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Abstract

The Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL) representsa | Keywords:

recent innovation in last-mile delivery, wherein a customer’s order is delivered to the trunk | Crowd Logistics,

of their vehicle, which may be parked at various locations across different time windows. | Last Mile Delivery,
In this Paper, we introduce a novel crowd-based multi-echelon variant of the vehicle | Mobile Satellite,
routing problem with roaming delivery locations (crowd-based ME-VRPRDL). This | Occasional Shippers,
model integrates a flexible multi-echelon logistics structure with hybrid intermediate | Roaming Delivery.
transfer locations (satellites), which can be either mobile or stationary. The flexibility in
our approach allows the optimal solution to dynamically adapt between single-echelon
and multi-echelon configurations, depending on the specific problem parameters and
constraints. In the proposed model, crowd shippers—individuals who assist with
deliveries—are assigned to intermediate satellites based on their availability and time
windows, enabling more efficient and dynamic resource allocation. To address the
complexity of this problem, we develop an innovative heuristic algorithm that combines
node classification with a greedy optimization approach. This algorithm is particularly
tailored to handle the unique challenges posed by occasional crowd shippers and hybrid
satellite configurations. Our findings demonstrate that the integration of multi-echelon
logistics systems with crowd shipping and strategically placed satellites offers significant
potential to optimize last-mile delivery operations. Specifically, it reduces delivery costs
and travel times while leveraging underutilized resources in the logistics network. The
study underscores the value of combining traditional and crowd-based delivery
mechanisms in achieving more sustainable and cost-effective solutions for modern
logistics challenges.

Introduction

The modern business environment increasingly emphasizes flexibility in customer service,
particularly within logistics, where accommodating customers' preferred delivery locations and
times has become a cornerstone of competitive success. This operational flexibility enhances
cost efficiency through improved planning while simultaneously fostering customer satisfaction
by offering personalized delivery options (Tilk, Olkis and Irnich 2021). Urbanization has
further amplified the demand for goods and services in cities, necessitating the expansion of
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urban logistics (Sampaio Oliveira, et al. 2019). Recently, last-mile delivery has emerged as a
critical focus area, significantly influencing urban residents' quality of life. Consequently,
researchers have dedicated substantial efforts to developing innovative and sustainable
solutions to optimize last-mile delivery systems.

A variety of advancements in last-mile logistics have been explored, including the use of
unmanned aerial vehicles (drones) (Lemardelé, et al. 2021), autonomous delivery robots
(Ostermeier, Heimfarth and Hibner 2022), mobile and stationary parcel lockers (Lin, et al.
2022), in-trunk delivery systems (Reyes, Savelsbergh and Toriello 2017), and crowd shipping
(Mousavi, Bodur and Roorda 2022). These innovations aim to improve efficiency, reduce costs,
and meet growing consumer expectations. Delivery modes generally fall into two categories:
(1) home delivery and (2) delivery to secondary locations, such as parcel lockers in commercial
centers or transit stations ((Janjevic, Winkenbach and Merchan 2019); (van Duin, et al. 2020)).
While traditional parcel lockers are static, mobile lockers—capable of dynamic relocation—
have introduced greater convenience and flexibility for customers (Schwerdfeger and Boysen
2020).

Advancements in web-based technologies have facilitated the integration of crowd logistics,
enabling companies to utilize non-professional agents, or crowd shippers, who leverage their
spare capacity to complete deliveries in exchange for compensation. Platforms like Uber and
Airbnb exemplify this scalable and cost-effective model, though challenges such as irregular
availability of crowd shippers remain ((Boysen, Fedtke and Schwerdfeger 2021); (Sampaio, et
al. 2020)). Hybrid planning models that combine different transport agents and resources have
been proposed to address these complexities. Additionally, the in-trunk delivery system,
introduced as the Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL) by
Reyes et al. (2017) (Reyes, Savelsbergh and Toriello 2017), represents a novel approach where
customers designate their vehicles as flexible, mobile delivery points.

This study builds upon the VRPRDL framework by proposing a flexible multi-echelon
vehicle routing problem with roaming delivery locations (ME-VRPRDL). Key contributions
include the development of a mathematical model that dynamically determines the number of
echelons, integration of mobile parcel lockers and crowd shippers to enhance adaptability,
consideration of crowd shipper spatial constraints, and a heuristic algorithm to solve large-scale
instances. The remainder of this paper is structured as follows: Section 2 reviews relevant
literature, Section 3 details the proposed model, Section 4 outlines the heuristic algorithm,
Section 5 presents computational results, and Section 6 concludes the study with directions for
future research.

Related Literature

The Vehicle Routing Problem (VRP), first introduced by Dantzig and Ramser (1959) (Dantzig
and Ramser 1959), has been extensively studied and expanded over the years to address various
real-world complexities. Among its well-known extensions are the Capacitated VRP (CVRP),
VRP with Time Windows (VRPTW), VRP with Backhauls (VRPPB), Split Delivery VRP
(SDVRP), Dynamic VRP (DVRP), VRP with Simultaneous Pickup and Delivery (VRPSPD),
Open VRP (OVRP), and Time-Dependent VRP (TDVRP) (Braekers, Ramaekers and
Nieuwenhuyse 2016). A notable variation, the Vehicle Routing Problem with Roaming
Delivery Locations (VRPRDL), is a specialized case of the Generalized VRP with Time
Windows (GVRPTW), first introduced by Moccia et al. (2012) (Moccia, Cordeau and Laporte
2012). This problem combines VRPTW and GVRP (Ozbaygin, et al. 2017).

Ozbaygin et al. (2017) (Ozbaygin, et al. 2017) approached the deterministic VRPRDL
problem using a set coverage problem framework and proposed a branch-price algorithm to
optimize it. They demonstrated that hybrid delivery strategies—combining home delivery and
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in-trunk delivery—can reduce costs by an average of 20%. However, real-world uncertainties,
such as weather changes or vehicle breakdowns, can disrupt optimal routing plans, necessitating
research into stochastic travel times. The VRPRDL with Stochastic Travel Times (VRPRDL-
STT), first introduced by Lombard et al. (2018) (Lombard, Tamayo-Giraldo and Fontane 2018),
has since been expanded with various modeling and solution approaches ((He, et al. 2020);
(Sampaio Oliveira, et al. 2019). Another significant development is the Dynamic VRPRDL (D-
VRPRDL), where customer locations may change during delivery execution. Ozbaygin and
Savelsbergh (2019) (Ozbaygin and Savelsbergh 2019) addressed this problem using an iterative
re-optimization approach based on branch-and-price algorithms. The Multi-Depot Vehicle
Routing Problem with Roaming Delivery Locations Considering Hard Time Windows
(MDVRPRDL-HTW), as introduced by Jolfaei and Alinaghian (2024) (Jolfaei and Alinaghian
2024), extends the VRPRDL by incorporating multiple depots, roaming delivery locations, and
hard time windows.

In parallel, last-mile delivery optimization has emerged as a critical focus area, particularly
with dual-service strategies like home delivery and parcel lockers (Zhou, He and Zhou 2019).
Parcel lockers are classified into public/private, mechanical/electronic, and stationary/mobile
categories (Zurel, et al. 2018). Research by Lemke et al. (2016) (Lemke, lwan and Korczak
2016) highlights customer preferences for parcel lockers near homes or along commuting
routes. Lachapelle et al. (2018) (Lachapelle, et al. 2018) explored the urban planning
implications of locker placement, identifying commercial, suburban, postal, and shopping
center locations as common sites. Bilik (2014) (Bilik 2014) demonstrated that parcel lockers
can reduce delivery distances, increase daily delivery volumes, and lower CO2 emissions and
fuel consumption.

A recent innovation in last-mile delivery is the adoption of crowd logistics, exemplified by
Amazon Flex. In this model, occasional drivers, or "crowd shippers,” use their vehicles to
deliver parcels, enabling cost-effective and flexible distribution (Archetti, Guerriero and
Macrina 2021). Crowd logistics relies on platforms to outsource delivery tasks, compensating
drivers for completed deliveries without formal employment contracts (Ranard, et al. 2014).
Studies show that crowd logistics can enhance economic, social, and environmental
sustainability (Buldeo Rai, et al. 2017) and improve network efficiency (Klumpp 2017).
However, challenges such as resource availability and planning complexity persist (Sampaio,
et al. 2020). Multi-echelon distribution systems, incorporating intermediate transfer points or
"satellites," have been proposed to address these limitations (Kafle, Zou and Lin 2017).

Recent research by Liao et al. (Liao, Dai and Ma 2025), published in 2025, introduces a
Vehicle Routing Problem with Roaming Locations for Simultaneous Pickup and Delivery
Services (VRPRL-SPD). This study formulates the problem as a mixed integer linear
programming (MILP) model aimed at minimizing total travel cost. To solve this complex
problem, the authors developed a two-stage metaheuristic approach that combines a random
selection greedy insertion algorithm with a large neighborhood search algorithm. Additionally,
Saker et al. (2023) (Saker, Eltawil and Ali 2023) introduced the Capacitated Vehicle Routing
Problem with Delivery Options (CVRPDO), which incorporates parcel lockers as an alternative
delivery option to reduce last-mile delivery costs. Their study proposed an Adaptive Large
Neighborhood Search (ALNS) metaheuristic to solve the problem efficiently, outperforming
exact solutions provided by a Mixed Integer Programming (MIP) model. Their work highlights
the potential of integrating delivery options into VRP frameworks to enhance flexibility and
reduce operational costs.

In summary, advancements in VRP and last-mile delivery systems have focused on
integrating hybrid strategies, stochastic factors, and crowd logistics to enhance efficiency and
sustainability. These innovations continue to shape the logistics industry, balancing cost
optimization with environmental and social considerations. Below, in Table 1, a summary of
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related articles and their comparison with our research is presented.

In general, logistics services play a key role in providing good living conditions in a city. At
the same time, the expansion of urbanization also brings disadvantages such as high noise,
widespread pollution, heavy traffic, and congestion. Therefore, the presence of intelligent and
innovative solutions in urban logistics management will be needed so that cities can remain
attractive to their residents. In this paper and in the first phase, the VRPRDL problem presented
by Reyes et al. (2017) (Reyes, Savelsbergh and Toriello 2017) is considered as an initial last
mile delivery system and an extended version of it considering (1) a flexible two-echelon
network structure, (2) accessibility of crowd shippers at certain shifts and paths and (3) the
simultaneous operation of stationary and mobile parcel lockers as intermediate satellites was
mathematically modeled.

On the other hand, since the problem is a NP-hard model, in the next phase, we will introduce
a heuristic approach and compare its results with exact algorithm in various instances. So, the
main contributions of our research are summarized as follows:

e This study introduces a novel extension of the VRPRDL called Crowd-based ME-VRPRDL
for the first time.

e We consider crowd shippers and mobile parcel lockers as two innovative solutions to
improve the capabilities of our ME-VRPRDL initial model and make it more
comprehensive. Hence, we develop a mathematical model for a crowd-based ME-VRPRDL
with stationary and mobile parcel lockers.

e We consider crowd shippers’ covering radius limitation for parcel assignment to each crowd
shipper.

e We develop a heuristic algorithm based on node classification and greedy approach to solve
a crowd-based multi-echelon vehicle routing problem with occasional crowd shippers and
hybrid satellites (mobile and stationary).

Table 1. summary of related articles

Customers . Algorithm | Process of Satellites Fleets
Paper locations Model Type Itinerary gl'ype Algorithm Echelon Type Type
(Reyes,
Savelshergh and | Roaming | Deterministic Fixed Heuristic Offline Single _ Ownership
Toriello 2017)
(o;lt.)e%gllg), et Roaming Deterministic Fixed Exact Offline Single _ Ownership
Ownershi
(Kaf!e, Zou and Fixed Deterministic Static Metaheuristic Offline Multi Stationary + crowdp
Lin 2017) -
shippers
(Lombard,
G-:—ri}ar::ja:)yga d Roaming Stochastic Fixed Metaheuristic Offline Single _ Ownership
Fontane 2018)
(Ozbaygin and
Savelsbergh Roaming | Deterministic | Dynamic Exact Online Single _ Ownership
2019)
(Sampaio
Oliveira, et al. Roaming Stochastic Fixed Heuristic Offline Single _ Ownership
2019)
(He, et al. 2020) Roaming Stochastic Fixed Metaheuristic Offline Single _ Ownership
(Sampaio, et al. Fixed Deterministic Static Heuristic Offline Multi Stationary C_rowd
2020) shippers
(Archetti, Ownership
Guerriero and Fixed Deterministic Static Heuristic Online Single _ + Crowd
Macrina 2021) shippers
(Mousavi, Ownership
Bodur and Fixed Stochastic Static Heuristic Offline Multi Mobile + Crowd
Roorda 2022) shippers
- - A - ‘L . . Stationary Ownership
This Work Roaming Deterministic Fixed Heuristic Offline Multi + Mobile + Crowd
shippers
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Problem Description

The Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL) is a novel variant
of the well-known Vehicle Routing Problem (VRP) that models an innovative last-mile delivery
system where customer orders are delivered to the trunk of their cars, rather than to fixed home
addresses. In traditional VRP, delivery locations for customers are fixed, but in VRPRDL, each
customer has a set of potential delivery locations, which may vary based on their daily schedule
(e.g., home, work, or other destinations). The service provider must decide not only the
sequence of deliveries but also the exact location and time for each delivery based on the
customer’s geographic profile and time windows. These time windows reflect when a
customer’s car is present at each location, and they are non-overlapping due to the customer's
travel itinerary. The objective is to minimize the total delivery cost, typically measured by the
total distance traveled, while ensuring that all customer demands are met, vehicle capacities are
not exceeded, and deliveries are made within the allowed time windows.

The VRPRDL introduces several key assumptions that distinguish it from traditional VRP.
First, each customer has a predefined set of potential delivery locations, along with time
windows indicating when their vehicle will be present at each location. The time windows are
determined by the customer’s itinerary, and travel between locations is accounted for, making
the problem time-dependent. Second, customers can only receive one delivery during the
planning period, and the delivery vehicles must start and end their routes at a central depot.
Third, the problem assumes that delivery locations satisfy the triangle inequality for travel times
and costs, and vehicle capacities are homogeneous and limited. The VRPRDL can be viewed
as a special case of the generalized VRP with time windows, where clusters of delivery
locations (specific to each customer) have non-overlapping time windows. These unique
characteristics make the VRPRDL a challenging optimization problem with practical
applications in improving last-mile delivery efficiency, reducing costs, and mitigating
environmental impacts.

The provision of flexible time windows and delivery locations can increase customer
satisfaction by offering a wider range of delivery options. Additionally, it presents opportunities
for service providers to enhance their last mile delivery operations. As a result, the VRPRDL
model exhibits potential advantages when applied in real-world scenarios.

e I:‘ Depot
Customer c in location related
to time window1.

Customer c in location related

to time window?2.
° Customer ¢ in location related
e to time windows3.

—_— First echelon route

Figure 1. A sample VRPRDL problem

However, despite the advantages offered by these problem types, they also present certain
operational challenges. One such challenge arises from the time window restrictions imposed
by customers. Meeting the demands of all customers within their specified time windows may
sometimes require increased total distance traveled or the use of additional delivery vehicles.
Consequently, these situations can lead to higher operational costs. Therefore, it is crucial to
seek solutions that not only provide flexible delivery options to customers but also consider the
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economic factors for service providers when implementing such models. Two potential
solutions that show promise in improving the efficiency of the roaming delivery option under
these circumstances are the utilization of crowd shippers and intermediate transfer locations
called satellites. For example, by considering the availability of crowd shippers and satellites,
the problem depicted in Figure 1 can be modified as described below.

Customer ¢ in

° Depot location related to
time window1.
Customer c in Customer c in

location related to o location related to

time window2.

time window3.

/ o —_ First echelon A Fixed Satellite s
route
Crowd Shipper
—— route

Figure 2. A sample VRPRDL problem with crowdshipper and fixed satellite

So in this section, according to basic VRPRDL modeling technologies which is provided by
Reyes et al. (2017) (Reyes, Savelsbergh, & Toriello, 2017), we formulated a flexible multi-
echelon extension of the VRPRDL problem (ME-VRPRDL), and then in the next step, we
added crowd shippers to fulfill a part of customer orders, as well as stationary and mobile
satellites to supply crowd shippers. Crowd shippers in this problem have a duty time window
that will be announced by themselves in advance and in that period, they will be available only
in a predetermined geographic radius. Hence, given the possibility of unavailability of crowd
shippers (CSs) in certain scenarios, the first-echelon vehicles (FEVSs) will possess the capability
to directly deliver parcels to the final customers. Conversely, when CSs are available and their
utilization is deemed optimal, parcels will be dispatched to satellites, where the assigned crowd
shippers will collect and subsequently deliver them to the final customers. Furthermore, the
main assumptions considered in mathematical modeling are as follows:

e The logistics system investigated in this research will focus on non-perishable parcels.

e We do not consider same day delivery policies.

e |tisassumed that it is possible to receive a valid itinerary with time windows from customers
as one of the input parameters.

e The scope of the research is focused on e-commerce logistics operations.

e Each crowd shipper is only assigned to one satellite, which will be the starting and ending
point of its route.

e All customers’ demands should be satisfied.

Crowed-Based Multi-Echelon VRPRDL Formulation

With the above-mentioned assumptions and the presented basic mathematical model in
(Reyes, Savelsbergh and Toriello 2017) as a reference model, a MINLP model is proposed to
solve the Crowed-based multi-echelon VRPRDL problem (C-MEVRPRDL). Let G = (V, A)
denote a complete directed graph with node set V and arc set A, where node set V is a
combination of the main depot, satellites and customers’ locations that is shown in equation 1.

V ={0}uV*uV°={depot location} U {satellites'locations} U {customers’'locations} Q)

Theset [(A=A) _1 denotes the set of arcs in first echelon and the set A_2 is considered for
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second echelon arcs and determined by equations 2-3.
A ={@Plij eV,i#j} )
AZ = {(l,j) € All,] € V\{O},l '_'t]}\{(l']) € Al"!] € sti i]} (3)

To formulate the C-MEVRPRDL model, the following notations have been used:

Table 2. List of indices and sets

indices :

i: index of all nodes

j:index of first echelon vehicles
l: index of crowd shippers

Cs: crowd shippers set

fev: first echelon vehicles set
s:index of sattelites
VS:satellites'locations set

V¢: customers'locations set
c¢': customers'index

c: customers'locations index

Table 3. List of parameters

Parameters

|S|: number of sattelite

|C|: number of customers

M'®V: capacity of fev vehicle

ML capacity of cs vehicle |

T: time horizon of planning period

GP_r: geographic profile of customer c¢'; GP. S V¢;|GP./| = g for all customer c'
GR, = (0}“ 031,, al): geographical region of Cs; presence to serve customers
0.:longitude coordination of Csl

031,: latitude coordination of Csl

o': Covering radius of Cs 1

long;: longitude coordinate of nodei € VS U V°

lat;: latitude coordinate of nodei e VS UV*

BM%: big value (m) for distance

g: customer geographical profile size

ps: handling cost of sattelite s

d;: demand of node i

a;: lower bound of time window for node i E VS U V¢

b;: upper bound of time window for nodei e VU V¢

e;: lower bound of available time for CS1

fi: upper bound of available time for CS |

¢ j:routing cost fromito j by first echelon vehicle(fev)

w; j: Touting cost fromito j by crowd shipper(cs)

t};: travel time which is related to (i,j) € A, by fev at first echelon

tfj_l: travel time which is related to (i,j) € A, by crowdshipper | at second echelon

Table 4. List of variables

Variables
Xt = {1 if k € fev traverses arc (i,j) € A,
Lik =
0 ow
2 _ (1 if arc (i,j) € A, is traversed from satellite s € V° by Cs;
Kijst = {0 0.W
qix € R*: Number of parcels transported from the depot to the node i € V¥ UV by vehicle k
€ fev

hijsi1 € R*:The load of Cs, dispatched from satellite s travels via arc(i, ) € A,
1} € [0,T]: time of departure after visiting node i € VSUV® by a fev
Tfl € [0, T]: time of departure after visiting node i € V¢ by crowd shipper | at second echelon

U;x € Z*: auxiliary variable for eliminating subtours in the first echelon
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The mathematical formulation for C-MEVRPRDL is then given as follows:

MinZ = Z Z Ci,j-Xil,j,k+Z Z Zwi‘j'ij'S'l-l_ Z Zps.qs_k

kefev (i,j)€A, SeEVS (i,j)€EA, lECS

St

1
Xl]k_ Z Xj,i,k

(i,j)EA, (J,DEA,
Xt <1
(i,j)eAr
U — U + (SI+1CD. XY < (ST +1CD -1
qix < M7V, Z Xiik
(J,DEA,

IPIPILTEE

JEGP 1 i€V kEfev

2 D) ) Mhust

JEGP 1 iIEVSUVC IECS SEVS

PN EDND PP RIS

JEGP 1 IEV kEfev JEGP 1 IEVSUVC IECS SEVS

i,jk

ev

G < M7
ievsuyve
Z qS,k - Z Z hS'j’S'l
kEfev JEVC LeCs

— 1

Z quk - dc.z Z Xj,C,k
kefev JEV kEfev

l] sl = z j, lSl
(i,))€A; (ji)EA,

IDIPNPILEEPIDINPILTE

iEGP 1 LECS SEVS (J,i)EA, [EGP .1 LECs SEVS (i,/)EA,

S a3 Y w

iEGPCI iEGPCI JEV kefev

hi,j,s,l < Ml ijsl

2 —
Xi,s,s',l =0
2
XS]S l =0
sssl =0

D, 2 D, K=o

iEGP /]eGP 1 kEfev

IPADIPRCHEL

iEGP s JEGP 1 SEVS IECS
1
E Xoje =<1
Jevsuve
2
Xs;sl <1
SEVS jevSuyve

T + Z ti; X<t +T.[1- Z XLk

kefev kefev

kefev sevs

VieVsuVeu{0}, k€ fev

VieVsuVeu{0},k e fev
Vi,j EVSUVEi+#j,kE€Efev

VieVSUVE ke fev
vc' e’
vc' e’
vc' e’
VkEfev
VsevVs
VceVe

VieVSuVe¢seVSIleCs

vc' e’

V(i,j) € A,,s €VS,IECs
VieVsuVes,s' eVs,s
+s',l€Cs
Vj EVSUVEs,s' €Vs,s
#=s',l€Cs
Vs e VS 1€Cs

vc' e’
vc' e’
VkE€fev

VIECs

Vi eVSUVE,jeVsuVe{i}

(4)

()

(6)
()
(®)

9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17
(18)

(19)
(20)
(21)

(22)

(23)

(24)

(25)
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zt"’ Xojx <7 +T. 1_2)(‘}"'"‘ vjevsuve (26)

kefev kefev
Ll+ZtL2]lXUSz +T<1_ZX1151> Vie Ve jeVe\{i},lLeCs 27)

SeVS SEVS
el X S TH+HT(1—X256) Vs EVS,jEVEIECS (28)
1 1 1
@ Z Xijae S T0 < by Z Z Xije  vievsuve (29)
JEVCEUVSU{0}\{i} kefev JEVCEUVSU{o}\{i} kefev
X X2 . c
D KhasSthsh ) K vievelecs (20)
jEVCUVS\{l} SeVS jeVCUVS\{i} SeVS
VieVejeVeuVsledls,s
TEl > el‘XiZ,j,S,l J € VS (31)
le Z(el-l_ts]l) 5,J,5)L VjeVeleCs (32)
SEVS
< fi Vj €V 1€Cs (33)
\/(0}5 —long;)? + (OJZ, — lati)2
VieVeuVsleCs (34)
<a'+BM%|1- Z Z Xiz_j‘s‘l
JEVEUVS sevs

hi,j,S,l >0 V(l,]) € AZ,S evs (35)
u; €Z* VieVsUVe ke fev (36)
Qi k >0 VieVsu Vc,k € fev (37)
X'k €01 v(i,j) € ALk € fev (38)
X?5, €0,1 V(i,j) € Ays €VS,1ECs (39)

The objective function seeks to minimize total routing costs, encompassing first-echelon
vehicle (FEV) and second-echelon crowd shipper (CS) costs, as well as satellite handling costs.
Constraints (5) ensure flow conservation for FEVs, ensuring vehicles leave nodes they enter,
while constraints (6) limit each node to a single visit by an FEV. Subtour elimination is
addressed in constraints (7), and constraints (8) govern parcel transfers to satellites or customers
by FEVs. Constraints (9) - (11) ensure customer demands are satisfied by at most one FEV, and
any unmet demands are served by exactly one CS and its assigned satellite. Capacity constraints
for vehicles and satellites are imposed in constraints (12) and (13), while constraints (14) - (17)
ensure demand satisfaction, flow conservation, and capacity limits in the second echelon.
Constraints (18) - (24) prevent overlapping satellite assignments and limit vehicle usage. Time
windows and travel times are enforced via constraints (25) - (33), while constraints (34) - (39)
define geographic and variable domains.

Sensitivity Analysis for Small Instance

In this section, to be able to verify the developed mathematical model, we design a small
instance that we know its optimal solution before solving it. Then this example is first solved
by the VRPRDL model (provided by (Reyes, Savelsbergh and Toriello 2017)) coded in GAMS
software and then solve the same example by the ME-VRPRDL model presented in this
research.

The example used in this section is as follows:
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Optimum route O = = —p
i | 1
1 i)
4 @
Start: 9 AM
1
‘\4__/=\__-——_-‘? @I
\‘ First echelon | “@ second
- F O - APy

Figure 3. An example designed to verify the mathematical model

In the example above, the assumptions and parameters are as follows:
Each block is equivalent to one distance unit.

Each distance unit is considered equivalent to 15 minutes of travel time.
Distances are calculated using Manhattan method.

Demand for all customers is equal to 1.

Table 5. List of instance parameters

parameters
D depot
ct Location 1 of customer 1: TW[9am-10am]
ct Location 2 of customer 1: TW [10am-12pm]
ck Location 1 of customer 2: TW[9am-10am]
c? Location 2 of customer 2: TW [10am-12pm]
cl Location 1 of customer 3: TW[9am-10am]
c? Location 2 of customer 3: TW [10am-12pm]
ca Location 1 of customer 4: TW[9am-10am]
c? Location 2 of customer 4: TW [10am-12pm]
5, Location 1 of mobile satellite: TW [10ar_n-12pm]_; ([9am-10pm] is moving to its destination
and is unavailable)
Cs, Crowd shipper 1: shift[9am-10pm]; capacity=2
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Cs, Crowd shipper 2: shift[10am-12pm]; capacity=2
k, FEV1: shift[8am-12pm]; capacity=4
k, FEV2: shift[8am-12pm]; capacity=4

If we want to solve this problem with the VRPRDL model, it means that we cannot use
satellites and crowd shippers. In this case, the optimal solution of problem will be as follows.

Table 6. the optimal solution of VRPRDL model
Best solution according to VRPRDL Objective function value

|
4@+@

<09

But the optimal solution when we solve it with the ME-VRPRDL model presented in this
article by considering the possibility of using satellites and crowd shippers will depend on the
following two parameters:

1. The cost and time of travel with crowd shippers
2. The fixed cost of handling a satellite

Therefore, to make a more accurate comparison between the solutions obtained from the
above two models, we take the cost and travel time of the crowd shippers as the same as the
first echelon vehicles and change the fixed cost of handling the satellite in different iterations.
In this case, the results will be as follows:

Heuristic Solution Approach

The VRPRDL problem, being NP-hard, extends its computational complexity to multi-echelon
models, making large-scale, real-world applications highly time-intensive and often infeasible.
Consequently, this section introduces a heuristic algorithm leveraging node classification and
a greedy approach to address these challenges, with detailed procedural steps outlined for
implementation.

Phasel: Node Classification

In this phase, we first consider each of the satellites as a class center, and then classify all
nodes based on the distance from the class centers.

In the example of Fig 3, since there is only one location - satellite, as a result, there is no
classification, and all nodes are assigned to the same satellite.

Phase2: Sorting Phase
In the second phase to begin the greedy search, we sort all customer nodes based on distance
criteria from the depot. For our example, we will consider:

Phase3: Greedy Constrained Solution

In this phase, we select the first node from the sorted list as the starting point and start the
route with it. At each step, the next node is the closest node to the current customer. On the
other hand, in each step, we check the three main constraints of the problem, and if any of them
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are not satisfied, we go to the next nearest node. These main constraints are:
e Customer time windows constraints
¢ Vehicle capacity constraints

Table 7. Sensitive analysis of p_s

Ps Solution Obj (cost) Optimal structure
1 50
2 Qe ————————— ..@ 52
3 1 54

\
4 \ ! 56 Multi echelon
5 < 9 ¢ 58
6 o= = = O= = == == - Yo == = == = - -1 60
7 62
8 - _'@' "@ 64

: o

4(,2 >
>9 9 66 Single echelon
\b —_—
ky @—0
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Figure 4. Node classification phase

Sorted nodes

Figure 5. Node sorting phase

Table 8. final Route of vehicle 1 for selected sample

%ﬁﬁﬁg Step  Route timlglode Feasibility

Stepl Depot — Ci 0 - 0:45" < 1:00 Yes

Step2  Depot - C} - C# 0 - 0:45’ —1:45°<3:00 Yes

1 Step3  Depot — CL - CZ - C? 0> 0:45 > 1:45" - 2:45’ Yes

Stepd Depot — C} - C% - C} - C} 0-0:45 > 1:45 - 2:45' > 3 No

Step5 Depot — CL - C2 > CZ - Depot 0> 0:45" > 1:45’ > 2:45’ Yes
Remaining customers = final Route of vehicle 1 = [C1

Objective function = 54

[C2] to C3 to C4]
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Table 9. final Route of vehicle 2 for selected sample
Selected Vehicle  Step Route Node time Feasibility
Stepl  Depot — C} 0- 1:30" > 1:00 No
2 Step2  Depot — C? 0-2:00"<3:00 Yes
Step3  Depot — CZ - Depot 0 - 1:45 - 3:30’ Yes
Remaining customers = [] | final Route of vehicle 2 =[C2] | Objective function = 24

The solution obtained above will be a feasible single-echelon solution for the sample
problem whose total objective function is equal to 78.

Phase4: Greedy Unconstrained Solution

In this phase, operations are conducted similarly to Phase 3, with the key distinction that
only capacity constraints are considered, while time window constraints are omitted. This
approach is adopted because the solution generated in this phase serves as an initial input for
constructing a two-echelon route in the subsequent phase. The time window constraints will be
evaluated after obtaining the final solution in that phase. For the given example, where each
customer's demand is assumed to be 1 unit and the capacity of a first-echelon vehicle (FEV) is
4 units, the demands of all customers are fulfilled by an FEV as described.

Initial greedy unconstrained solution for vehiclel

@ —60 — 0606 — O

Figure 6. Initial greedy unconstrained solution for vehiclel

In the next step of this phase, we need to sort the nodes according to which type of the time
windows they have. In this way, we first create matrices of the nodes of each type by keeping
their current order, and then we merge these matrices together to get the final matrix.

Type 1 of time window: @ — @ @

Type 2 of time window: @

e Matrix1=[C},C},CH
e Matrix 2 = [CZ]
e Final Matrix = [C}, C},C}, CZ?]

So, final greedy unconstrained solution for vehiclel is:

Final greedy unconstrained solution for vehiclel

@ — 0@ — 6 — 0O
Figure 7. Final greedy unconstrained solution for vehiclel
Phase5: Create Multi-Echelon Solution

To start the process of generating the multi-echelon solution of our sample, the following
steps will be taken:

1. Start with first Crowd Shipper (CS1)

2. Satellite Selection

Finding a satellite that can be covered by the crowd shipper and in the final solution obtained
from phase 4, most of the nodes are of its class (according to the classification of nodes in phase
1)
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Phase 4 solution @ - 5 @ —_— @ —_— @
Sl S]_ Sl Sl

class center

Selected satellite : §4
Figure 8. Satellite selection

3. FEV Selection
Find FEV that has the most nodes of the selected satellite class (K1)

4. Extraction of Potential Customers for Allocation to the Satellite

To find potential customers of a satellite, if one of the locations of a customer is in the class
of that satellite, in addition to that location, other locations of that customer are included in the
list of potential customers of that satellite regardless of their time windows. So, for the example
above, the list of potential customers - locations for Satellite 1 is: [Ci, CZ, C}, C2,
ci,c3,c3,cl]

5. Check Compatibility of Time Windows
In this step, the nodes whose time windows are incompatible with the satellite time window
are removed from the list of potential customers.

Final potential customer list: : [CZ, CZ,CZ, C%]

6. Greedy Customers Selection
In this step, we select the first node from the potential customers list in such a way that:
e The location of the satellite should be between the customer and the depot.
e The customer that has the shortest distance to the satellite.
e The customer who has the greatest distance from the depot.
Therefore, to select the first node, we will seek to minimize the following equation:

Distance Index = a.\/(customer(l) — satellite(l))2 + (customer(Z) — satellite(Z))2

- %.\[(customer(l) - depotf(l))2 + (customer(2) — depot(Z))2 (40)

{a >1 if (customer(l) - satellite(l)) + (customer(Z) — satellite(Z)) <0 (41)
a=0; otherwise
b>a (42)
The second node will be the closest node to the first. We continue in the same way until
either the capacity of the crowd shipper is less than the minimum available demand or all the
nodes in the above list are checked.

Second echelon
route 51 > > > 5
Demand 0 1 1 0

The remaining
capacity of the 2 1 0 0
crowd shipper

Figure 9. Second echelon route
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7. Finalization of the first Echelon Route

In this step, we remove the customers assigned to the satellite from the first echelon route.
Then we add the selected satellite to the remaining nodes and rearrange the existing nodes
according to the greedy method described in phases 2-3.

@ — 0 — 60— 0

Remaining
nodes

[C1,C31+5

Depot ——» 9 _ S5 @ ——»  Depot

Figure 10. Final first echelon route

8. Feasibility Check
We examine the feasibility of the generated routes in terms of compliance with the time
windows.

Table 10. Feasibility check of multi echelon route

Final first echelon route Depot 9 S @ Depot
Departure time of each nodes 0 0:45° 1:15° 1:45° 2:30°
status feasible feasible feasible feasible feasible
Final second echelon route S @ @ S
Departure time of each nodes 1:15° 1:45° 2:00’ 2:45°
status feasible feasible feasible feasible

As can be seen, the solution obtained during the steps of the proposed heuristic algorithm is
the optimal solution of the sample problem, which was also shown in Fig 3.
Phase6: Comparison between single-echelon and multi-echelon solutions and choosing
the best one.
Phase7: Update sorted nodes list in phase 2.
remove the node used as the starting node from the sorted list in phase 2.
Phase8: Return to phase 3 and repeat the algorithm until the sorted nodes list is empty.
Algorithm 1 outlines the proposed heuristic in pseudo-code.

Algorithm 1. Classification-greedy heuristic approach

Inputs:

NFEV: Number of FEVs

Kn: FEV capacity

NCS: Number of crowd shippers
Kcs: CS capacity

C: Set of customers

g: Customer geographic profiles
Dc: Customer demands

TW: Time windows for all nodes
Outputs:
FS!: Single-echelon feasible routes

Cij, Sij: Coordinates of customers and satellites
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FS2: Multi-echelon feasible routes

1: Customers «— classifyCustomers(Cij, Sij)

2: CustomersSorted «— sortCustomers(Customers)

3: C'« CustomersSorted

4: for iter — I to Length(C) do

5: FEV«1

6:  StartPoint < C'(iter)

7:  while FEV < N7V do

8: UnservedCustomers < C

9: ServedCustomer[FEV] «— GreedyConstrainedProcess(FEV,Kn ,TW, D¢ ,UnservedCustomers)
10: GreedyRoute[FEV] « ServedCustomer[{FEV]

11: if UnservedCustomers \ ServedCustomer[FEV] == gdthen

12: GreedyConstrainedSolution[iter] <— GreedyRoute[1:FEV]

13: FEV « NTEV + 1 (Break the Loop)

14: else

15: FEV «— FEV + 1

16: UnservedCustomers «— UnservedCustomers \ ServedCustomer[FEV]
17: end if

18:  end while

19: FEV <« 1

20:  StartPoint — C'(iter)

21: while FEV <NV do

22: UnservedCustomers «— C

23: ServedCustomer[FEV] < GreedyUnconstrainedProcess(FEV, Kn , Dc, UnservedCustomers)
24: GreedyRoute[FEV] <« ServedCustomer[{FEV]

25: if UnservedCustomers \ ServedCustomer[FEV] == @dthen

26: GreedyUnconstrainedSolution[iter] < GreedyRoute[l:FEV]
27: FEV « NFEV + 1 (Break the Loop)

28: else

29: FEV «— FEV + 1

30: UnservedCustomers < UnservedCustomers \ ServedCustomer[FEV]
31: end if

32:  end while

33: end for

34: for iter «— 1 to Length(C) do

35: CS«1

36:  FirstEchelonRoute < GreedyUnconstrainedSolution[iter]

37: Mer« 1

38: BestCost < o

39:  while CS<N®do

40: (CS, SCS) « SatelliteSelectionProcess(CS)

41: (CS, SCS, FEVCS) < FEVSelectionProcess(CS, SCS)

42: PotentialCustomers < ExtractPotentialCustomers(CS, SCS, FEVCS)

43: CompatibleCustomers «— CheckTimeWindowCompatibility(Potential Customers, TW)

44: SecondEchelonRoute[Mer] «— GreedyCustomerSelection(CompatibleCustomers, Kcs, Dc)

45: FirstEchelonRoute[Mer] «— UpdateFirstEchelonRoute(FirstEchelonRoute,
SecondEchelonRoute[1:Mer])

46: MultiEchelonRoute[Mer] < FeasibilityCheck(FirstEchelonRoute[Mer],
SecondEchelonRoute[1:Mer], TW)

47: RouteCost «— Cost(MultiEchelonRoute[Mer])
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48: if RouteCost < BestCost then
49: FinalMultiEchelonRoute[iter] «— MultiEchelonRoute[Mer]
50: BestCost < RouteCost
SI: Mer «— Mer + 1
52: end if
53: CS«—CS+1
54: end while
55:  if BestCost < Cost(GreedyConstrainedSolution[iter]) then
56: OptimumRoute[iter] < FinalMultiEchelonRoute[iter]
57: else
58: OptimumRoute/iter] « GreedyConstrainedSolution[iter]
59: endif
60: end for

61: FinalOptimumRoute < SelectMinCost(OptimumRoute/[:end])

Computational Results

To evaluate the proposed algorithm, scaled-up instances for n < 8 and new instances for n > 8
were solved using a heuristic algorithm, and results were compared with exact solutions from
GAMS (Table 12). Additionally, Table 13 compares basic VRPRDL and crowd-based ME-
VRPRDL models, analyzing the maximum acceptable level (MAL) for satellite handling costs.
Both instances assume unrestricted crowd shipper allocation and availability across shifts. The
details of these two instances are presented in the following table (Table 11).

Table 11. detailed information of instances
Instance Node name long; lat;
depot

Working shift
1,2

femer

Customers
1
fixed satellite
mobile satellite
depot
2
customers
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Instance Node name long; lat;

o

Working shift
1

=
[N
o0}

NERINEFEINEFEINEFENEFENEFEPNEFENREPNEFENEFENENPRFEN

fixed satellite

I
N

15
22
18
24
15

mobile satellite
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Table 12. Comparison between exact and heuristic algorithms for Crowd-based ME-VRPRDL problem

s Exact algorithm (Solver: . .
Number of entities BONMIN) Heuristic algorithm (HA)

= o
# |8 > > b4

8 O lme =20 282~ 518 17/8 % 7% 581018
1 4 [0 1|23 |2 4 4 48100 1|11 48 02011 1] -
2 | , | 5 (0|12 3|2 12 4 |54 5 0|1 2|1|72]03 0|1 2|1 02
3 6 | 11|25 416|560 * 012178 0400 2 0] 02
4 7 (112 5| 416|860 * 001,066 04001 0] 009
5 9 |11 ]2 |5  4|16]9] 9 213 1lol1]1]e o110l 1] -
; 1 |2 125 a9 - | = |- -|.|- 162 03102 /1] -
7 1 |2 12 /5 a9 - | x| - -|.- 183 15102 1] -

2
8 6 |3 |12 /5 a|16|9| - | * |- |- 165 19202 2] -
9 18 31254169 - | = |-|-]-]- 186 1702022/ -
10 20 | 3|12 /5 a9 - | * |- -|.- 204 17203 2| -

C: Customer; MS: Mobile Satellite; SS: Stationary Satellite; TH: Time Horizon; Cap: FEV Capacity; Rt: Running
Time in sec; AMS: Allocated Mobile Satellite; ASS: Allocated Stationary Satellite; AFEV: Allocated First
Echelon Vehicle; ACS: Allocated Crowd Shipper

* Set 2000 seconds as an upper bound of running time. So, we consider last feasible solution after 2000 seconds
as final solution.

- No feasible solution found after 2000 seconds.

0bj*—0bj*
AP = =5
J]
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Table 13. Comparison between VRPRDL & Crowd-based ME-VRPRDL
. Crowd-based ME-
Number of entities VRPRDL VRPRDL
<
8 g 3 S
S = O =2 o <.
4 | B ) 3 os |8~ 9
@ n w w o =3 "N = - S
glo3/sje @82 8 £ & =2 % Ezz = 3 ot 78"
2 i 3 1255 g 9 £
Q o P
=c =
55
«©«
8 Crowd- 27.97
1 4 0 1 2 3 2 4 4 BONMIN 66 0.20 é 48 10.3 based ME- 0/ 0.27
= VRPRDL ’
8 Crowd-
2 5 0 1 2 3 2 12 4 BONMIN 60 0.39 é 54 57.1 based ME- 10% 0.10
= VRPRDL
1
8 Crowd-
3 6 1 1 2 | 5| 4 |16 5 BONMIN 66 068 é 60 * based ME- 9% 0.09
= VRPRDL
ve)
o
4 7 1 1 2 5 4 16 8 BONMIN 60 0.51 é 60 * both 0%
z
Crowd-
5 9 1 1 2 5 4 16 9 BONMIN 102 0.92 HA 90 0.1 based ME- 11.7% 0.12
VRPRDL
Crowd-
6 11 2 1 2 5 4 16 9 BONMIN 138 9.94 HA 126 0.28 based ME- 8.6% 0.09
VRPRDL
Crowd-
7 14 2 1 2 5 4 16 9 BONMIN 150 29.1 HA 138 155 based ME- 8% 0.08
2 VRPRDL
Crowd-
8 16 3 1 2 5 4 16 9 BONMIN 168 * HA 156 1.86 based ME- 7.1% 0.07
VRPRDL
Crowd-
9 18 3 1 2 5 4 16 9 BONMIN 174 * HA 168 1.68 based ME- 3.4% 0.03
VRPRDL
Crowd-
10 20 3 1 2 5 4 16 9 BONMIN 252 * HA 240 1.75 based ME- 4.7% 0.05
VRPRDL

MAL: maximum acceptable level for the handling costs of satellites.
* Set 2000 seconds as an upper bound of running time. So, in this case, we consider last feasible solution after
2000 seconds as final solution.

As can be seen in the above tables, the complexity of Crowd-based ME-VRPRDL is much
higher than that of VRPRDL, and as a result, obtaining the globally optimal solution requires
much more time. However, in some cases, due to the high execution time, the last feasible
solution of Crowd-based ME-VRPRDL is reported after 2000 seconds, this feasible solution
has a lower cost or, in the worst case, equal to the globally optimal solution of VRPRDL.

In addition, it should be considered that in these example problems, the costs and travel times
of FEVs and crowd shippers are considered equal. While in many cases these parameters are
lower in crowd shippers than FEVs. Therefore, it can be concluded that in the case of using
crowd shippers, the reduction of total costs and travel times will be much more impressive.
Also, in addition to economic aspects, it has been shown in past studies that in general, the use
of the multi-echelon structure as well as crowd-based agents will have positive effects on social
and environmental aspects of sustainability.
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Since Crowd-based ME-VRPRDL is an extraordinarily complex problem, it will be difficult
to find a feasible solution for it. As a result, in many meta-heuristic algorithms, after applying
the algorithm operators on the initial solutions, mostly the new solutions were left out of the
feasible space of the problem, and practically the algorithms could not provide suitable results.
This issue was due to the limited solution space, which would violate the feasible space of the
problem with the smallest change in the solution. So, there was a need for a heuristic approach
to produce feasible and high-quality solutions for large-scale problems. But one of the main
applications of this algorithm is to create an online approach to solve Crowd-based ME-
VRPRDL in real time in future researches. Since in many cases the parameters related to the
available time and location of crowd shippers are not known in advance and their values may
be determined during the execution, we will practically face a dynamic programming problem
that their solutions should be updated in different time slots.

Another feature of the heuristic algorithm presented in this research is the provision of both
single-echelon and multi-echelon solutions for the problem. By providing both solutions, this
algorithm will always provide an alternative way for the user in real world applications.

In the following, in order to be able to examine more and random samples, we will generate
several random instances as described below (Table 14-15) and solve them with the help of two
exact and heuristic methods. As seen in the examples above, the solution to the VRPRDL
problem can be considered as an upper bound for the ME-VRPRDL problem. On the other
hand, in cases where it is not possible to exactly solve the ME-VRPRDL problem up to 2000
seconds in the GAMS software, the first feasible solution obtained after 2000 seconds will be
considered as an upper bound for the instance.

Table 14. Entity information for generating random instances

Number of FEV 5
FEV Capacity 9
Number of CS 4
CS Capacity 2
Depot location [1, 3]
Number of stationary satellites 1
Number of mobile satellites 3
Table 15. General information for generating random instances
Time Horizon 16
Geographic profile size 2
Shiftl [0, 7.9]
Shift2 [8, 16]
Travel Time of a Unit Distance 15 Min
CS travel time = FEV travel time
CS travel cost = FEV travel cost

As can be seen in Table 16, in the last instance with 35 customers (and 75 customers’
locations), it was not possible to get a feasible solution in both VRPRDL and ME-VRPRDL
problems by BONMIN exact solver (GAMS software) after 2000 seconds, but the proposed
heuristic algorithm produced a suitable feasible solution for it in only 1.36 seconds. In none of
the above examples, it has not been possible to obtain the global optimal solution for Crowd-
based ME-VRPRDL problem.

As a result, the comparison between the (1) optimal solution of VRPRDL problem as an
upper bound of the objective value of ME-VRPRDL problem, (2) the best feasible solution
resulting from the heuristic algorithm and (3) the best feasible solution of ME-VRPRDL
problem after 2000 seconds by BONMIN algorithm was investigated.

According to the results obtained in Table 16, in small and medium-sized problems (less
than 20 customers), if it is not possible to solve ME-VRPRDL problem accurately in a
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reasonable time, it is better to solve it as a VRPRDL problem (single echelon VRPRDL). But
if the exact solution of ME-VRPRDL problem is not possible in a reasonable time, it is better
to solve it by the provided heuristic algorithm. Also, large instances (with more than 20
customers), solving the problem by our heuristic algorithm will lead to better results in a much
shorter time.

In the following, the schematic solutions of exact and heuristic algorithms for instances with
less than 10 customers are shown in Figure 11.

Table 16. Comparison between the BONMIN solver and the heuristic algorithm in solving randomly generated
instances of the crowd-based ME-VRPRDL problem

> Exact algorithm (BONMIN) Heuristic algorithm (HA) GAP
5 Pl Crowd-based ME- VRPRDL Crowd-based ME-
o3z 3 VRPRDL VRPRDL
2= )
o @ Z @ Z i
n3% 3 g3 sSE 8
25 2 Obj! | Rt | S0 & | Obj Rt Obj2 | Rt Sco S|
2 g Sz % o3 % NS
o @D S =} .
3 S S S S -"
0.23
1 5 [310] | 78 | 2000 1 78 | 0419 | 84 | f 1,2 0.07
2 7 [310] | 60 | 2000 1 60 | 0.903 | 66 0'3}0 2 0.09
3 9 [312] | 186 | 2000 2 0 445 | 102 | 2 -0.82
4 11 [3,12] - | 2000 ; 114 57%66 114 0'539 1 -
5 15 315] | - | 2000 - 222 | 2000 | 216 0'55 1 -
6 19 [3,15] - | 2000 - 264 | 2000 | 294 0';37 1,2 -
7 23 [3,15] - | 2000 - 426 | 2000 | 336 0'3?8 2 -
8 27 315] | - | 2000 - 384 | 2000 | 342 1'f6 1 -
9 31 315] | - | 2000 - 588 | 2000 | 402 2'889 2 -
10 35 [3,18] - | 2000 - - | 2000 | 474 1'36 2 -
# HA Output Exact Algorithm Output
C41 C41
C12 c12
C52 c52
C31 S c31
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L Clle. /. —
1 "s21 S21
42 S42
C22 c22
S C32 sif S31 C32  s1f S31
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Figure 11. Solution networks for customers < 10

Finally, to evaluate the performance of our proposed heuristic algorithm in solving the basic
VRPRDL problem, we tested six instances of varying sizes using both the BONMIN solver and
our heuristic approach. The results are presented in Table 17. As shown in the table, for Instance
6 (with 20 customers), our proposed heuristic algorithm achieves superior results in just 1
second compared to those obtained by the BONMIN solver after 2,000 seconds.

Table 17. Comparison between the BONMIN solver and the proposed heuristic algorithm for VRPRDL

problems
#| C | MS | SS ||g| | FEV | CS | TH | Cap | Solver ObjBONMIN | Splver | Obj"A | Gap**
119 1 1 2 5 4 16 9 BONMIN 102 HA 126 0.19
2111 2 1 2 5 4 16 9 BONMIN 138 HA 168 0.18
3114, 2 1 2 5 4 16 9 BONMIN 150 HA 180 0.17
4116 | 3 1 2 5 4 16 9 BONMIN 168* HA 198 0.15
5118 | 3 1 2 5 4 16 9 BONMIN 174* HA 228 0.24
620 3 1 2 5 4 16 9 BONMIN 252* HA 240 -0.05

*Solution after 2000 seconds
** (ObjHA- ObjBONMIN)/ObjHA

Conclusions

This study presents an innovative mathematical model for a crowd-based, flexible multi-
echelon vehicle routing problem with roaming delivery locations, extending the basic VRPRDL
model. By integrating crowd shippers and mobile parcel lockers, the model improves delivery
capabilities. The results indicate that the optimal solution derived from the crowd-based ME-
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VRPRDL model is always superior or equal to the basic VRPRDL model. However, the
complexity of the crowd-based model is significantly higher, requiring attention to problem
dimensions and solution accuracy. Key factors such as handling costs, travel time, and
transportation costs significantly influence the number of optimal echelons. Since the problem
is NP-hard, solving it for large-scale real-world scenarios is computationally intensive,
necessitating the development of a heuristic algorithm. The introduction of multiple time
windows for crowd shippers, satellites, and customers further complicates the problem. Future
research could explore online algorithms for real-time routing and mobile satellite routing to
better reflect real-world conditions.
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