝑌𝑗𝑘𝑟𝑡𝑠

𝑘∈𝐾𝑟∈𝑅

= ∑ ∑ 𝑋𝑖𝑗𝑟𝑡𝑠

𝑖∈𝐼𝑟∈𝑅

− ∑ ∑ 𝛽𝑗𝑡𝑋𝑖𝑗𝑟𝑡𝑠

𝑖∈𝐼𝑟∈𝑅

,          ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(9) ∑ ∑ 𝑋𝑖𝑗𝑟𝑡𝑠

𝑗∈𝐽𝑟∈𝑅

≤ (𝑐𝑝𝑖𝑡𝑠 − 𝛼𝑖𝑡𝑐𝑝𝑖𝑡𝑠),          ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(10)  ∑ ∑ 𝑊𝑖𝑜𝑟𝑡𝑠

𝑜∈𝑂𝑟∈𝑅

≤ 𝛼𝑖𝑡𝑐𝑝𝑖𝑡𝑠 ,          ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(11) ∑ ∑ 𝑈𝑗𝑜𝑟𝑡𝑠

𝑜∈𝑂𝑟∈𝑅

= ∑ ∑ 𝛽𝑗𝑡𝑋𝑖𝑗𝑟𝑡𝑠

𝑖∈𝐼𝑟∈𝑅

,          ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(12) ∑ ∑ 𝑃𝑘𝑜𝑟𝑡𝑠

𝑜∈𝑂𝑟∈𝑅

= ∑ ∑ 𝛾𝑘𝑡𝑌𝑗𝑘𝑟𝑡𝑠

𝑗∈𝐽𝑟∈𝑅

,          ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(13) ∑ ∑ 𝑊𝑖𝑜𝑟𝑡𝑠

𝑖∈𝐼𝑟∈𝑅

+ ∑ ∑ 𝑈𝑗𝑜𝑟𝑡𝑠

𝑗∈𝐽𝑟∈𝑅

+ ∑ ∑ 𝑃𝑘𝑜𝑟𝑡𝑠

𝑘∈𝐾𝑟∈𝑅

= ∑ ∑ 𝑁𝑜𝑙𝑟𝑡𝑠

𝑙∈𝐿𝑟∈𝑅

,    ∀𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(14) ∑ ∑ 𝑁𝑜𝑙𝑟𝑡𝑠

𝑜∈𝑂𝑟∈𝑅

= ∑ ∑ 𝐻𝑙𝑘𝑟𝑡𝑠

𝑘∈𝐾𝑟∈𝑅

,         ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(15) ∑ ∑ 𝐻𝑙𝑘𝑟𝑡𝑠

𝑙∈𝐿𝑟∈𝑅

= ∑ ∑ 𝑍𝑘𝑐𝑟𝑡𝑠
′

𝑐∈𝐶2𝑟∈𝑅

,         ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(16) ∑ ∑ 𝑋𝑖𝑗𝑟𝑡𝑠

𝑖∈𝐼𝑟∈𝑅

≤ 𝑐𝑑𝑗𝑡𝐸𝑗 ,          ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(17) ∑ ∑ 𝑌𝑗𝑘𝑟𝑡𝑠

𝑗∈𝐽𝑟∈𝑅

+ ∑ ∑ 𝐻𝑙𝑘𝑟𝑡𝑠

𝑙∈𝐿𝑟∈𝑅

≤ 𝑐𝑟𝑘𝑡 ,          ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(18) ∑ ∑ 𝑊𝑖𝑜𝑟𝑡𝑠

𝑖∈𝐼𝑟∈𝑅

+ ∑ ∑ 𝑈𝑗𝑜𝑟𝑡𝑠

𝑗∈𝐽𝑟∈𝑅

+ ∑ ∑ 𝑃𝑘𝑜𝑟𝑡𝑠

𝑘∈𝐾𝑟∈𝑅

≤ 𝑐𝑠𝑜𝑡𝑀𝑜,          ∀𝑜 ∈ 𝑂, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(19) ∑ ∑ 𝑁𝑜𝑙𝑟𝑡𝑠

𝑜∈𝑂𝑟∈𝑅

≤ 𝑐𝑡𝑙𝑡 ,          ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

(20) 𝐸𝑗 , 𝑀𝑜 ∈ {0,1} 

(21) 𝑋𝑖𝑗𝑟𝑡𝑠, 𝑌𝑗𝑘𝑟𝑡𝑠 , 𝑍𝑘𝑐𝑟𝑡𝑠 , 𝑍𝑘𝑐𝑟𝑡𝑠
′ , 𝑊𝑖𝑜𝑟𝑡𝑠 , 𝑈𝑗𝑜𝑟𝑡𝑠 , 𝑃𝑘𝑜𝑟𝑡𝑠 , 𝑁𝑜𝑙𝑟𝑡𝑠 , 𝐻𝑙𝑘𝑟𝑡𝑠 , 𝑄𝑘𝑡𝑠 , 𝑄𝑘𝑡𝑠

′ ≥ 0 

 

Equation (1) represents the total cost objective function of the supply chain, encompassing 

location, transportation, and holding costs for processed and composted products at distribution 

centers. Equation (2) maximizes social responsibility by focusing on customer satisfaction, 

aiming to meet the maximum demand of customers. Equation (3) addresses the environmental 

aspect of sustainability by minimizing water consumption at production, composting, and 

processing centers. Equations (4) and (5) ensure that the demands of primary and secondary 

customers for processed and compost products, respectively, are met as much as possible. 

Equations (6) and (7) specify the quantities of processed and compost products that can be 

stored in distribution centers for use in subsequent periods. Equations (8) and (9) determine the 
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quantities of products transferred to distribution and processing centers, accounting for waste 

generated at processing and production centers. 

Equations (10) to (12) represent the percentage of waste generated at production, processing, 

and distribution centers, which is sent to collection centers for composting. Equations (13) to 

(15) balance the flow of compost products: Equation (13) ensures all collected waste is 

transferred to composting centers for fertilizer production, while Equations (14) and (15) 

specify the quantities of composted products sent to distribution centers and secondary 

customers, respectively. Equations (16) to (19) represent capacity constraints for processing, 

distribution, collection, and composting centers. Notably, processing and collection centers 

must be established before operations can begin, meaning no product transfer or waste 

collection can occur until they are built. 

Finally, Equations (20) and (21) define the binary and non-negativity constraints for the 

decision variables, ensuring the model adheres to logical and practical limitations. 

 

Solution Approach 

 

The purpose of this section is to describe the approach used to solve the mathematical model. 

Various methods are used to solve multi-objective models. Due to the research gap and the 

efficiency of the augmented ε-constraint method in solving supply chain network design 

problems, this method has been used to solve the proposed model in this paper. The augmented 

ε-constraint method was chosen over other multi-objective optimization techniques, such as the 

weighted sum method and goal programming, due to its distinct advantages. The weighted sum 

method, while simple, requires predefined weights, introducing subjectivity and potentially 

missing Pareto solutions. Goal programming relies on specific targets, which may not always 

be feasible or representative of the full trade-off space. In contrast, the augmented ε-constraint 

method ensures Pareto optimality for all objectives, avoids subjective weightings, and 

systematically explores the entire Pareto front. This method is particularly suited to our study, 

as it effectively balances economic, environmental, and social objectives in designing a 

sustainable closed-loop supply chain network for agricultural products. By providing a 

comprehensive and unbiased analysis of trade-offs, the augmented ε-constraint method enables 

decision-makers to identify optimal solutions that align with sustainability goals under 

uncertainty. 

Chankong and Haimes (1983) introduced the ε-constraint method, which optimizes one 

objective function while constraining the others within specified bounds. By varying these 

bounds, the method generates a set of efficient solutions. Mavrotas (2009) later proposed the 

augmented ε-constraint method to address limitations of the original approach. This enhanced 

method uses the lexicographic technique to compute the payoff table for each objective 

function, ensuring efficient and non-dominated solutions. It transforms inequality constraints 

related to secondary objectives into equality constraints by introducing slack or surplus 

variables. Additionally, the augmented ε-constraint method incorporates these variables into 

the main objective function, improving its ability to handle multi-objective optimization 

problems. The decision-maker ranks the objective functions based on their importance, guiding 

the optimization process. 
The augmented ε-constraint method involves several key steps: (1) selecting a high-priority 

objective function and determining its optimal value, (2) constructing the payoff table to 

identify the best and worst values for other objective functions, (3) converting inequality 

constraints into equality constraints using slack or surplus variables, and (4) integrating these 

variables into the main objective function. To validate the three-objective mathematical model, 

a small-scale numerical example is examined, and the augmented ε-constraint method is applied 

to solve it. 
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Numerical Analyses 

 

In this section, we first analyze a small-scale numerical example to validate the model. 

Following this, sensitivity analysis is conducted on the small-scale example to investigate the 

impact of various parameters on the objective function values. Subsequently, several larger-

scale numerical examples are designed and solved using the augmented epsilon-constraint 

method to evaluate its effectiveness and scalability in handling more complex instances of the 

problem. 

 

Small Problem Instance 

The model presented in this study is a multi-objective optimization model designed for the 

sustainable closed-loop supply chain of agricultural products. To validate the model, a small-

scale numerical example was employed, consisting of 3 producers, 3 processing centers, 2 

distribution centers, 2 collection centers, 2 composting centers, and 4 customers. The problem 

is structured over 2 time periods, utilizes 4 vehicles, and considers 2 scenarios. Table (5) 

provides the parameter values for the small-scale numerical example across these two scenarios. 

 
Table 5. Defined range of parameters for the small problem. 

Parameter Levels Unit 

𝑓𝑒𝑗 , 𝑓𝑚𝑜 ~𝑈(8000,9000) $ 

𝜌 0.6 - 

𝛼𝑖𝑡 , 𝛽𝑗𝑡 , 𝛾𝑘𝑡 ~𝑈(0.05,0.1) - 

𝑐𝑑𝑗𝑡  ~𝑈(500,600) Ton 

𝑐𝑟𝑘𝑡 ~𝑈(350,450) Ton 

𝑐𝑠𝑜𝑡 ~𝑈(300,400) Ton 

𝑐𝑡𝑙𝑡 ~𝑈(150,200) Ton 

𝑡𝑥𝑖𝑗𝑟 , 𝑡𝑦𝑗𝑘𝑟 ~𝑈(5,6) $ 

𝑡𝑧𝑘𝑐𝑟  ~𝑈(1,2) $ 

𝑡𝑤𝑖𝑜𝑟 , 𝑡𝑢𝑗𝑜𝑟 , 𝑡𝑝𝑘𝑜𝑟, 𝑡𝑛𝑜𝑙𝑟 , 𝑡ℎ𝑙𝑘𝑟 ~𝑈(1,3) $ 

ℎ𝑘 ~𝑈(10,12) $ 

ℎ𝑘
′  ~𝑈(2,4) $ 

𝑤𝑜𝑖𝑡 ~𝑈(200,250) Thousand liters per ton 

𝑤𝑒𝑙𝑡  ~𝑈(180,220) Thousand liters per ton 

𝑤𝑗𝑗𝑡  ~𝑈(100,150) Thousand liters per ton 

 𝑠 = 1 𝑠 = 2  

𝑝𝑠 0.5 0.5  

𝑑𝑐𝑡𝑠 ~𝑈(200,300) ~𝑈(150,200) Ton 

𝑑𝑐𝑡𝑠
′  ~𝑈(70,100) ~𝑈(50,70) Ton 

𝑐𝑝𝑖𝑡𝑠 ~𝑈(600,700) ~𝑈(700,800) Ton 

 

In the table above, it is important to note that water consumption varies across different 

stages: production, processing, and composting of agricultural products. These values are 

expressed in thousand liters per ton. Specifically, water consumption ranges from 200 to 250 

thousand liters per ton for production, 180 to 220 thousand liters per ton for processing, and 

100 to 150 thousand liters per ton for composting. 

Scenario 1 (50% probability) simulates high demand and low supply (conditions like 

drought), while Scenario 2 (50% probability) simulates low demand and high supply 

(conditions like heavy rainfall and import competition). The probabilities for scenario 1 and 

scenario 2 were initially set to 0.5 each, reflecting an equal likelihood in the absence of 

historical data or expert opinions specific to our problem context. This assumption allowed us 

to explore the trade-offs between the two scenarios without introducing bias. To ensure the 

robustness of our results, we conducted a sensitivity analysis by varying the probabilities of 

scenario occurrences, as shown in Table 8. In this small-scale numerical example, the minimum 

customer satisfaction rate is set to 70%. Efficient solutions are investigated using the augmented 
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epsilon-constraint method. In this approach, the third objective function—minimizing water 

consumption—is assigned the highest priority, followed by the objective functions of total cost 

minimization and customer satisfaction maximization, respectively. 
The augmented epsilon constraint method assigns the highest priority to objective function 

𝑂𝐵1(𝑥), finding its optimal solution 𝑂𝐵1
∗. To optimize the second objective function, the 

constraint 𝑂𝐵1(𝑥) = 𝑂𝐵1
∗ is added, retaining the optimal solution for the first objective. The 

value 𝑂𝐵2
∗ is then calculated to optimize the next priority objective function. The following 

equation is generally used to optimize multi-objective problems: 

 

(22) 

𝑀𝑖𝑛 𝑂𝐵1 − 𝛿 (
𝑠2

𝑟2
+

𝑠3

𝑟3
) 

𝑠. 𝑡.: 
       𝑂𝐵2 − 𝑠2 = 𝜀2 
       𝑂𝐵3 + 𝑠3 = 𝜀3 

 

In the above equation 𝑟𝑖 for 𝑖 = 2, 3 represent the domain of the objective functions, 𝜀𝑖 for 

𝑖 = 2, 3 represent the obtained solutions from each iteration, and 𝛿 is a small positive number. 

The coding and solving were performed in the GAMS software, and the obtained results are 

presented below. 

Table 6 represents the payoff table. In this table, the best and worst values of each objective 

function obtained using the individual optimization method are shown. 
 

Table 6. Payoff table of the small size numerical example. 
Objective function Value of objective function 1 Value of objective function 2 Value of objective function 3 

First objective 23160.73 70 1023113.45 

Second objective 28818.74 100 10321128.07 

Third objective 35062.28 70 411825.63 

 

Based on this and using the augmented epsilon constraint method, 29 efficient solutions were 

obtained according to Table 7. 

 
Table 7. The set of pareto solutions for the small size numerical example. 

Solution 
Value of objective 

function 1 ($) 

Value of objective 

function 2 (%) 

Value of objective function 3 (thousand 

liters per ton) 

1 27106.96 71 418198.2 

2 27251 72 424200 

3 27395.01 73 430208.1 

4 27539.02 74 436216.3 

5 27811.26 75 442224.5 

6 28054.74 76 448469.2 

7 28132.51 77 465636.7 

8 28169.28 78 483866.3 

9 28207.39 79 502095.2 

10 28245.5 80 520325.5 

11 28283.61 81 538555.1 

12 28191.99 82 556784.7 

13 28230.1 83 575014.3 

14 28268.21 84 593243.9 

15 28451.67 85 614454.8 

16 28490.17 86 636872.3 

17 28529.22 87 659289.9 

18 28569.23 88 681707.4 

19 28609.25 89 704125 

20 28649.26 90 726542.5 

21 28689.27 91 748960.1 
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22 28729.29 92 771377.6 

23 28729.88 93 794915.2 

24 28806.45 94 817431.7 

25 28882.31 95 842630.2 

26 28929.9 96 867876.4 

27 28972.84 97 896961.4 

28 29019.1 98 927263.2 

29 29185.44 99 958048.3 

 

Table (7) demonstrates that an increase in the volume of processed products leads to a 

corresponding rise in composted products. This results in higher costs across production, 

processing, composting, transportation, and other supply chain network activities. Additionally, 

increased production enhances customer satisfaction, as more customer demand is met. 

However, the higher production, processing, and composting volumes also lead to greater water 

consumption. Consequently, as the value of the first objective function (total cost) increases, 

the values of the second (customer satisfaction) and third (water consumption) objective 

functions also rise. Figure 2 illustrates the Pareto front obtained for the small-scale instance 

problem. 

 

 
Figure. 2. The Pareto front for the numerical example in small size. 

 

Figure 2 demonstrates that as customer satisfaction increases, water consumption in the 

network also rises. This occurs because production, processing, and composting centers 

increase their output to fully meet customer demand. Consequently, higher production and 

processing volumes lead to greater water consumption across the supply chain network. 

The Pareto front in Figure 2 provides supply chain managers with a range of efficient 

solutions balancing cost, customer satisfaction, and water consumption. Decision-makers can 

select solutions based on their priorities. For example, Solution 1 minimizes cost (27,106.96) 

but results in lower customer satisfaction (71%), and water consumption (958,048.3 thousand 

liters per ton), suitable for businesses prioritizing customer loyalty. Solutions with lower water 

consumption (e.g., Solutions 1–5) are preferable in water-scarce regions, even if they entail 

slightly higher costs or lower satisfaction. 

Practically, managers must weigh these trade-offs based on their operational context. In 

water-scarce areas, reducing water consumption might justify higher costs or lower satisfaction. 
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In competitive markets, maximizing customer satisfaction could outweigh increased costs and 

water usage. Cost-sensitive operations might prioritize minimizing expenses, even with slight 

compromises on satisfaction or sustainability. By leveraging the Pareto front, managers can 

make informed, data-driven decisions that align with their strategic goals and environmental 

responsibilities. 

 

Sensitivity Analysis on Small Problem Instance 

 In this section, sensitivity analysis is conducted on the presented numerical example. Given 

the equal probability of scenario occurrences, sensitivity analysis is first performed on the 

probabilities of these scenarios. 

 

Sensitivity Analysis on the Probability of Scenario Occurrences 

Scenario one represents higher demand and lower supply, while scenario two represents 

lower demand and higher supply. By varying the probability of each scenario, the average 

efficient solutions of the problem are calculated and presented in Table (8). 

 
Table 8. Changes in the average objective functions with different probabilities of scenario occurrences. 

Probability of 

Scenario 1 

Probability of 

Scenario 2 

Average Total 

Cost ($) 

Average Customer 

Satisfaction (%) 

Average Water Consumption 

(thousand liters per ton) 

10 90 26876.07 85.24 532567.38 

20 80 27324.52 85.21 558855.62 

30 70 27666.07 85.16 585559.72 

40 60 27966.86 85.10 611681.21 

50 50 28349.31 85.00 637361.90 

60 40 28911.00 84.89 661712.38 

70 30 29340.17 84.78 685755.21 

80 20 29743.28 84.67 709903.45 

90 10 30107.28 84.55 734168.28 

 

The results in Table 8 show that as the probability of Scenario 1 (higher demand and lower 

supply) increases, customer satisfaction decreases due to the inability to fully meet demand. To 

address this, the supply chain network increases production levels, leading to higher total costs. 

Additionally, increased production generates more waste, resulting in greater water 

consumption in the production and composting sectors. 

 

Sensitivity Analysis on Customer Importance Coefficient 

In a separate analysis, the impact of changes in customer importance coefficients on the 

objective function values was examined. In the baseline analysis, the importance coefficient for 

customers demanding processed products was set to 0.6, while for customers demanding 

compost products, it was 0.4. The higher importance coefficient for processed products reflects 

factors such as greater market demand, higher revenue potential, and direct customer benefits. 

In contrast, compost products provide indirect benefits, such as improved soil health and waste 

reduction, which may not be as immediately visible or valued by customers. Table (9) presents 

the variations in the average objective function values for different customer importance 

coefficients. 
 

Table 9 Changes in the average objective function values for different customer importance coefficients. 

Customer Importance 

Coefficient 

Average Total 

Cost ($) 

Average Customer 

Satisfaction (%) 

Average Water Consumption 

(thousand liters per ton) 

0.2 27396.17 81.25 513927.21 

0.4 27525.28 83.34 617303.28 

0.6 28349.31 85.00 637361.90 

0.8 28638.41 88.11 738808.62 
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The results in Table (9) show that as the customer importance coefficient increases, 

maximum demand fulfillment is achieved. This leads to higher total costs, increased customer 

satisfaction, and greater water consumption. Specifically, increasing the customer importance 

factor from 0.2 to 0.8 results in a 4.53% rise in average total costs, an 8.44% increase in average 

customer satisfaction, and a 43.75% increase in average water consumption. This analysis 

highlights that water consumption is more sensitive to changes in the customer importance 

factor compared to total costs. 

 

Sensitivity Analysis on the Capacity of Processing Centers 

In another analysis, the impact of changes in the capacity of processing centers on the 

average objective functions is investigated. Table (10) presents the results for scenarios where 

the capacity of processing centers is reduced by 10%, 30%, and 50%, respectively. 
 

Table 10. Changes in the average objective function values for different capacities of processing center 

Percentage Change in 

Processing Center Capacity 

Average Total 

Cost ($) 

Average Customer 

Satisfaction (%) 

Average Water Consumption 

(thousand liters per ton) 

0 28349.31 85.00 637361.90 

10% Reduction 36414.28 84.26 617473.62 

30% Reduction 36935.90 83.27 610881.34 

50% Reduction 44343.72 81.22 609913.28 
 

The results in Table (10) show that reducing the capacity of processing centers leads to fewer 

products being processed, resulting in lower customer satisfaction. Additionally, the decreased 

capacity necessitates the construction of more processing centers to meet demand, increasing 

total costs. However, the reduction in capacity also reduces the volume of processed products, 

leading to lower water consumption. 

This analysis reveals that a 50% reduction in the capacity of agricultural processing centers 

increases average total costs by 56.41%, while decreasing customer satisfaction by 4.44% and 

water consumption by 4.30%, as production decreases proportionally. 

 

Sensitivity Analysis on Water Consumption Parameters 

A key focus of this study is examining water consumption across three echelons of the supply 

chain: production, processing, and composting. The third objective function captures the 

parameters related to water consumption. In this section, the impact of changes in water 

consumption volumes at each echelon on the value of the third objective function is analyzed. 

Table (11) presents these changes. 
 

Table 11. Changes in the Average Water Consumption value in different scenario 

Scenario (Reduction the Water 

consumption volume) 
Production center Compost center Processing center 

0 637361.90 637361.90 637361.90 

10% 603128.48 612434.67 603314.67 

30% 623428.67 584754.46 531667.68 

50% 431254.24 523497.49 456847.66 
 

The results in Table (11) show that a 50% reduction in water consumption in the agricultural 

production sector reduces the total water consumption in the supply chain by 32.33%. In 

contrast, a 50% reduction in water consumption in the processing and composting sectors 

reduces total water consumption by 17.86% and 28.32%, respectively. These findings highlight 

that the largest share of water consumption in the supply chain occurs during the production of 

agricultural products, followed by processing. 

 

Large Problem Instances 

After analyzing the small-scale numerical example and conducting sensitivity analysis, 
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several larger-scale numerical examples were solved. Table (12) presents the parameter values 

for these instances, while Table (13) outlines the sizes of the numerical examples at different 

scales. 
 

Table 12. Parameter Values of the Numerical Example at Larger Scales. 
Parameter Levels Unit 

𝑓𝑒𝑗 , 𝑓𝑚𝑜 ~𝑈(8000,9000) $ 

𝜌 0.6 - 

𝛼𝑖𝑡 , 𝛽𝑗𝑡 , 𝛾𝑘𝑡  ~𝑈(0.05,0.1) - 

𝑐𝑑𝑗𝑡  ~𝑈(500,600) Ton 

𝑐𝑟𝑘𝑡  ~𝑈(350,450) Ton 

𝑐𝑠𝑜𝑡  ~𝑈(300,400) Ton 

𝑐𝑡𝑙𝑡  ~𝑈(150,200) Ton 

𝑡𝑥𝑖𝑗𝑟 , 𝑡𝑦𝑗𝑘𝑟 ~𝑈(5,6) $ 

𝑡𝑧𝑘𝑐𝑟  ~𝑈(1,2) $ 

𝑡𝑤𝑖𝑜𝑟 , 𝑡𝑢𝑗𝑜𝑟 , 𝑡𝑝𝑘𝑜𝑟 , 𝑡𝑛𝑜𝑙𝑟 , 𝑡ℎ𝑙𝑘𝑟  ~𝑈(1,3) $ 

ℎ𝑘  ~𝑈(10,12) $ 

ℎ𝑘
′  ~𝑈(2,4) $ 

𝑤𝑜𝑖𝑡  ~𝑈(200,250) Thousand liters per ton 

𝑤𝑒𝑙𝑡  ~𝑈(180,220) Thousand liters per ton 

𝑤𝑗𝑗𝑡  ~𝑈(100,150) Thousand liters per ton 

𝑝𝑠 1/|𝑆|  

𝑑𝑐𝑡𝑠 ~𝑈(150,300) Ton 

𝑑𝑐𝑡𝑠
′  ~𝑈(50,100) Ton 

𝑐𝑝𝑖𝑡𝑠 ~𝑈(700,800) Ton 
 

The sizes of the numerical examples were selected randomly to evaluate the problem-solving 

time using the augmented epsilon-constraint method. 
 

Table 13. Sizes of numerical examples in larger scales. 

Test problems i j k C o l t v s 

1 3 3 4 5 2 2 2 4 2 

2 3 4 4 6 3 3 2 4 2 

3 4 4 5 7 3 3 2 4 2 

4 5 5 6 9 4 4 3 5 2 

5 6 6 8 12 5 5 3 6 3 

6 7 7 10 15 6 6 3 6 3 

7 7 7 11 16 6 6 3 6 3 

8 8 8 12 18 6 6 4 6 4 

9 9 9 14 20 8 8 4 8 4 

10 10 10 15 22 9 9 4 8 4 
 

After solving numerical examples of varying sizes, the average values of the objective 

functions—total cost, customer satisfaction, and water consumption—derived from the average 

efficient solutions are presented in Table (14). Additionally, Table (14) includes the average 

problem-solving time using the augmented epsilon-constraint method. 
 

Table 14. Average Objective Function Values and Problem Solving Time. 

Test 

problems 

Average Total 

Cost ($) 

Average Customer 

Satisfaction (%) 

Average Water Consumption 

(thousand liters per ton) 

Solving Time 

(Seconds) 

1 38810.58 85.21 862127.52 171.82 

2 39008.65 85.25 893233.06 215.88 

3 42745.10 85.13 1031247.58 316.55 

4 54081.03 85.23 1613246.19 646.85 

5 62415.38 85.12 2234532.58 1157.68 

6 74953.29 84.97 2946535.68 1756.37 

7 98639.56 85.31 3568415.97 2536.64 

8 124457.38 85.24 4394653.31 3348.61 

9 156674.38 85.06 4969793.00 4325.61 

10 186862.32 85.67 5544932.68 5408.63 
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The results in Table 14 demonstrate that the computational time increases exponentially with 

problem size, highlighting the NP-hard nature of the model. While the augmented epsilon-

constraint method effectively generates Pareto-optimal solutions for small- to medium-scale 

instances, its application to larger-scale problems becomes computationally intensive. This 

exponential increase in solving time is primarily attributed to the multi-period structure of the 

model and the complexity of balancing the three objectives: cost, customer satisfaction, and 

water consumption. As problem size grows, the computational resources required to explore 

the solution space expand significantly, underscoring the challenges of scaling exact 

optimization methods to larger, real-world supply chain networks. Figure (3) illustrate the 

average values of the first to third objective functions and the problem solving time in various 

numerical examples. 

 

 
Figure 3. Average objective function values in different numerical examples. 

 

Additionally, due to the presence of multiple efficient solutions in the numerical examples, 

three metrics—Number of Pareto Front (NPF), Maximum Spread Index (MSI), and Space 

Metric (SM)—have been used to compare the results across the numerical examples. Figure (4) 

illustrates these metrics for the efficient solutions in the different numerical examples. 

 

 
Figure 4. The indexes of the effective solutions in the different numerical examples. 
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Figure (4) shows that as the size of the numerical examples increases, the number of 

customers also rises, resulting in a greater number of Pareto solutions. This aligns with the 

expectation that larger problem instances yield more Pareto solutions. Additionally, Figure (4) 

demonstrates that the Maximum Spread Index (MSI) increases with the size of the numerical 

examples and the number of efficient solutions, indicating that decision-makers have more 

flexibility and better decision-making opportunities in larger-scale problems. Finally, the Space 

Metric (SM) does not follow a specific trend across the numerical examples, with the best value 

achieved in numerical example 10. 

 

Conclusion 

 

This study introduces a novel multi-objective optimization model for designing a sustainable 

closed-loop agricultural supply chain, explicitly addressing uncertainty and prioritizing the 

minimization of water consumption. The model integrates key components of the agricultural 

supply chain, including agricultural production, processing facilities, distribution networks, 

collection centers for agricultural waste, composting facilities, and customer demand points. It 

simultaneously optimizes three conflicting objectives: (1) minimizing total supply chain costs, 

(2) maximizing customer satisfaction (defined as fulfilling demand and ensuring product 

quality), and (3) reducing overall water consumption across the supply chain. 

The model incorporates strategic decisions such as the optimal location and capacity of 

processing and collection centers, as well as the efficient allocation of processed agricultural 

products and compost derived from agricultural waste. A distinctive feature of the model is its 

differentiation between primary customers (who receive processed products) and secondary 

customers (who utilize compost products). To address uncertainties in agricultural supply and 

customer demand, a scenario-based stochastic programming approach is employed, enabling 

robust decision-making under fluctuating conditions. 

Analysis of a representative numerical example and the resulting Pareto front revealed 

inherent trade-offs between the objectives. For instance, improving customer satisfaction 

through increased production to meet higher demand led to higher costs in production, 

processing, and composting activities, thereby increasing overall supply chain costs. 

Additionally, increased production volumes directly correlated with higher water consumption, 

underscoring the importance of balancing customer service levels with efficient resource 

utilization. 

Sensitivity analysis further explored the impact of uncertainty and key model parameters. 

An increased probability of a high-demand, low-supply scenario reduced customer satisfaction 

due to unmet demand, highlighting the need for resilient supply chain planning. Conversely, 

prioritizing demand fulfillment through increased production significantly raised total costs and 

waste generation, subsequently increasing water consumption in production and composting 

centers. This emphasizes the critical role of waste minimization strategies. 

The analysis of the customer importance coefficient—a parameter reflecting the weight 

placed on customer satisfaction—revealed a clear relationship between customer focus, costs, 

and water consumption. Increasing the customer importance factor from 0.2 to 0.8 resulted in 

a 4.53% increase in average total costs, an 8.44% increase in average customer satisfaction, and 

a substantial 43.75% increase in average water consumption. This indicates that water 

consumption is more sensitive to changes in customer importance than total supply chain costs. 

Further analysis showed that reducing processing center capacity decreased water 

consumption due to lower production volumes but also increased total supply chain costs and 

reduced customer satisfaction. Specifically, a 50% reduction in processing center capacity led 

to a 56.41% increase in average total costs, a 4.44% decrease in customer satisfaction, and a 

4.30% decrease in water consumption. 
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Finally, examining changes in water consumption under different scenarios revealed the 

significant impact of water use in agricultural production. A 50% reduction in water 

consumption in the agricultural production sector reduced total water consumption by 32.33%, 

while similar reductions in the processing and composting sectors resulted in reductions of 

17.86% and 28.32%, respectively. This demonstrates that agricultural production is the most 

water-intensive stage in the supply chain, followed by processing and composting. 

Although the augmented epsilon-constraint method effectively generates efficient solutions 

for the proposed multi-objective model, its computational demands for larger-scale problems 

pose a significant challenge. To overcome this limitation, future research could explore 

heuristic or metaheuristic algorithms, such as Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), or Simulated Annealing (SA), which are capable of solving large-scale 

problems within practical timeframes. Additionally, decomposition techniques like Benders 

Decomposition and the use of parallel computing frameworks could further improve 

computational efficiency. These advancements would enhance the model's scalability and 

enable its application to more complex, real-world supply chain scenarios, offering decision-

makers valuable insights for balancing cost, customer satisfaction, and water consumption. 

When combined with fuzzy programming methods, advanced production technologies, and 

perishability considerations, these strategies could significantly broaden the model's 

applicability and impact in addressing real-world supply chain challenges. 
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