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Abstract  

The Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL) represents a 

recent innovation in last-mile delivery, wherein a customer's order is delivered to the trunk 

of their vehicle, which may be parked at various locations across different time windows. 

In this Paper, we introduce a novel crowd-based multi-echelon variant of the vehicle 

routing problem with roaming delivery locations (crowd-based ME-VRPRDL). This 

model integrates a flexible multi-echelon logistics structure with hybrid intermediate 

transfer locations (satellites), which can be either mobile or stationary. The flexibility in 

our approach allows the optimal solution to dynamically adapt between single-echelon 

and multi-echelon configurations, depending on the specific problem parameters and 

constraints. In the proposed model, crowd shippers—individuals who assist with 

deliveries—are assigned to intermediate satellites based on their availability and time 

windows, enabling more efficient and dynamic resource allocation. To address the 

complexity of this problem, we develop an innovative heuristic algorithm that combines 

node classification with a greedy optimization approach. This algorithm is particularly 

tailored to handle the unique challenges posed by occasional crowd shippers and hybrid 

satellite configurations. Our findings demonstrate that the integration of multi-echelon 

logistics systems with crowd shipping and strategically placed satellites offers significant 

potential to optimize last-mile delivery operations. Specifically, it reduces delivery costs 

and travel times while leveraging underutilized resources in the logistics network. The 

study underscores the value of combining traditional and crowd-based delivery 

mechanisms in achieving more sustainable and cost-effective solutions for modern 

logistics challenges. 
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Introduction 

 

The modern business environment increasingly emphasizes flexibility in customer service, 

particularly within logistics, where accommodating customers' preferred delivery locations and 

times has become a cornerstone of competitive success. This operational flexibility enhances 

cost efficiency through improved planning while simultaneously fostering customer satisfaction 

by offering personalized delivery options (Tilk, Olkis and Irnich 2021). Urbanization has 

further amplified the demand for goods and services in cities, necessitating the expansion of 
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urban logistics (Sampaio Oliveira, et al. 2019). Recently, last-mile delivery has emerged as a 

critical focus area, significantly influencing urban residents' quality of life. Consequently, 

researchers have dedicated substantial efforts to developing innovative and sustainable 

solutions to optimize last-mile delivery systems. 

A variety of advancements in last-mile logistics have been explored, including the use of 

unmanned aerial vehicles (drones) (Lemardelé, et al. 2021), autonomous delivery robots 

(Ostermeier, Heimfarth and Hübner 2022), mobile and stationary parcel lockers (Lin, et al. 

2022), in-trunk delivery systems (Reyes, Savelsbergh and Toriello 2017), and crowd shipping 

(Mousavi, Bodur and Roorda 2022). These innovations aim to improve efficiency, reduce costs, 

and meet growing consumer expectations. Delivery modes generally fall into two categories: 

(1) home delivery and (2) delivery to secondary locations, such as parcel lockers in commercial 

centers or transit stations ((Janjevic, Winkenbach and Merchán 2019); (van Duin, et al. 2020)). 

While traditional parcel lockers are static, mobile lockers—capable of dynamic relocation—

have introduced greater convenience and flexibility for customers (Schwerdfeger and Boysen 

2020). 

Advancements in web-based technologies have facilitated the integration of crowd logistics, 

enabling companies to utilize non-professional agents, or crowd shippers, who leverage their 

spare capacity to complete deliveries in exchange for compensation. Platforms like Uber and 

Airbnb exemplify this scalable and cost-effective model, though challenges such as irregular 

availability of crowd shippers remain ((Boysen, Fedtke and Schwerdfeger 2021); (Sampaio, et 

al. 2020)). Hybrid planning models that combine different transport agents and resources have 

been proposed to address these complexities. Additionally, the in-trunk delivery system, 

introduced as the Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL) by 

Reyes et al. (2017) (Reyes, Savelsbergh and Toriello 2017), represents a novel approach where 

customers designate their vehicles as flexible, mobile delivery points. 

This study builds upon the VRPRDL framework by proposing a flexible multi-echelon 

vehicle routing problem with roaming delivery locations (ME-VRPRDL). Key contributions 

include the development of a mathematical model that dynamically determines the number of 

echelons, integration of mobile parcel lockers and crowd shippers to enhance adaptability, 

consideration of crowd shipper spatial constraints, and a heuristic algorithm to solve large-scale 

instances. The remainder of this paper is structured as follows: Section 2 reviews relevant 

literature, Section 3 details the proposed model, Section 4 outlines the heuristic algorithm, 

Section 5 presents computational results, and Section 6 concludes the study with directions for 

future research. 

 

Related Literature 

 

The Vehicle Routing Problem (VRP), first introduced by Dantzig and Ramser (1959) (Dantzig 

and Ramser 1959), has been extensively studied and expanded over the years to address various 

real-world complexities. Among its well-known extensions are the Capacitated VRP (CVRP), 

VRP with Time Windows (VRPTW), VRP with Backhauls (VRPPB), Split Delivery VRP 

(SDVRP), Dynamic VRP (DVRP), VRP with Simultaneous Pickup and Delivery (VRPSPD), 

Open VRP (OVRP), and Time-Dependent VRP (TDVRP) (Braekers, Ramaekers and 

Nieuwenhuyse 2016). A notable variation, the Vehicle Routing Problem with Roaming 

Delivery Locations (VRPRDL), is a specialized case of the Generalized VRP with Time 

Windows (GVRPTW), first introduced by Moccia et al. (2012) (Moccia, Cordeau and Laporte 

2012). This problem combines VRPTW and GVRP (Ozbaygin, et al. 2017). 

Ozbaygin et al. (2017) (Ozbaygin, et al. 2017) approached the deterministic VRPRDL 

problem using a set coverage problem framework and proposed a branch-price algorithm to 

optimize it. They demonstrated that hybrid delivery strategies—combining home delivery and 
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in-trunk delivery—can reduce costs by an average of 20%. However, real-world uncertainties, 

such as weather changes or vehicle breakdowns, can disrupt optimal routing plans, necessitating 

research into stochastic travel times. The VRPRDL with Stochastic Travel Times (VRPRDL-

STT), first introduced by Lombard et al. (2018) (Lombard, Tamayo-Giraldo and Fontane 2018), 

has since been expanded with various modeling and solution approaches ((He, et al. 2020); 

(Sampaio Oliveira, et al. 2019). Another significant development is the Dynamic VRPRDL (D-

VRPRDL), where customer locations may change during delivery execution. Ozbaygin and 

Savelsbergh (2019) (Ozbaygin and Savelsbergh 2019) addressed this problem using an iterative 

re-optimization approach based on branch-and-price algorithms. The Multi-Depot Vehicle 

Routing Problem with Roaming Delivery Locations Considering Hard Time Windows 

(MDVRPRDL-HTW), as introduced by Jolfaei and Alinaghian (2024) (Jolfaei and Alinaghian 

2024), extends the VRPRDL by incorporating multiple depots, roaming delivery locations, and 

hard time windows.  

In parallel, last-mile delivery optimization has emerged as a critical focus area, particularly 

with dual-service strategies like home delivery and parcel lockers (Zhou, He and Zhou 2019). 

Parcel lockers are classified into public/private, mechanical/electronic, and stationary/mobile 

categories (Zurel, et al. 2018). Research by Lemke et al. (2016) (Lemke, Iwan and Korczak 

2016) highlights customer preferences for parcel lockers near homes or along commuting 

routes. Lachapelle et al. (2018) (Lachapelle, et al. 2018) explored the urban planning 

implications of locker placement, identifying commercial, suburban, postal, and shopping 

center locations as common sites. Bilik (2014) (Bilik 2014) demonstrated that parcel lockers 

can reduce delivery distances, increase daily delivery volumes, and lower CO2 emissions and 

fuel consumption. 

A recent innovation in last-mile delivery is the adoption of crowd logistics, exemplified by 

Amazon Flex. In this model, occasional drivers, or "crowd shippers," use their vehicles to 

deliver parcels, enabling cost-effective and flexible distribution (Archetti, Guerriero and 

Macrina 2021). Crowd logistics relies on platforms to outsource delivery tasks, compensating 

drivers for completed deliveries without formal employment contracts (Ranard, et al. 2014). 

Studies show that crowd logistics can enhance economic, social, and environmental 

sustainability (Buldeo Rai, et al. 2017) and improve network efficiency (Klumpp 2017). 

However, challenges such as resource availability and planning complexity persist (Sampaio, 

et al. 2020). Multi-echelon distribution systems, incorporating intermediate transfer points or 

"satellites," have been proposed to address these limitations (Kafle, Zou and Lin 2017). 

Recent research by Liao et al. (Liao, Dai and Ma 2025), published in 2025, introduces a 

Vehicle Routing Problem with Roaming Locations for Simultaneous Pickup and Delivery 

Services (VRPRL-SPD). This study formulates the problem as a mixed integer linear 

programming (MILP) model aimed at minimizing total travel cost. To solve this complex 

problem, the authors developed a two-stage metaheuristic approach that combines a random 

selection greedy insertion algorithm with a large neighborhood search algorithm. Additionally, 

Saker et al. (2023) (Saker, Eltawil and Ali 2023) introduced the Capacitated Vehicle Routing 

Problem with Delivery Options (CVRPDO), which incorporates parcel lockers as an alternative 

delivery option to reduce last-mile delivery costs. Their study proposed an Adaptive Large 

Neighborhood Search (ALNS) metaheuristic to solve the problem efficiently, outperforming 

exact solutions provided by a Mixed Integer Programming (MIP) model. Their work highlights 

the potential of integrating delivery options into VRP frameworks to enhance flexibility and 

reduce operational costs. 

In summary, advancements in VRP and last-mile delivery systems have focused on 

integrating hybrid strategies, stochastic factors, and crowd logistics to enhance efficiency and 

sustainability. These innovations continue to shape the logistics industry, balancing cost 

optimization with environmental and social considerations. Below, in Table 1, a summary of 
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related articles and their comparison with our research is presented. 

In general, logistics services play a key role in providing good living conditions in a city. At 

the same time, the expansion of urbanization also brings disadvantages such as high noise, 

widespread pollution, heavy traffic, and congestion. Therefore, the presence of intelligent and 

innovative solutions in urban logistics management will be needed so that cities can remain 

attractive to their residents. In this paper and in the first phase, the VRPRDL problem presented 

by Reyes et al. (2017) (Reyes, Savelsbergh and Toriello 2017) is considered as an initial last 

mile delivery system and an extended version of it considering (1) a flexible two-echelon 

network structure, (2) accessibility of crowd shippers at certain shifts and paths and (3) the 

simultaneous operation of stationary and mobile parcel lockers as intermediate satellites was 

mathematically modeled.  

On the other hand, since the problem is a NP-hard model, in the next phase, we will introduce 

a heuristic approach and compare its results with exact algorithm in various instances. So, the 

main contributions of our research are summarized as follows: 

 This study introduces a novel extension of the VRPRDL called Crowd-based ME-VRPRDL 

for the first time.  

 We consider crowd shippers and mobile parcel lockers as two innovative solutions to 

improve the capabilities of our ME-VRPRDL initial model and make it more 

comprehensive. Hence, we develop a mathematical model for a crowd-based ME-VRPRDL 

with stationary and mobile parcel lockers. 

 We consider crowd shippers’ covering radius limitation for parcel assignment to each crowd 

shipper. 

 We develop a heuristic algorithm based on node classification and greedy approach to solve 

a crowd-based multi-echelon vehicle routing problem with occasional crowd shippers and 

hybrid satellites (mobile and stationary). 

  
Table 1. summary of related articles 

Paper 
Customers 

locations 
Model Type Itinerary 

Algorithm 

Type 

Process of 

Algorithm 
Echelon 

Satellites 

Type 

Fleets 

Type 

(Reyes, 

Savelsbergh and 

Toriello 2017) 

Roaming Deterministic Fixed Heuristic Offline Single  _ Ownership 

(Ozbaygin, et 

al. 2017) 
Roaming Deterministic Fixed Exact Offline Single  _ Ownership 

(Kafle, Zou and 

Lin 2017) 
Fixed Deterministic Static Metaheuristic Offline Multi  Stationary 

Ownership 

+ crowd 

shippers 

(Lombard, 

Tamayo-

Giraldo and 

Fontane 2018) 

Roaming Stochastic Fixed Metaheuristic Offline Single  _ Ownership 

(Ozbaygin and 

Savelsbergh 

2019) 

Roaming Deterministic Dynamic Exact Online Single  _ Ownership 

(Sampaio 

Oliveira, et al. 

2019) 

Roaming Stochastic Fixed Heuristic Offline Single  _ Ownership 

(He, et al. 2020) Roaming Stochastic Fixed Metaheuristic Offline Single  _ Ownership 

(Sampaio, et al. 

2020) 
Fixed Deterministic Static Heuristic Offline Multi  Stationary 

Crowd 

shippers 

(Archetti, 

Guerriero and 

Macrina 2021) 

Fixed Deterministic Static Heuristic Online Single  _ 

Ownership 

+ Crowd 

shippers 

(Mousavi, 

Bodur and 

Roorda 2022) 

Fixed Stochastic  Static Heuristic Offline Multi  Mobile 

Ownership 

+ Crowd 

shippers 

This Work Roaming Deterministic Fixed Heuristic Offline Multi  
Stationary 
+ Mobile 

Ownership 

+ Crowd 

shippers 
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Problem Description 

 

The Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL) is a novel variant 

of the well-known Vehicle Routing Problem (VRP) that models an innovative last-mile delivery 

system where customer orders are delivered to the trunk of their cars, rather than to fixed home 

addresses. In traditional VRP, delivery locations for customers are fixed, but in VRPRDL, each 

customer has a set of potential delivery locations, which may vary based on their daily schedule 

(e.g., home, work, or other destinations). The service provider must decide not only the 

sequence of deliveries but also the exact location and time for each delivery based on the 

customer’s geographic profile and time windows. These time windows reflect when a 

customer’s car is present at each location, and they are non-overlapping due to the customer's 

travel itinerary. The objective is to minimize the total delivery cost, typically measured by the 

total distance traveled, while ensuring that all customer demands are met, vehicle capacities are 

not exceeded, and deliveries are made within the allowed time windows. 

The VRPRDL introduces several key assumptions that distinguish it from traditional VRP. 

First, each customer has a predefined set of potential delivery locations, along with time 

windows indicating when their vehicle will be present at each location. The time windows are 

determined by the customer’s itinerary, and travel between locations is accounted for, making 

the problem time-dependent. Second, customers can only receive one delivery during the 

planning period, and the delivery vehicles must start and end their routes at a central depot. 

Third, the problem assumes that delivery locations satisfy the triangle inequality for travel times 

and costs, and vehicle capacities are homogeneous and limited. The VRPRDL can be viewed 

as a special case of the generalized VRP with time windows, where clusters of delivery 

locations (specific to each customer) have non-overlapping time windows. These unique 

characteristics make the VRPRDL a challenging optimization problem with practical 

applications in improving last-mile delivery efficiency, reducing costs, and mitigating 

environmental impacts. 

The provision of flexible time windows and delivery locations can increase customer 

satisfaction by offering a wider range of delivery options. Additionally, it presents opportunities 

for service providers to enhance their last mile delivery operations. As a result, the VRPRDL 

model exhibits potential advantages when applied in real-world scenarios. 
 

 
Figure 1. A sample VRPRDL problem 

 

However, despite the advantages offered by these problem types, they also present certain 

operational challenges. One such challenge arises from the time window restrictions imposed 

by customers. Meeting the demands of all customers within their specified time windows may 

sometimes require increased total distance traveled or the use of additional delivery vehicles. 

Consequently, these situations can lead to higher operational costs. Therefore, it is crucial to 

seek solutions that not only provide flexible delivery options to customers but also consider the 
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economic factors for service providers when implementing such models. Two potential 

solutions that show promise in improving the efficiency of the roaming delivery option under 

these circumstances are the utilization of crowd shippers and intermediate transfer locations 

called satellites. For example, by considering the availability of crowd shippers and satellites, 

the problem depicted in Figure 1 can be modified as described below.  

 

 
Figure 2. A sample VRPRDL problem with crowdshipper and fixed satellite 

 

So in this section, according to basic VRPRDL modeling technologies which is provided by 

Reyes et al. (2017) (Reyes, Savelsbergh, & Toriello, 2017), we formulated a flexible multi-

echelon extension of the VRPRDL problem (ME-VRPRDL), and then in the next step, we 

added crowd shippers to fulfill a part of customer orders, as well as stationary and mobile 

satellites to supply crowd shippers. Crowd shippers in this problem have a duty time window 

that will be announced by themselves in advance and in that period, they will be available only 

in a predetermined geographic radius. Hence, given the possibility of unavailability of crowd 

shippers (CSs) in certain scenarios, the first-echelon vehicles (FEVs) will possess the capability 

to directly deliver parcels to the final customers. Conversely, when CSs are available and their 

utilization is deemed optimal, parcels will be dispatched to satellites, where the assigned crowd 

shippers will collect and subsequently deliver them to the final customers. Furthermore, the 

main assumptions considered in mathematical modeling are as follows: 

 The logistics system investigated in this research will focus on non-perishable parcels. 

 We do not consider same day delivery policies.  

 It is assumed that it is possible to receive a valid itinerary with time windows from customers 

as one of the input parameters. 

 The scope of the research is focused on e-commerce logistics operations. 

 Each crowd shipper is only assigned to one satellite, which will be the starting and ending 

point of its route. 

 All customers’ demands should be satisfied. 

 

Crowed-Based Multi-Echelon VRPRDL Formulation 

With the above-mentioned assumptions and the presented basic mathematical model in 

(Reyes, Savelsbergh and Toriello 2017) as a reference model, a MINLP model is proposed to 

solve the Crowed-based multi-echelon VRPRDL problem (C-MEVRPRDL). Let G = (V, A) 

denote a complete directed graph with node set V and arc set A, where node set V is a 

combination of the main depot, satellites and customers’ locations that is shown in equation 1. 
 

(1) 𝑽 = {𝟎} ∪ 𝑽𝒔 ∪ 𝑽𝒄 = {𝒅𝒆𝒑𝒐𝒕 𝒍𝒐𝒄𝒂𝒕𝒊𝒐𝒏} ∪ {𝒔𝒂𝒕𝒆𝒍𝒍𝒊𝒕𝒆𝒔′𝒍𝒐𝒄𝒂𝒕𝒊𝒐𝒏𝒔} ∪ {𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓𝒔′𝒍𝒐𝒄𝒂𝒕𝒊𝒐𝒏𝒔} 
 

The set 〖A=A〗_1 denotes the set of arcs in first echelon and the set A_2 is considered for 
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second echelon arcs and determined by equations 2-3. 
 

(2) 𝑨𝟏 = {(𝒊, 𝒋)|𝒊, 𝒋 ∈ 𝑽, 𝒊 ≠ 𝒋} 

(3) 𝐴2 = {(𝑖, 𝑗) ∈ 𝐴|𝑖, 𝑗 ∈ 𝑉\{0}, 𝑖 ≠ 𝑗}\{(𝑖, 𝑗) ∈ 𝐴|𝑖, 𝑗 ∈ 𝑉𝑠, 𝑖 ≠ 𝑗 } 
 

To formulate the C-MEVRPRDL model, the following notations have been used: 
 

Table 2. List of indices and sets 

𝒊𝒏𝒅𝒊𝒄𝒆𝒔 ∶ 
𝑖: 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 

𝑗: 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 

𝑙: 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑐𝑟𝑜𝑤𝑑 𝑠ℎ𝑖𝑝𝑝𝑒𝑟𝑠 

𝐶𝑠: 𝑐𝑟𝑜𝑤𝑑 𝑠ℎ𝑖𝑝𝑝𝑒𝑟𝑠 𝑠𝑒𝑡 

𝑓𝑒𝑣: 𝑓𝑖𝑟𝑠𝑡 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑠𝑒𝑡 
𝑠: 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑠𝑎𝑡𝑡𝑒𝑙𝑖𝑡𝑒𝑠 

𝑉𝑠: 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑠′𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑠𝑒𝑡 

𝑉𝑐: 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠′𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑠𝑒𝑡 

𝑐′: 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠′𝑖𝑛𝑑𝑒𝑥 

𝑐: 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠′𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛𝑑𝑒𝑥 

 

Table 3. List of parameters 

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 

|𝑆|: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑡𝑡𝑒𝑙𝑖𝑡𝑒 

|𝐶|: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

𝑀𝑓𝑒𝑣: 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑓𝑒𝑣 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

𝑀𝑐𝑠𝑙 : 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑐𝑠 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑙 
𝑇: 𝑡𝑖𝑚𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑜𝑓 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 

𝐺𝑃𝑐′ : 𝑔𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑐′;  𝐺𝑃𝑐′ ⊆ 𝑉𝑐; |𝐺𝑃𝑐′| = 𝑔 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟  𝑐′ 

𝐺𝑅𝑙 = (𝑂𝑥
𝑙 , 𝑂𝑦

𝑙 , α𝑙): 𝑔𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝐶𝑠𝑙  𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑡𝑜 𝑠𝑒𝑟𝑣𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

𝑂𝑥
𝑙 : 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑠 𝑙 

𝑂𝑦
𝑙 : 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑠 𝑙 

α𝑙: 𝐶𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝐶𝑠 𝑙 
𝑙𝑜𝑛𝑔𝑖 : 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐 

𝑙𝑎𝑡𝑖: 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐 

𝐵𝑀𝑑: 𝑏𝑖𝑔 𝑣𝑎𝑙𝑢𝑒 (𝑚) 𝑓𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝑔: 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑔𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 

𝑝𝑠: ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑎𝑡𝑡𝑒𝑙𝑖𝑡𝑒 𝑠 

𝑑𝑖: 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖 
𝑎𝑖: 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐 

𝑏𝑖: 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐 

𝑒𝑙: 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝐶𝑆 𝑙 
𝑓𝑙: 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝐶𝑆 𝑙 
𝑐𝑖,𝑗: 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 𝑏𝑦 𝑓𝑖𝑟𝑠𝑡 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑓𝑒𝑣) 

𝑤𝑖,𝑗: 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 𝑏𝑦 𝑐𝑟𝑜𝑤𝑑 𝑠ℎ𝑖𝑝𝑝𝑒𝑟(𝑐𝑠) 

𝑡𝑖,𝑗
1 : 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 (𝑖, 𝑗) ∈ 𝐴1 𝑏𝑦 𝑓𝑒𝑣 𝑎𝑡 𝑓𝑖𝑟𝑠𝑡 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 

𝑡𝑖,𝑗,𝑙
2 : 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 (𝑖, 𝑗) ∈ 𝐴2 𝑏𝑦 𝑐𝑟𝑜𝑤𝑑𝑠ℎ𝑖𝑝𝑝𝑒𝑟 𝑙 𝑎𝑡 𝑠𝑒𝑐𝑜𝑛𝑑 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 

 

Table 4. List of variables 

𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 

𝑋𝑖,𝑗,𝑘
1 = {

1    𝑖𝑓 𝑘 ∈ 𝑓𝑒𝑣  𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑠 𝑎𝑟𝑐 (𝑖, 𝑗) ∈ 𝐴1

0                 𝑂. 𝑊                                                
 

𝑋𝑖,𝑗,𝑠,𝑙
2 = {

1    𝑖𝑓  𝑎𝑟𝑐 (𝑖, 𝑗) ∈ 𝐴2 𝑖𝑠 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑠 ∈  𝑉𝑠 𝑏𝑦 𝐶𝑠𝑙           
0                             𝑂. 𝑊                                                                                             

 

𝑞𝑖,𝑘 ∈ 𝑅+: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐  𝑏𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘
∈ 𝑓𝑒𝑣 

ℎ𝑖,𝑗,𝑠,𝑙 ∈ 𝑅+: 𝑇ℎ𝑒 𝑙𝑜𝑎𝑑 𝑜𝑓 𝐶𝑠𝑙  𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑠 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑣𝑖𝑎 𝑎𝑟𝑐(𝑖, 𝑗) ∈ 𝐴2 

𝜏𝑖
1 ∈ [0, 𝑇]: 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑎𝑓𝑡𝑒𝑟 𝑣𝑖𝑠𝑖𝑡𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐  𝑏𝑦 𝑎 𝑓𝑒𝑣 

𝜏𝑖,𝑙
2 ∈ [0, 𝑇]: 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑎𝑓𝑡𝑒𝑟 𝑣𝑖𝑠𝑖𝑡𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑖 ∈ 𝑉𝑐  𝑏𝑦 𝑐𝑟𝑜𝑤𝑑 𝑠ℎ𝑖𝑝𝑝𝑒𝑟 𝑙 𝑎𝑡 𝑠𝑒𝑐𝑜𝑛𝑑 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 

𝑢𝑖,𝑘 ∈ 𝑍+: 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑢𝑏𝑡𝑜𝑢𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 
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The mathematical formulation for C-MEVRPRDL is then given as follows: 

 

𝑀𝑖𝑛 𝑍 = ∑ ∑ 𝑐𝑖,𝑗 . 𝑋𝑖,𝑗,𝑘
1

(𝑖,𝑗)∈𝐴1𝑘∈𝑓𝑒𝑣

+ ∑ ∑ ∑ 𝑤𝑖,𝑗 . 𝑋𝑖,𝑗,𝑠,𝑙
2

𝑙∈𝐶𝑠(𝑖,𝑗)∈𝐴2𝑠∈𝑉𝑠

+ ∑ ∑ 𝑝𝑠. 𝑞𝑠,𝑘

𝑠∈𝑉𝑠𝑘∈𝑓𝑒𝑣

 (4) 

 

S.t.  

 

∑ 𝑋𝑖,𝑗,𝑘
1

(𝑖,𝑗)∈𝐴1

= ∑ 𝑋𝑗,𝑖,𝑘
1

(𝑗,𝑖)∈𝐴1

 ∀𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐 ∪ {0}, 𝑘 ∈ 𝑓𝑒𝑣 (5) 

∑ 𝑋𝑖,𝑗,𝑘
1

(𝑖,𝑗)∈𝐴1

≤ 1 ∀𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐 ∪ {0}, 𝑘 ∈ 𝑓𝑒𝑣 (6) 

𝑢𝑖,𝑘 − 𝑢𝑗,𝑘 + (|𝑆| + |𝐶|). 𝑋𝑖,𝑗,𝑘
1 ≤ (|𝑆| + |𝐶|) − 1 ∀𝑖, 𝑗 ∈ 𝑉𝑠 ∪ 𝑉𝑐 , 𝑖 ≠ 𝑗 , 𝑘 ∈ 𝑓𝑒𝑣 (7) 

𝑞𝑖,𝑘 ≤ 𝑀𝑓𝑒𝑣 . ∑ 𝑋𝑗,𝑖,𝑘
1

(𝑗,𝑖)∈𝐴1

 ∀𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐, 𝑘 ∈ 𝑓𝑒𝑣 (8) 

∑ ∑ ∑ 𝑋𝑖,𝑗,𝑘
1

𝑘∈𝑓𝑒𝑣𝑖∈𝑉𝑗∈𝐺𝑃𝑐′

≤ 1 ∀𝑐′ ∈ 𝐶′ (9) 

∑ ∑ ∑ ∑ 𝑋𝑖,𝑗,𝑠,𝑙
2

𝑠∈𝑉𝑠𝑙∈𝐶𝑠𝑖∈𝑉𝑠∪𝑉𝑐𝑗∈𝐺𝑃𝑐′

≤ 1 ∀𝑐′ ∈ 𝐶′ (10) 

∑ ∑ ∑ 𝑋𝑖,𝑗,𝑘
1

𝑘∈𝑓𝑒𝑣𝑖∈𝑉𝑗∈𝐺𝑃𝑐′

+ ∑ ∑ ∑ ∑ 𝑋𝑖,𝑗,𝑠,𝑙
2

𝑠∈𝑉𝑠𝑙∈𝐶𝑠𝑖∈𝑉𝑠∪𝑉𝑐𝑗∈𝐺𝑃𝑐′

= 1 ∀𝑐′ ∈ 𝐶′ (11) 

∑ 𝑞𝑖,𝑘

𝑖∈𝑉𝑠∪𝑉𝑐

≤ 𝑀𝑓𝑒𝑣 ∀ 𝑘 ∈ 𝑓𝑒𝑣 (12) 

∑ 𝑞𝑠,𝑘

𝑘∈𝑓𝑒𝑣

= ∑ ∑ ℎ𝑠,𝑗,𝑠,𝑙

𝑙∈𝐶𝑠𝑗∈𝑉𝑐

 ∀ 𝑠 ∈ 𝑉𝑠 (13) 

∑ 𝑞𝑐,𝑘

𝑘∈𝑓𝑒𝑣

= 𝑑𝑐 . ∑ ∑ 𝑋𝑗,𝑐,𝑘
1

𝑘∈𝑓𝑒𝑣𝑗∈𝑉

 ∀ 𝑐 ∈ 𝑉𝑐 (14) 

∑ 𝑋𝑖,𝑗,𝑠,𝑙
2

(𝑖,𝑗)∈𝐴2

= ∑ 𝑋𝑗,𝑖,𝑠,𝑙
2

(𝑗,𝑖)∈𝐴2

 ∀𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐, 𝑠 ∈ 𝑉𝑠, 𝑙 ∈ 𝐶𝑠 (15) 

∑ ∑ ∑ ∑ ℎ𝑗,𝑖,𝑠,𝑙

(𝑗,𝑖)∈𝐴2𝑠∈𝑉𝑠𝑙∈𝐶𝑠𝑖∈𝐺𝑃𝑐′

− ∑ ∑ ∑ ∑ ℎ𝑖,𝑗,𝑠,𝑙

(𝑖,𝑗)∈𝐴2𝑠∈𝑉𝑠𝑙∈𝐶𝑠𝑖∈𝐺𝑃𝑐′

= 1
𝑔⁄ ∑ 𝑑𝑖

𝑖∈𝐺𝑃𝑐′

. (1 − ∑ ∑ ∑ 𝑋𝑗,𝑖,𝑘
1

𝑘∈𝑓𝑒𝑣𝑗∈𝑉𝑖∈𝐺𝑃𝑐′

) 

∀𝑐′ ∈ 𝐶′ (16) 

ℎ𝑖,𝑗,𝑠,𝑙 ≤ 𝑀𝑙
𝐶𝑠. 𝑋𝑖,𝑗,𝑠,𝑙

2  ∀(𝑖, 𝑗) ∈ 𝐴2, 𝑠 ∈ 𝑉𝑠, 𝑙 ∈ 𝐶𝑠 (17) 

𝑋𝑖,𝑠,𝑠′,𝑙
2 = 0 

∀𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐, 𝑠, 𝑠′ ∈ 𝑉𝑠, 𝑠
≠ 𝑠′, 𝑙 ∈ 𝐶𝑠  

(18) 

𝑋𝑠,𝑗,𝑠′,𝑙
2 = 0 

∀𝑗 ∈ 𝑉𝑠 ∪ 𝑉𝑐 , 𝑠, 𝑠′ ∈ 𝑉𝑠, 𝑠
≠ 𝑠′, 𝑙 ∈ 𝐶𝑠 

(19) 

𝑋𝑠,𝑠,𝑠,𝑙
2 = 0 ∀𝑠 ∈ 𝑉𝑠, 𝑙 ∈ 𝐶𝑠 (20) 

∑ ∑ ∑ 𝑋𝑖,𝑗,𝑘
1

𝑘∈𝑓𝑒𝑣𝑗∈𝐺𝑃𝑐′𝑖∈𝐺𝑃𝑐′

= 0 ∀𝑐′ ∈ 𝐶′ (21) 

∑ ∑ ∑ ∑ 𝑋𝑖,𝑗,𝑠,𝑙
2

𝑙∈𝐶𝑠𝑠∈𝑉𝑠𝑗∈𝐺𝑃𝑐′𝑖∈𝐺𝑃𝑐′

= 0 ∀𝑐′ ∈ 𝐶′ (22) 

∑ 𝑋0,𝑗,𝑘
1

𝑗∈𝑉𝑠∪𝑉𝑐

≤ 1 ∀ 𝑘 ∈ 𝑓𝑒𝑣 (23) 

∑ ∑ 𝑋𝑠,𝑗,𝑠,𝑙
2

𝑗∈𝑉𝑠∪𝑉𝑐𝑠∈𝑉𝑠

≤ 1 ∀ 𝑙 ∈ 𝐶𝑠 (24) 

𝜏𝑖
1 + ∑ 𝑡𝑖,𝑗

1

𝑘∈𝑓𝑒𝑣

. 𝑋𝑖,𝑗,𝑘
1 ≤ 𝜏𝑗

1 + 𝑇. (1 − ∑ 𝑋𝑖,𝑗,𝑘
1

𝑘∈𝑓𝑒𝑣

) ∀𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐, 𝑗 ∈ 𝑉𝑠 ∪ 𝑉𝑐\{𝑖} (25) 
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∑ 𝑡0,𝑗
1

𝑘∈𝑓𝑒𝑣

. 𝑋0,𝑗,𝑘
1 ≤ 𝜏𝑗

1 + 𝑇. (1 − ∑ 𝑋0,𝑗,𝑘
1

𝑘∈𝑓𝑒𝑣

) ∀𝑗 ∈ 𝑉𝑠 ∪ 𝑉𝑐 (26) 

𝜏𝑖,𝑙
2 + ∑ 𝑡𝑖,𝑗,𝑙

2

𝑠∈𝑉𝑠

. 𝑋𝑖,𝑗,𝑠,𝑙
2 ≤ 𝜏𝑗,𝑙

2 + 𝑇 (1 − ∑ 𝑋𝑖,𝑗,𝑠,𝑙
2

𝑠∈𝑉𝑠

) ∀𝑖 ∈ 𝑉𝑐, 𝑗 ∈ 𝑉𝑐\{𝑖}, 𝑙 ∈ 𝐶𝑠 (27) 

𝜏𝑠
1 + 𝑡𝑠,𝑗,𝑙

2 . 𝑋𝑠,𝑗,𝑠,𝑙
2 ≤ 𝜏𝑗,𝑙

2 + 𝑇(1 − 𝑋𝑠,𝑗,𝑠,𝑙
2 ) ∀𝑠 ∈ 𝑉𝑠, 𝑗 ∈ 𝑉𝑐, 𝑙 ∈ 𝐶𝑠 (28) 

𝑎𝑖 . ∑ ∑ 𝑋𝑖,𝑗,𝑘
1

𝑘∈𝑓𝑒𝑣𝑗∈𝑉𝑐∪𝑉𝑠∪{0}\{𝑖}

≤ 𝜏𝑖
1 ≤ 𝑏𝑖 . ∑ ∑ 𝑋𝑖,𝑗,𝑘

1

𝑘∈𝑓𝑒𝑣𝑗∈𝑉𝑐∪𝑉𝑠∪{0}\{𝑖}

 ∀𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐 (29) 

𝑎𝑖 . ∑ ∑ 𝑋𝑖,𝑗,𝑠,𝑙
2

𝑠∈𝑉𝑠𝑗∈𝑉𝑐∪𝑉𝑠\{𝑖}

≤ 𝜏𝑖,𝑙
2 ≤ 𝑏𝑖 . ∑ ∑ 𝑋𝑖,𝑗,𝑠,𝑙

2

𝑠∈𝑉𝑠𝑗∈𝑉𝑐∪𝑉𝑠\{𝑖}

 ∀𝑖 ∈ 𝑉𝑐, 𝑙 ∈ 𝐶𝑠 (30) 

𝜏𝑖,𝑙
2 ≥ 𝑒𝑙 . 𝑋𝑖,𝑗,𝑠,𝑙

2  
∀𝑖 ∈ 𝑉𝑐, 𝑗 ∈ 𝑉𝑐 ∪ 𝑉𝑠, 𝑙 ∈ 𝐶𝑠, 𝑠

∈ 𝑉𝑠 
(31) 

𝜏𝑗,𝑙
2 ≥ ∑ (𝑒𝑙 + 𝑡𝑠,𝑗,𝑙

2 ). 𝑋𝑠,𝑗,𝑠,𝑙
2

𝑠∈𝑉𝑠

 ∀𝑗 ∈ 𝑉𝑐, 𝑙 ∈ 𝐶𝑠 (32) 

𝜏𝑗,𝑙
2 ≤ 𝑓𝑙 ∀𝑗 ∈ 𝑉𝑐, 𝑙 ∈ 𝐶𝑠 (33) 

√(𝑂𝑥
𝑙 − 𝑙𝑜𝑛𝑔𝑖)2 + (𝑂𝑦

𝑙 − 𝑙𝑎𝑡𝑖)
2

≤ 𝛼𝑙 + 𝐵𝑀𝑑 . (1 − ∑ ∑ 𝑋𝑖,𝑗,𝑠,𝑙
2

𝑠∈𝑉𝑠𝑗∈𝑉𝑐∪𝑉𝑠

) 

∀𝑖 ∈ 𝑉𝑐 ∪ 𝑉𝑠, 𝑙 ∈ 𝐶𝑠 (34) 

ℎ𝑖,𝑗,𝑠,𝑙 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴2, 𝑠 ∈ 𝑉𝑠 (35) 

𝑢𝑖,𝑘 ∈ 𝑍+ ∀𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐, 𝑘 ∈ 𝑓𝑒𝑣 (36) 

𝑞𝑖,𝑘 ≥ 0 ∀𝑖 ∈ 𝑉𝑠 ∪ 𝑉𝑐, 𝑘 ∈ 𝑓𝑒𝑣 (37) 

𝑋𝑖,𝑗,𝑘
1 ∈ 0,1 ∀(𝑖, 𝑗) ∈ 𝐴1, 𝑘 ∈ 𝑓𝑒𝑣 (38) 

𝑋𝑖,𝑗,𝑠,𝑙
2 ∈ 0,1 ∀(𝑖, 𝑗) ∈ 𝐴2, 𝑠 ∈ 𝑉𝑠, 𝑙 ∈ 𝐶𝑠 (39) 

 

The objective function seeks to minimize total routing costs, encompassing first-echelon 

vehicle (FEV) and second-echelon crowd shipper (CS) costs, as well as satellite handling costs. 

Constraints (5) ensure flow conservation for FEVs, ensuring vehicles leave nodes they enter, 

while constraints (6) limit each node to a single visit by an FEV. Subtour elimination is 

addressed in constraints (7), and constraints (8) govern parcel transfers to satellites or customers 

by FEVs. Constraints (9) - (11) ensure customer demands are satisfied by at most one FEV, and 

any unmet demands are served by exactly one CS and its assigned satellite. Capacity constraints 

for vehicles and satellites are imposed in constraints (12) and (13), while constraints (14) - (17) 

ensure demand satisfaction, flow conservation, and capacity limits in the second echelon. 

Constraints (18) - (24) prevent overlapping satellite assignments and limit vehicle usage. Time 

windows and travel times are enforced via constraints (25) - (33), while constraints (34) - (39) 

define geographic and variable domains. 

 

Sensitivity Analysis for Small Instance 

In this section, to be able to verify the developed mathematical model, we design a small 

instance that we know its optimal solution before solving it. Then this example is first solved 

by the VRPRDL model (provided by (Reyes, Savelsbergh and Toriello 2017)) coded in GAMS 

software and then solve the same example by the ME-VRPRDL model presented in this 

research. 

The example used in this section is as follows: 
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Figure 3. An example designed to verify the mathematical model 

 

In the example above, the assumptions and parameters are as follows: 

 Each block is equivalent to one distance unit. 

 Each distance unit is considered equivalent to 15 minutes of travel time. 

 Distances are calculated using Manhattan method. 

 Demand for all customers is equal to 1. 

 
Table 5. List of instance parameters 

parameters  

D depot 

𝑐1
1 Location 1 of customer 1: TW[9am-10am] 

𝑐1
2 Location 2 of customer 1: TW [10am-12pm] 

𝑐2
1 Location 1 of customer 2: TW[9am-10am] 

𝑐2
2 Location 2 of customer 2: TW [10am-12pm] 

𝑐3
1 Location 1 of customer 3: TW[9am-10am] 

𝑐3
2 Location 2 of customer 3: TW [10am-12pm] 

𝑐4
1 Location 1 of customer 4: TW[9am-10am] 

𝑐4
2 Location 2 of customer 4: TW [10am-12pm] 

𝑠1 
Location 1 of mobile satellite:  TW [10am-12pm]; ([9am-10pm] is moving to its destination 

and is unavailable) 

C𝑠1 Crowd shipper 1: shift[9am-10pm]; capacity=2 
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C𝑠2 Crowd shipper 2: shift[10am-12pm]; capacity=2 

k1 FEV1: shift[8am-12pm]; capacity=4 

k2 FEV2: shift[8am-12pm]; capacity=4 

 

If we want to solve this problem with the VRPRDL model, it means that we cannot use 

satellites and crowd shippers. In this case, the optimal solution of problem will be as follows. 

 
Table 6. the optimal solution of VRPRDL model 

Best solution according to VRPRDL Objective function value 

 

66 

 

But the optimal solution when we solve it with the ME-VRPRDL model presented in this 

article by considering the possibility of using satellites and crowd shippers will depend on the 

following two parameters: 

1. The cost and time of travel with crowd shippers 

2. The fixed cost of handling a satellite 

Therefore, to make a more accurate comparison between the solutions obtained from the 

above two models, we take the cost and travel time of the crowd shippers as the same as the 

first echelon vehicles and change the fixed cost of handling the satellite in different iterations. 

In this case, the results will be as follows: 

 

Heuristic Solution Approach 

 

The VRPRDL problem, being NP-hard, extends its computational complexity to multi-echelon 

models, making large-scale, real-world applications highly time-intensive and often infeasible. 

Consequently, this section introduces a heuristic algorithm leveraging node classification and 

a greedy approach to address these challenges, with detailed procedural steps outlined for 

implementation. 

 

Phase1: Node Classification 

In this phase, we first consider each of the satellites as a class center, and then classify all 

nodes based on the distance from the class centers. 

In the example of Fig 3, since there is only one location - satellite, as a result, there is no 

classification, and all nodes are assigned to the same satellite. 

 

Phase2: Sorting Phase 

In the second phase to begin the greedy search, we sort all customer nodes based on distance 

criteria from the depot. For our example, we will consider: 

 

Phase3: Greedy Constrained Solution 

In this phase, we select the first node from the sorted list as the starting point and start the 

route with it. At each step, the next node is the closest node to the current customer. On the 

other hand, in each step, we check the three main constraints of the problem, and if any of them 
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are not satisfied, we go to the next nearest node. These main constraints are: 

 Customer time windows constraints 

 Vehicle capacity constraints 
 

Table 7. Sensitive analysis of p_s 

𝒑𝒔 Solution Obj (cost) Optimal structure 

1 

 

50 

Multi echelon 

2 52 

3 54 

4 56 

5 58 

6 60 

7 62 

8 64 

≥9 

 

66 Single echelon 

 

 
Figure 4. Node classification phase 

 

Sorted nodes 

        
Figure 5. Node sorting phase 

 

Table 8. final Route of vehicle 1 for selected sample 

Selected 

Vehicle 
Step Route 

     Node 

time 
                                  Feasibility 

1 

Step1 Depot → 𝐶1
1   0 → 0: 45’ < 1: 00 Yes 

Step2 𝐷𝑒𝑝𝑜𝑡 → 𝐶1
1 → 𝐶3

2                       0 → 0: 45’ →1:45’<3:00 Yes 

Step3 𝐷𝑒𝑝𝑜𝑡 → 𝐶1
1 → 𝐶3

2 → 𝐶4
2                              0 → 0: 45’ → 1: 45’ → 2: 45’ Yes 

Step4 𝐷𝑒𝑝𝑜𝑡 → 𝐶1
1 → 𝐶3

2 → 𝐶4
2 → 𝐶2

2 0 → 0: 45’ → 1: 45’ → 2: 45’ → 3 No 

Step5 𝐷𝑒𝑝𝑜𝑡 → 𝐶1
1 →  𝐶3

2 → 𝐶4
2 → 𝐷𝑒𝑝𝑜𝑡 0 → 0: 45’ → 1: 45’ → 2: 45’ Yes 

     

Remaining customers     =

[C2] 

final Route of vehicle 1 = [C1 

to C3 to C4] 
Objective function = 54 
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Table 9. final Route of vehicle 2 for selected sample 

Selected Vehicle Step Route Node time Feasibility 

2 

Step1 𝐷𝑒𝑝𝑜𝑡 →  𝐶2
1   0 → 1: 30’ > 1: 00 No 

Step2 𝐷𝑒𝑝𝑜𝑡 → 𝐶2
2   0 → 2: 00’ < 3: 00 Yes 

Step3 𝐷𝑒𝑝𝑜𝑡 → 𝐶2
2 →  𝐷𝑒𝑝𝑜𝑡 0 → 1: 45’ → 3: 30′ Yes 

Remaining customers   =  [] final Route of vehicle 2 = [C2] Objective function = 24 
 

The solution obtained above will be a feasible single-echelon solution for the sample 

problem whose total objective function is equal to 78. 

 

Phase4: Greedy Unconstrained Solution 

In this phase, operations are conducted similarly to Phase 3, with the key distinction that 

only capacity constraints are considered, while time window constraints are omitted. This 

approach is adopted because the solution generated in this phase serves as an initial input for 

constructing a two-echelon route in the subsequent phase. The time window constraints will be 

evaluated after obtaining the final solution in that phase. For the given example, where each 

customer's demand is assumed to be 1 unit and the capacity of a first-echelon vehicle (FEV) is 

4 units, the demands of all customers are fulfilled by an FEV as described. 
   

Initial greedy unconstrained solution for vehicle1 

 

 

 

 

 

 
 

 

Figure 6. Initial greedy unconstrained solution for vehicle1 
 

In the next step of this phase, we need to sort the nodes according to which type of the time 

windows they have. In this way, we first create matrices of the nodes of each type by keeping 

their current order, and then we merge these matrices together to get the final matrix. 
 

Type 1 of time window: 
   

Type 2 of time window: 
 

 

 

 Matrix 1 = [𝐶1
1, 𝐶2

1, 𝐶4
1] 

 Matrix 2 = [𝐶3
2] 

 Final Matrix = [𝐶1
1, 𝐶2

1, 𝐶4
1, 𝐶3

2] 

 

So, final greedy unconstrained solution for vehicle1 is: 
 

Final greedy unconstrained solution for vehicle1 

 

 

 

 
 

 

 

 

Figure 7. Final greedy unconstrained solution for vehicle1 
 

Phase5: Create Multi-Echelon Solution 

To start the process of generating the multi-echelon solution of our sample, the following 

steps will be taken: 

 

1. Start with first Crowd Shipper (CS1) 
 

2. Satellite Selection 

Finding a satellite that can be covered by the crowd shipper and in the final solution obtained 

from phase 4, most of the nodes are of its class (according to the classification of nodes in phase 

1) 
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Phase 4 solution 
 

 

 
 

 
 

 
 

class center 𝑆1  𝑆1  𝑆1  𝑆1  

Selected satellite : 𝑺𝟏    
Figure 8. Satellite selection 

 

3. FEV Selection 

Find FEV that has the most nodes of the selected satellite class (K1) 

 

4. Extraction of Potential Customers for Allocation to the Satellite 

To find potential customers of a satellite, if one of the locations of a customer is in the class 

of that satellite, in addition to that location, other locations of that customer are included in the 

list of potential customers of that satellite regardless of their time windows. So, for the example 

above, the list of potential customers - locations for Satellite 1 is: [ 𝐶1
1 , 𝐶1

2,  𝐶2
1 , 𝐶2

2, 
𝐶4

1, 𝐶4
2, 𝐶3

2, 𝐶3
1] 

 

5. Check Compatibility of Time Windows 

In this step, the nodes whose time windows are incompatible with the satellite time window 

are removed from the list of potential customers. 
 

Final potential customer list: : [𝐶1
2, 𝐶2

2, 𝐶4
2, 𝐶3

2] 
 

6. Greedy Customers Selection 

In this step, we select the first node from the potential customers list in such a way that: 

 The location of the satellite should be between the customer and the depot. 

 The customer that has the shortest distance to the satellite. 

 The customer who has the greatest distance from the depot. 

Therefore, to select the first node, we will seek to minimize the following equation: 
 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 =  𝑎. √(𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(1) − 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒(1))
2

+ (𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(2) − 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒(2))
2

−
1

𝑏
. √(𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(1) − 𝑑𝑒𝑝𝑜𝑡(1))

2
+ (𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(2) − 𝑑𝑒𝑝𝑜𝑡(2))

2
 

 

 

(40) 

{
𝑎 > 1     𝑖𝑓  (𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(1) − 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒(1)) + (𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(2) − 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒(2)) < 0 

𝑎 = 0;                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                           
 (41) 

𝑏 > 𝑎 (42) 
 

The second node will be the closest node to the first. We continue in the same way until 

either the capacity of the crowd shipper is less than the minimum available demand or all the 

nodes in the above list are checked.  
 

Second echelon 

route 
𝑆1  

 

 

 

 𝑆1  

Demand 0  1  1  0  

The remaining 

capacity of the 

crowd shipper 

2  1  0  0  

Figure 9. Second echelon route 
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7. Finalization of the first Echelon Route 

In this step, we remove the customers assigned to the satellite from the first echelon route. 

Then we add the selected satellite to the remaining nodes and rearrange the existing nodes 

according to the greedy method described in phases 2-3. 

 

 
Figure 10. Final first echelon route 

 

8. Feasibility Check 

We examine the feasibility of the generated routes in terms of compliance with the time 

windows. 

 
Table 10. Feasibility check of multi echelon route 

Final first echelon route Depot 

 

𝑆1 

 

Depot 

Departure time of each nodes 0 0:45’ 1:15’ 1:45’ 2:30’ 

status feasible feasible feasible feasible feasible 

Final second echelon route 𝑆1 

  

𝑆1  

Departure time of each nodes 1:15’ 1:45’ 2:00’ 2:45’  

status feasible feasible feasible feasible  

 

As can be seen, the solution obtained during the steps of the proposed heuristic algorithm is 

the optimal solution of the sample problem, which was also shown in Fig 3. 

 Phase6: Comparison between single-echelon and multi-echelon solutions and choosing 

the best one. 

 Phase7: Update sorted nodes list in phase 2. 

remove the node used as the starting node from the sorted list in phase 2. 

 Phase8: Return to phase 3 and repeat the algorithm until the sorted nodes list is empty. 

Algorithm 1 outlines the proposed heuristic in pseudo-code. 

Algorithm 1. Classification-greedy heuristic approach 

 
Inputs:  
NFEV: Number of FEVs 

KN: FEV capacity 

NCS: Number of crowd shippers 

KCS: CS capacity 

C: Set of customers 

g: Customer geographic profiles 

DC: Customer demands 

Cij, Sij: Coordinates of customers and satellites 

TW: Time windows for all nodes 

Outputs:  
FS1: Single-echelon feasible routes 
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FS2: Multi-echelon feasible routes 

 

1:  Customers ← classifyCustomers(Cij, Sij) 

2:  CustomersSorted ← sortCustomers(Customers) 

3:  C' ← CustomersSorted 

 

4:  for iter ← 1 to Length(C) do 

5:      FEV ← 1 

6:      StartPoint ← C'(iter) 

 

7:      while FEV < NFEV do 

8:          UnservedCustomers ← C 

9:          ServedCustomer[FEV] ← GreedyConstrainedProcess(FEV,KN ,TW, DC ,UnservedCustomers) 

10:         GreedyRoute[FEV] ← ServedCustomer[FEV] 

 

11:         if UnservedCustomers \ ServedCustomer[FEV] == ∅ then 

12:             GreedyConstrainedSolution[iter] ← GreedyRoute[1:FEV] 

13:             FEV ← NFEV + 1 (Break the Loop) 

14:         else 

15:             FEV ← FEV + 1 

16:             UnservedCustomers ← UnservedCustomers \ ServedCustomer[FEV] 

17:         end if 

18:     end while 

 

19:     FEV ← 1 

20:     StartPoint ← C'(iter) 

 

21:     while FEV < NFEV do 

22:         UnservedCustomers ← C 

23:         ServedCustomer[FEV] ← GreedyUnconstrainedProcess(FEV, KN , DC,  UnservedCustomers) 

24:         GreedyRoute[FEV] ← ServedCustomer[FEV] 

 

25:         if UnservedCustomers \ ServedCustomer[FEV] == ∅ then 

26:             GreedyUnconstrainedSolution[iter] ← GreedyRoute[1:FEV] 

27:             FEV ← NFEV + 1 (Break the Loop) 

28:         else 

29:             FEV ← FEV + 1 

30:             UnservedCustomers ← UnservedCustomers \ ServedCustomer[FEV] 

31:         end if 

32:     end while 

33: end for 

 

34: for iter ← 1 to Length(C) do 

35:     CS ← 1 

36:     FirstEchelonRoute ← GreedyUnconstrainedSolution[iter] 

37:     Mer ← 1 

38:     BestCost ← ∞ 

 

39:     while CS < NCS do 

40:         (CS, SCS) ← SatelliteSelectionProcess(CS) 

41:         (CS, SCS, FEVCS) ← FEVSelectionProcess(CS, SCS) 

42:         PotentialCustomers ← ExtractPotentialCustomers(CS, SCS, FEVCS) 

43:         CompatibleCustomers ← CheckTimeWindowCompatibility(PotentialCustomers, TW) 

44:         SecondEchelonRoute[Mer] ← GreedyCustomerSelection(CompatibleCustomers, KCS, DC) 

 

45:         FirstEchelonRoute[Mer] ← UpdateFirstEchelonRoute(FirstEchelonRoute, 

SecondEchelonRoute[1:Mer]) 

46:         MultiEchelonRoute[Mer] ← FeasibilityCheck(FirstEchelonRoute[Mer], 

SecondEchelonRoute[1:Mer], TW) 

47:         RouteCost ← Cost(MultiEchelonRoute[Mer]) 
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48:         if RouteCost < BestCost then 

49:             FinalMultiEchelonRoute[iter] ← MultiEchelonRoute[Mer] 

50:             BestCost ← RouteCost 

51:             Mer ← Mer + 1 

52:         end if 

 

53:         CS ← CS + 1 

54:     end while 

 

55:     if BestCost < Cost(GreedyConstrainedSolution[iter]) then 

56:         OptimumRoute[iter] ← FinalMultiEchelonRoute[iter] 

57:     else 

58:         OptimumRoute[iter] ← GreedyConstrainedSolution[iter] 

59:     end if 

60: end for 

 

61: FinalOptimumRoute ← SelectMinCost(OptimumRoute[1:end]) 
 

Computational Results 
 

To evaluate the proposed algorithm, scaled-up instances for n < 8 and new instances for n > 8 

were solved using a heuristic algorithm, and results were compared with exact solutions from 

GAMS (Table 12). Additionally, Table 13 compares basic VRPRDL and crowd-based ME-

VRPRDL models, analyzing the maximum acceptable level (MAL) for satellite handling costs. 

Both instances assume unrestricted crowd shipper allocation and availability across shifts. The 

details of these two instances are presented in the following table (Table 11). 
 

Table 11. detailed information of instances 
Instance Node name 𝒍𝒐𝒏𝒈𝒊 𝒍𝒂𝒕𝒊 𝒅𝒊 Working shift 

1 

depot 1 7 0 1,2 

Customers 

2 5 1 1 

5 9 1 2 

4 6 1 1 

6 4 1 2 

4 3 1 1 

4 7 1 2 

3 10 1 1 

5 4 1 2 

3 7 1 1 

6 2 1 2 

5 7 1 1 

7 8 1 2 

3 2 1 1 

6 6 1 2 

fixed satellite 4 5 0 1,2 

mobile satellite 4 11 0 1 

5 8 0 2 

2 

depot 1 7 0 1,2 

customers 

2 9 1 1 

3 13 1 2 

3 9 1 1 

4 13 1 2 

5 9 1 1 

5 12 1 2 

5 6 1 1 

6 15 1 2 

6 4 1 1 

8 11 1 2 

4 1 1 1 

5 3 1 2 

2 1 1 1 

3 4 1 2 
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Instance Node name 𝒍𝒐𝒏𝒈𝒊 𝒍𝒂𝒕𝒊 𝒅𝒊 Working shift 

11 8 1 1 

9 7 1 2 

11 5 1 1 

8 6 1 2 

2 12 1 1 

3 16 1 2 

1 12 1 1 

7 13 1 2 

1 18 1 1 

2 13 1 2 

2 19 1 1 

2 14 1 2 

3 20 1 1 

1 14 1 2 

4 21 1 1 

1 16 1 2 

5 21 1 1 

2 16 1 2 

8 17 1 1 

3 15 1 2 

9 18 1 1 

2 15 1 2 

7 23 1 1 

4 15 1 2 

7 24 1 1 

5 15 1 2 

fixed satellite 11 1 0 1,2 

mobile satellite 

7 6 0 1 

11 15 0 2 

9 22 0 1 

5 18 0 2 

2 24 0 1 

1 15 0 2 
 

Table 12. Comparison between exact and heuristic algorithms for Crowd-based ME-VRPRDL problem 

# 
In

sta
n

c
e 

Number of entities 
Exact algorithm (Solver: 

BONMIN) 
Heuristic algorithm (HA) 

G
A

P
*
*
 

C
 

M
S

 

S
S

 

|g
| 

F
E

V
 

C
S

 

T
H

 

C
a

p
 

O
b

j
1

 

R
t 

A
M

S
 

A
S

S
 

A
F

E
V

 

A
C

S
 

O
b

j
2

 

R
t 

A
M

S
 

A
S

S
 

A
F

E
V

 

A
C

S
 

1 

1 

4 0 1 2 3 2 4 4 48 10 0 1 1 1 48 0.2 0 1 1 1 - 

2 5 0 1 2 3 2 12 4 54 57 0 1 2 1 72 0.3 0 1 2 1 0.25 

3 6 1 1 2 5 4 16 5 60 * 0 1 2 1 78 0.4 0 0 2 0 0.23 

4 7 1 1 2 5 4 16 8 60 * 0 0 1 0 66 0.4 0 0 1 0 0.09 

5 

2 

9 1 1 2 5 4 16 9 90 
23

1 
1 0 1 1 90 0.1 1 0 1 1 - 

6 11 2 1 2 5 4 16 9 - * - - - - 
12

6 
0.3 1 0 2 1 - 

7 14 2 1 2 5 4 16 9 - * - - - - 
13

8 
1.5 1 0 2 1 - 

8 16 3 1 2 5 4 16 9 - * - - - - 
15

6 
1.9 2 0 2 2 - 

9 18 3 1 2 5 4 16 9 - * - - - - 
16
8 

1.7 2 0 2 2 - 

10 20 3 1 2 5 4 16 9 - * - - - - 
24

0 
1.7 2 0 3 2 - 

C: Customer; MS: Mobile Satellite; SS: Stationary Satellite; TH: Time Horizon; Cap: FEV Capacity; Rt: Running 

Time in sec; AMS: Allocated Mobile Satellite; ASS: Allocated Stationary Satellite; AFEV: Allocated First 

Echelon Vehicle; ACS: Allocated Crowd Shipper 

* Set 2000 seconds as an upper bound of running time. So, we consider last feasible solution after 2000 seconds 

as final solution. 

- No feasible solution found after 2000 seconds. 

** 𝐺𝐴𝑃 =  
𝑶𝒃𝒋

𝟐
−𝑶𝒃𝒋

𝟏

𝑶𝒃𝒋𝟐
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Table 13. Comparison between VRPRDL & Crowd-based ME-VRPRDL 
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1 

1 

4 0 1 2 3 2 4 4 BONMIN 66 0.20 

B
O

N
M

IN
 

48 10.3 

Crowd-

based ME-

VRPRDL 

27.27

% 
0.27 

2 5 0 1 2 3 2 12 4 BONMIN 60 0.39 
B

O
N

M
IN

 
54 57.1 

Crowd-

based ME-

VRPRDL 

10% 0.10 

3 6 1 1 2 5 4 16 5 BONMIN 66 068 

B
O

N
M

IN
 

60 * 

Crowd-

based ME-

VRPRDL 

9% 0.09 

4 7 1 1 2 5 4 16 8 BONMIN 60 0.51 

B
O

N
M

IN
 

60 * both 0% - 

5 

2 

9 1 1 2 5 4 16 9 BONMIN 102 0.92 HA 90 0.1 

Crowd-

based ME-

VRPRDL 

11.7% 0.12 

6 11 2 1 2 5 4 16 9 BONMIN 138 9.94 HA 126 0.28 

Crowd-

based ME-

VRPRDL 

8.6% 0.09 

7 14 2 1 2 5 4 16 9 BONMIN 150 29.1 HA 138 1.55 

Crowd-

based ME-

VRPRDL 

8% 0.08 

8 16 3 1 2 5 4 16 9 BONMIN 168 * HA 156 1.86 

Crowd-

based ME-

VRPRDL 

7.1% 0.07 

9 18 3 1 2 5 4 16 9 BONMIN 174 * HA 168 1.68 

Crowd-

based ME-

VRPRDL 

3.4% 0.03 

10 20 3 1 2 5 4 16 9 BONMIN 252 * HA 240 1.75 

Crowd-

based ME-

VRPRDL 

4.7% 0.05 

MAL: maximum acceptable level for the handling costs of satellites. 

* Set 2000 seconds as an upper bound of running time. So, in this case, we consider last feasible solution after 

2000 seconds as final solution. 

 

As can be seen in the above tables, the complexity of Crowd-based ME-VRPRDL is much 

higher than that of VRPRDL, and as a result, obtaining the globally optimal solution requires 

much more time. However, in some cases, due to the high execution time, the last feasible 

solution of Crowd-based ME-VRPRDL is reported after 2000 seconds, this feasible solution 

has a lower cost or, in the worst case, equal to the globally optimal solution of VRPRDL. 

In addition, it should be considered that in these example problems, the costs and travel times 

of FEVs and crowd shippers are considered equal. While in many cases these parameters are 

lower in crowd shippers than FEVs. Therefore, it can be concluded that in the case of using 

crowd shippers, the reduction of total costs and travel times will be much more impressive. 

Also, in addition to economic aspects, it has been shown in past studies that in general, the use 

of the multi-echelon structure as well as crowd-based agents will have positive effects on social 

and environmental aspects of sustainability. 
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Since Crowd-based ME-VRPRDL is an extraordinarily complex problem, it will be difficult 

to find a feasible solution for it. As a result, in many meta-heuristic algorithms, after applying 

the algorithm operators on the initial solutions, mostly the new solutions were left out of the 

feasible space of the problem, and practically the algorithms could not provide suitable results. 

This issue was due to the limited solution space, which would violate the feasible space of the 

problem with the smallest change in the solution. So, there was a need for a heuristic approach 

to produce feasible and high-quality solutions for large-scale problems. But one of the main 

applications of this algorithm is to create an online approach to solve Crowd-based ME-

VRPRDL in real time in future researches. Since in many cases the parameters related to the 

available time and location of crowd shippers are not known in advance and their values may 

be determined during the execution, we will practically face a dynamic programming problem 

that their solutions should be updated in different time slots. 

Another feature of the heuristic algorithm presented in this research is the provision of both 

single-echelon and multi-echelon solutions for the problem. By providing both solutions, this 

algorithm will always provide an alternative way for the user in real world applications. 

In the following, in order to be able to examine more and random samples, we will generate 

several random instances as described below (Table 14-15) and solve them with the help of two 

exact and heuristic methods. As seen in the examples above, the solution to the VRPRDL 

problem can be considered as an upper bound for the ME-VRPRDL problem. On the other 

hand, in cases where it is not possible to exactly solve the ME-VRPRDL problem up to 2000 

seconds in the GAMS software, the first feasible solution obtained after 2000 seconds will be 

considered as an upper bound for the instance. 

 
Table 14. Entity information for generating random instances 

Number of FEV 5 

FEV Capacity 9 

Number of CS 4 

CS Capacity 2 

Depot location [1, 3] 

Number of stationary satellites 1 

Number of mobile satellites 3 

 

Table 15. General information for generating random instances 

Time Horizon 16 

Geographic profile size 2 

Shift1 [0, 7.9] 

Shift2 [8, 16] 

Travel Time of a Unit Distance  15 Min 

CS travel time = FEV travel time 

CS travel cost = FEV travel cost 

 

As can be seen in Table 16, in the last instance with 35 customers (and 75 customers’ 

locations), it was not possible to get a feasible solution in both VRPRDL and ME-VRPRDL 

problems by BONMIN exact solver (GAMS software) after 2000 seconds, but the proposed 

heuristic algorithm produced a suitable feasible solution for it in only 1.36 seconds. In none of 

the above examples, it has not been possible to obtain the global optimal solution for Crowd-

based ME-VRPRDL problem. 

As a result, the comparison between the (1) optimal solution of VRPRDL problem as an 

upper bound of the objective value of ME-VRPRDL problem, (2) the best feasible solution 

resulting from the heuristic algorithm and (3) the best feasible solution of ME-VRPRDL 

problem after 2000 seconds by BONMIN algorithm was investigated. 

According to the results obtained in Table 16, in small and medium-sized problems (less 

than 20 customers), if it is not possible to solve ME-VRPRDL problem accurately in a 
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reasonable time, it is better to solve it as a VRPRDL problem (single echelon VRPRDL). But 

if the exact solution of ME-VRPRDL problem is not possible in a reasonable time, it is better 

to solve it by the provided heuristic algorithm. Also, large instances (with more than 20 

customers), solving the problem by our heuristic algorithm will lead to better results in a much 

shorter time. 

In the following, the schematic solutions of exact and heuristic algorithms for instances with 

less than 10 customers are shown in Figure 11. 
 

Table 16. Comparison between the BONMIN solver and the heuristic algorithm in solving randomly generated 

instances of the crowd-based ME-VRPRDL problem 
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2 0.09 
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1 
2 -0.82 

4 11 [3,12] - 2000 - 114 
57.66

7 
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5 
1 - 

5 15 [3,15] - 2000 - 222 2000 216 
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1 - 
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7 
1,2 - 
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2 - 
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Figure 11. Solution networks for customers < 10 

 

Finally, to evaluate the performance of our proposed heuristic algorithm in solving the basic 

VRPRDL problem, we tested six instances of varying sizes using both the BONMIN solver and 

our heuristic approach. The results are presented in Table 17. As shown in the table, for Instance 

6 (with 20 customers), our proposed heuristic algorithm achieves superior results in just 1 

second compared to those obtained by the BONMIN solver after 2,000 seconds. 

 
Table 17. Comparison between the BONMIN solver and the proposed heuristic algorithm for VRPRDL 

problems 

# C MS SS |g| FEV CS TH Cap Solver ObjBONMIN Solver ObjHA Gap** 

1 9 1 1 2 5 4 16 9 BONMIN 102 HA 126 0.19 

2 11 2 1 2 5 4 16 9 BONMIN 138 HA 168 0.18 

3 14 2 1 2 5 4 16 9 BONMIN 150 HA 180 0.17 

4 16 3 1 2 5 4 16 9 BONMIN 168* HA 198 0.15 

5 18 3 1 2 5 4 16 9 BONMIN 174* HA 228 0.24 

6 20 3 1 2 5 4 16 9 BONMIN 252* HA 240 -0.05 

*Solution after 2000 seconds 

** (ObjHA- ObjBONMIN)/ObjHA  

 

Conclusions 

 

This study presents an innovative mathematical model for a crowd-based, flexible multi-

echelon vehicle routing problem with roaming delivery locations, extending the basic VRPRDL 

model. By integrating crowd shippers and mobile parcel lockers, the model improves delivery 

capabilities. The results indicate that the optimal solution derived from the crowd-based ME-

2 

 

  

Obj Function = 66 Obj Function = 60 

3 

  
 Obj Function = 102 Obj Function = 90 
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VRPRDL model is always superior or equal to the basic VRPRDL model. However, the 

complexity of the crowd-based model is significantly higher, requiring attention to problem 

dimensions and solution accuracy. Key factors such as handling costs, travel time, and 

transportation costs significantly influence the number of optimal echelons. Since the problem 

is NP-hard, solving it for large-scale real-world scenarios is computationally intensive, 

necessitating the development of a heuristic algorithm. The introduction of multiple time 

windows for crowd shippers, satellites, and customers further complicates the problem. Future 

research could explore online algorithms for real-time routing and mobile satellite routing to 

better reflect real-world conditions. 
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