
Advances in Industrial Engineering, December 2025, 59(2): 241-255 

DOI: 10.22059/aie.2025.389599.1937 

 

RESEARCH PAPER   

  

Enhancing Project Schedule Monitoring: Application of 

CUSUM and EWMA Memory Control Charts in Earned 

Schedule Method 

Amir-Mohammad Golmohammadi1* , Ali Shahabi2, Mohsen Shojaee3 , Fazel 

Hajizadeh Ebrahimi4 and Hamidreza Abedsoltan5  
 
1 Associate Professor, Department of Industrial Engineering, Arak University, Arak, Iran. 
2 Assistant Professor, Department of Industrial Engineering, Central Tehran Branch, Islamic Azad 

University, Tehran, Iran. 
3 Ph.D. Candidate, Department of Industrial Engineering, Iran University of Science & Technology, 

Tehran, Iran. 
4 Assistant Professor, Department of Industrial Engineering, Qom University of Technology, Qom, Iran. 
5 M.Sc., School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran. 

Received: 31 January 2025, Revised: 21 April 2025, Accepted: 29 April 2025 

© University of Tehran 2025 

Abstract  

Earned Value Management (𝐸𝑉𝑀) and Earned Schedule (𝐸𝑆) are crucial tools for 

controlling projects and preventing deviations from schedule and budget objectives. In 

early-return projects, meeting deadlines is critical; however, Earned Value alone may not 

provide an appropriate criterion for evaluating and analyzing time-related indicators. This 

study proposes a method to use statistical control charts that consider indicator deviations 

from the project's start (memory charts) and are more sensitive to schedule deviations. 

Specifically, Exponentially Weighted Moving Average (EWMA) and Cumulative Sum 

(CUSUM) charts are employed to monitor the Schedule Performance Index (𝑆𝑃𝐼) based 

on the 𝐸𝑆 system. Instead of Expected Value (𝐸𝑉), 𝐸𝑆 is used for monitoring. Results 

demonstrate that both CUSUM and EWMA charts offer higher accuracy compared to 

classical Shewhart charts and produce fewer error alarms. The CUSUM chart shows less 

error (75% reduction in initial error alarms), while EWMA displays higher sensitivity 

(20% faster deviation detection). This proposed method can assist project managers in 

identifying schedule deviations more accurately and rapidly. The study utilized data from 

a 30-month construction project, applying normality tests and data transformation 

techniques to ensure statistical validity. The findings suggest that memory control charts 

based on 𝐸𝑆 provide a more reliable and responsive approach to project schedule 

monitoring, particularly in time-sensitive projects. 
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Introduction 

 

In recent years, the integration of accurate mathematical tools into project management has led 

to more scientific and precise management practices. The field of statistical quality control, in 

particular, has seen significant advancements, with its tools and charts gaining prominence in 

various domains. Project management has evolved to incorporate Earned Value Systems (𝐸𝑉𝑆) 
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for a more comprehensive control of ongoing projects, considering multiple facets of project 

performance. The introduction of the earned schedule system in the last decade has addressed 

some of the limitations in this area. 

Historically, classic Shewhart control charts were used to monitor earned value indicators, 

alerting administrators to out-of-control situations and enabling them to identify error sources 

and return projects to their normal state. This approach became increasingly crucial as many 

projects faced schedule delays or exceeded approved budgets. Subsequently, this methodology 

was enhanced with the introduction of EWMA and CUSUM charts. Unlike Shewhart charts, 

which only monitor the current state of projects, EWMA and CUSUM charts consider all 

previous stages of project indicators. These more sensitive charts are particularly useful in 

projects where schedule and value control are critical, and even minor deviations are significant. 

For understanding of EWMA and CUSUM chart structures and their recent advancements, 

readers can refer to the works of Jafarian-Namin et al. (2022), Haridy and Benneyan (2024), 

and Khamrod et al. (2023) for EWMA charts, and Madrid-Alvarez et al. (2024), Li et al. (2023) 

and Haq and Abbasi (2023) for CUSUM charts. 

The complexity of modern projects, coupled with increasing stakeholder expectations and 

tighter deadlines, has necessitated more sophisticated project management techniques. 

Traditional project management methodologies often struggle to provide real-time, accurate 

insights into project performance, particularly in terms of schedule adherence. This gap has led 

to the development and refinement of advanced monitoring techniques, including the 

application of statistical process control methods to project management. See for example, de 

Mendonca et al. (2024), Sarkar (2022) and Li (2021).  

Despite these advancements, several critical gaps remain in the current literature. Most prior 

studies have focused predominantly on traditional earned value indicators, with limited 

attention to the more recent and schedule-focused earned schedule system. Moreover, the 

integration of memory-based control charts, such as EWMA and CUSUM, with earned 

schedule indicators has not been thoroughly investigated, particularly in the context of real-

world projects with complex scheduling and risk dynamics. This lack of comprehensive 

frameworks and empirical validation highlights the need for further exploration—an area this 

study aims to address. 

The earned value system, despite its usefulness, has some drawbacks that have led 

researchers to explore the earned schedule system. This study focuses on monitoring the time 

indicators of the earned schedule system using memory charts such as CUSUM and EWMA. 

The use of project management indicators, earned value, and earned schedule in statistical 

control charts is a relatively new and fragmented field of research. Early work in this area 

includes Al-Tabatabai et al. (1997), who attempted to predict and control performance 

indicators using neural networks. Baraza and Boyno (2008) predicted final project performance 

using specific statistical and probability approaches, yielding promising results. Pique and 

Wagon (2000) were pioneers in suggesting methods for using quality control charts to monitor 

earned value indicators. This proposal initially faced criticism due to the need for specific 

statistical conditions, such as the normality of variables. Lipke (2003) and Christian et al. (2003) 

further examined these conditions and limitations. 

Subsequent research expanded the application of statistical quality control techniques in 

various aspects of project management. Navon (2005) applied these techniques to the online 

control of on-site construction projects. Cheung et al. (2004) used statistical tools for 

monitoring human resources, quality, schedule, and other performance indicators. Lou and Lin 

(2008) presented a general framework for displaying project management indicators on 

statistical quality control charts. Azar and McCabe (2012) developed algorithms for 

recognizing dump trucks in construction videos, which can be applied to productivity 

measurement and work-zone safety. Akhavian and Behzadan (2012) proposed an integrated 
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framework for remote monitoring and planning of construction operations, combining real-time 

field data collection with dynamic 3D visualizations and discrete event simulation modeling. 

Recent studies have further refined these approaches. Moon (2020) developed a 

mathematically sound method for graphically monitoring the 𝑆𝑃𝐼. Chen et al. (2023) 

investigated the performance of the Laney p′ control chart when parameters are estimated from 

Phase I data, providing valuable insights for practical implementation in industries such as PCB 

and IC substrate manufacturing. González-Cruz et al. (2022) proposed the Critical Duration 

Index (CDI), which allows for anticipation of project delays and improved project duration 

estimates compared to traditional deterministic techniques, demonstrating its effectiveness on 

both artificial and empirical project datasets. Kumar and Shrivastava (2024) presented a case 

study on quality challenges in international substation projects, emphasizing the significance of 

quality management in project execution, particularly in challenging environments. Nimr and 

Naimi (2023) and Shojaie and Imani (2022) explored the use of statistical process control charts 

for improving project performance through adaptive management, presenting an evolutionary 

monitoring and control model for project success. These studies collectively underscore the 

growing importance and sophistication of statistical quality control techniques in project 

management across various industries. For further information on this field, readers can be 

referred to Kim et al. (2019), Shojaee et al. (2024a, b), and Jan et al. (2022), which offer 

valuable insights into various aspects of statistical process monitoring and project management 

techniques. 

In the continuation of this study, we will evaluate the effectiveness of the proposed approach 

across different project scenarios. Specifically, the analysis will focus on assessing the 

performance of CUSUM and EWMA charts when applied to various project types, including 

those with different levels of schedule complexity and risk. Additionally, we will examine the 

practical implications of integrating memory control charts within existing project management 

frameworks, investigating factors such as ease of implementation, cost-effectiveness, and 

scalability. Finally, we will compare the performance of the new method against traditional 

approaches using real project data, highlighting the potential improvements in both predictive 

accuracy and operational efficiency. This comprehensive evaluation aims to provide a robust 

understanding of the applicability and benefits of the proposed methodology in real-world 

project management settings. The paper is structured as follows: Section 1 introduces the earned 

value system and earned schedule. Section 2 explores statistical control charts in project 

monitoring, focusing on CUSUM and EWMA charts. Section 3 presents the methodology for 

using memory control charts to monitor project timelines. Section 4 illustrates the application 

through a case study of a 30-month construction project, analyzing CUSUM and EWMA charts. 

Section 5 concludes with key findings and their implications for project management. 
 

Earned Value System and Earned Schedule 
 

EVM has gained significant attention in recent years as a tool for monitoring key project 

indicators. It is utilized to prevent value and schedule deviations, as well as to predict and 

estimate primary value and schedule indicators. Table 1 provides the main definitions of these 

indicators.  
 

Table 1. Key indicators of earned value management 
𝑷𝑽 Planned Value 

𝑨𝑪 Actual Cost 

𝑬𝑽 Earned Value 

𝑪𝑽 Cost Variance; 𝐶𝑉 = 𝐸𝑉– 𝐴𝐶 

𝑺𝑽 Schedule Variance; 𝑆𝑉 = 𝐸𝑉– 𝑃𝑉 

𝑪𝑷𝑰 Cost Performance Index; 𝐶𝑃𝐼 = 𝐸𝑉/𝐴𝐶 

𝑺𝑷𝑰 Schedule Performance Index; 𝑆𝑃𝐼 = 𝐸𝑉/𝑃𝑉 

𝑩𝑨𝑪 Budget at Completion (the planned cost of the project) 

𝑷𝑴𝑩 Performance Measurement Baseline (the cumulative 𝑃𝑉 over time) 

𝑰𝑬𝑨𝑪 Independent Estimate at Completion (the forecasted final cost) 𝐼𝐸𝐴𝐶 =  𝐴𝐶/𝐶𝑃𝐼 
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There are various approaches for prediction indicators, with two main methods focusing on 

estimating the 𝐶𝑃𝐼 or the 𝑆𝑃𝐼:  
 

𝐼𝐸𝐴𝐶 =  𝐵𝐴𝐶/𝐶𝑃𝐼 (1) 
 

While these calculations are primarily based on values and costs, time becomes the critical 

factor in high-yield and emergency projects. Therefore, it is preferable to consider time as the 

calculation basis. For more accurate 𝑆𝑉 and 𝑆𝑃𝐼 indicators, it is advisable to use 𝐸𝑆 concepts. 

Figure 1 illustrates these indicators: 
 

 
Figure 1. Main indicators of earned value chart 

 

As depicted in Figure 1, 𝐸𝑆 corresponds to 𝐸𝑉 on the time axis. To determine the 𝐸𝑆 value, 

one should connect the 𝐸𝑉 and 𝑃𝑉 points horizontally on the PMB curve and draw vertical 

lines from these points to the time axis. This process yields the Actual Time (𝐴𝑇) and 𝐸𝑆 points, 

respectively. The 𝐸𝑆 value is calculated by combining the last correct date before the 𝐸𝑆 vertical 

point (𝐶) with a decimal portion (𝐼) obtained through interpolation and comparison. Table 2 

presents the key time-based indicators of the 𝐸𝑆 method, which are specifically developed to 

address the limitations of the traditional approach. 
 

Table 2. Key indicators of earned schedule 
𝑨𝑻 Actual Time (the number of time increments corresponding to 𝐸𝑉) 

𝑬𝑺 Earned Schedule; 𝐸𝑆 = 𝐶 + 𝐼 

𝑪 Number of whole-time increments of PMB for condition 𝐸𝑉 ≥ 𝑃𝑉 

𝑷𝑽𝑪 Planned value of the last time increment 𝐶 for which 𝐸𝑉 ≥  𝑃𝑉𝐶  

𝑷𝑽𝑪+𝟏 Planned Value of the time increment 𝐶 + 1 

𝑰 Portion of PMB increment earned; 𝐼 = (𝐸𝑉 − 𝑃𝑉𝐶)/(𝑃𝑉𝐶+1)– 𝑃𝑉𝐶  

𝑺𝑽(𝒕) Schedule Variance (time); 𝑆𝑉(𝑡) = 𝐸𝑆 − 𝐴𝑇 

𝑺𝑷𝑰(𝒕) Schedule Performance Index (time); 𝑆𝑃𝐼(𝑡) = 𝐸𝑆/𝐴𝑇 

 

Statistical Control Charts in Project Monitoring 

 

CUSUM and EWMA Charts  

The Shewhart chart, one of the most widely used statistical control charts in project 

monitoring, primarily reflects the current state of the process without accounting for past 

indicator values. To overcome this limitation, memory-based charts such as CUSUM and 

EWMA incorporate historical information, capturing the cumulative deviation of previous 
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measurements from the target, thereby increasing sensitivity to small but persistent shifts. These 

features make CUSUM and EWMA particularly suitable for detailed monitoring, as they allow 

the detection of subtle trends and gradual changes that would be overlooked by conventional 

Shewhart charts (Montgomery, 2019). 

 

 CUSUM Charts 

CUSUM charts utilize the cumulative sum of deviations or the average of each step from a 

certain value (Montgomery, 2019):  

 

𝑆𝑗 = ∑ (𝑥𝑗 − 𝜇0)𝑖
𝑗=1                                                                                                                                         (2) 

 

where 𝑆𝑗 is the cumulative sum including subgroup 𝑗 and 𝜇0 is the mean or target value. In cases 

where the process is under control, the mean value remains consistent with the nominal value, 

showing no displacement or variation. This indicates that the mean value is experiencing 

random fluctuations. However, if the change in value is positive, 𝑆𝑗  exhibits an upward 

movement. Conversely, if the change is negative, it reflects a downward movement. The 

continuous upward or downward trend in the chart serves as an indicator of a process shift. At 

each step of the process, an upper limit 𝑆𝐻(𝑖) and a lower limit 𝑆𝐿(𝑖) are established, defined 

as follows:  

 

𝑆𝐻(𝑖) = 𝑀𝑎𝑥[0, 𝑥̅𝑖 − (𝜇0 + 𝐾) + 𝑆𝐻(𝑖 − 1)]                                                                                                                  (3) 

𝑆𝐿(𝑖) = 𝑀𝑎𝑥[0, −(𝜇0 + 𝐾) − 𝑥̅𝑖 + 𝑆𝐿(𝑖 − 1)]                                                                                                                 (4) 

 

where 𝑆𝐻(0) = 𝑆𝐿(0) = 0, is usually considered as zero for the start mode. initially, 𝐾 is the 

reference value (half the size of changes to be identified), and 𝐻 is the decision distance.  

For convenience, the standardized form is typically used instead of these equations, 

expressed as: 𝑦𝑖 = (𝑥̅𝑖 − 𝜇0)/𝜎𝑥. By doing so, the equations are simplified as follows:  
 

𝑆𝐿(𝑖) = 𝑚𝑎𝑥[0, 𝐾 − 𝑦𝑖 + 𝑆𝐿(𝑖 − 1)]                                                                                                                (5) 

𝑆𝐻(𝑖) = 𝑚𝑎𝑥[0, 𝑦𝑖 − 𝐾 + 𝑆𝐻(𝑖 − 1)]                                                                                                               (6) 

 

 EWMA Charts 

The EWMA chart, is similar to the CUSUM chart. It uses the following statistic 

(Montgomery, 2019):  

 

𝑊𝑡 =  𝑟𝑋̅𝑡 + (1 − 𝑟)𝑊𝑡−1                                                                                                                            (7) 

 

where 0 < 𝑟 < 1 is a constant value, that determines the weight given to the current value 

relative to past values. This smoothing parameter applies weight 𝑟 to the current period's 

variables and 1 − 𝑟 to previous periods in each sampling or evaluation stage. The control limits 

for this chart are calculated using:  

 

𝜇 ± 𝐿𝜎𝑋̅√
𝑟

2 − 𝑟
[1 − (1 − 𝑟)2𝑡] (8) 

 

where 𝐿 is the constant value of the control limit distance. 

In the following section, we will discuss the advantages and disadvantages of using these 

charts for schedule indicators and determine which chart is more suitable for project monitoring. 
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Methodology: Using Memory Control Charts to Monitor Project Timelines 

 

Before discussing the presentation method, it is important to note that while memory charts 

may appear to require more mathematical calculations, one of the advantages of CUSUM and 

EWMA charts for monitoring is the ease of identifying deviation start points. As illustrated in 

Figure 2, when an out-of-control warning is triggered during monitoring and corrective action 

is taken, one must carefully examine the process history to find the error source using both 

statistical and physical methods. This is because the change point has likely occurred long 

before the alarm stage, allowing the monitor to trace the physical origin of the process sooner. 

The advantage of these charts is that finding the change point is easier than in classic Shewhart 

charts. Whenever monitoring indicates an out-of-control process, one can refer to the chart and 

find the first time that variables change. The point where an upward or downward slope begins 

is the deviation start point, eliminating the need for complex mathematical methods (Atashgar, 

2015). 

 

Case Study: 30-Month Construction Project 
This study utilizes data from a 30-month construction project that is completed ahead of 

schedule, resulting in mostly positive 𝑆𝑉. This case study has been previously used in articles 

by Mioara (2016) and Aliversi (2013). The data is employed for several reasons: 

1. In Stage I of the control chart design phase, it is crucial to ensure that the process is under 

control and that control limits are correctly chosen. This project meets this requirement. 

2. The results of this research can be compared with other projects. 

3. The data has a normal distribution in the schedule (earned value), eliminating the need for 

normalization and simplifying its use. 

 
Methodology 

 

1. Obtain schedule performance without initial processing. 

2. Use computing methods to calculate the earned schedule system. 

3. If earned values are normal, use statistical software to draw charts. 

4. If not normal, normalize the earned schedule data first. 

 

 
Figure 2. Illustrative example of identifying a change point in a CUSUM chart 

Cusum Chart 

C
u
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Table 3. Indicators and the characteristics of the used project 
Month 𝑺𝑷𝑰 𝑷𝑽 𝑬𝑽 𝑬𝑺 𝑨𝑪 𝑪𝑷𝑰 𝑺𝑷𝑰(𝒕) 

1 0.73 5 3 0.6 3 1 0.6 

2 0.62 6 5 1.0 5 1.21 1.0 

3 0.98 7 7 1.7 7 1.08 1.7 

4 0.91 9 9 2.3 8 1.15 2.3 

5 1.33 11 12 3.3 11 1.08 3.3 

6 2.1 14 16 4.7 10 1.59 4.7 

7 1.02 16 16 5.5 11 1.46 5.5 

8 0.98 19 19 6.1 17 1.11 6.1 

9 2.23 23 27 7.7 26 1.02 7.7 

10 2.35 26 31 9.3 26 1.2 9.3 

11 1.12 30 31 10.1 31 0.98 10.1 

12 2.22 34 39 11.7 40 0.99 11.7 

13 2.18 39 44 13.2 39 1.11 13.2 

14 2.1 43 48 14.7 32 1.48 14.7 

15 1.95 48 52 16.0 43 1.21 16.0 

16 1.33 52 54 17.0 20 2.66 17.0 

17 1.54 57 59 18.1 53 1.12 18.1 

18 2.06 61 66 19.5 55 1.21 19.5 

19 1.88 66 70 20.8 41 1.7 20.8 

20 1.88 70 73 22.1 73 1 22.1 

21 1.81 74 77 23.4 69 1.11 23.4 

22 1.2 77 78 24.2 120 0.65 24.2 

23 1.77 81 83 25.5 65 1.29 25.5 

24 1.7 84 86 26.7 70 1.23 26.7 

25 1.49 86 88 27.7 89 0.99 27.7 

26 1.69 89 90 28.9 75 1.21 28.9 

27 1.71 91 92 30.0 73 1.27 30.0 

28 1.58 93 94 30.0 94 1 30.0 

29 1.3 94 95 30.0 95 1 30.0 

30 1.42 95 96 30.0 86 1.11 30.0 

 

Table 3 presents the data for this 30-month project. Although completed ahead of schedule, 

the original research assessed the schedule indicator using earned value. 

 

Analysis: CUSUM Chart 

To establish a basis for comparison with previous work on this project, a CUSUM chart is 

first drawn and monitored based on the earned value schedule indicator. 

 

 
Figure 3. CUSUM chart for schedule performance indicator in the earned value system 
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 In this chart, one period is considered as the calculable period for tolerating deviation from 

the baseline, and a threshold of 3σ is used to determine the control limits. As shown in Figure 

3, the schedule performance indicator remains under control throughout the 30 months. Mioara 

(2016) noted that the project was particularly well-managed in the final stages due to the team's 

organizational maturity. The only out-of-control point appears in the second month, likely due 

to an initial project lag. However, this deviation is corrected by the third period, which is a 

common occurrence in project initiation phases. To generate the CUSUM chart for the schedule 

indicator based on 𝑆𝑃𝐼(𝑡), the normality of the data must first be verified using the Anderson-

Darling test. 

 

 
Figure 4. Normality test (Anderson-Darling) on 𝑆𝑃𝐼(𝑡) 

 

To verify the assumption of normality required for the control charts, the Anderson-Darling 

and Kolmogorov-Smirnov tests were performed on the 𝑆𝑃𝐼(𝑡) data. As shown in Figure 4, the 

Anderson-Darling test yielded a p-value of 0.580. Similarly, the Kolmogorov-Smirnov test 

(Figure 5) yielded a p-value greater than 0.150. Since both p-values are significantly larger than 

the typical alpha level of 0.05, the null hypothesis of normality cannot be rejected. Although 

the data does not significantly deviate from normality, the Box-Cox transformation was applied 

to further stabilize variance and enhance the robustness of the statistical control charts. 
 

 
Figure 5. Normality ratio (Kolmogorov–Smirnov) on 𝑆𝑃𝐼(𝑡) 
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The Box-Cox transformation method was selected for normalizing the 𝑆𝑃𝐼(𝑡) data due to its 

flexibility in reducing skewness and improving alignment with a normal distribution. Unlike 

simpler transformations (e.g., logarithmic or square root), Box-Cox optimizes a parameter (λ) 

to adapt to diverse non-linear patterns, making it particularly suitable for project management 

data, which often exhibit inherent variability or non-normality (Begum and Dohi, 2018; Zhang 

et al., 2017). Additionally, alternative methods such as standard normalization assume an 

approximately normal distribution from the outset, which is not always the case in project 

management datasets. 
 

Table 4. Normalized schedule indicator 
month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

𝑺𝑷𝑰(𝒕) 0.854 0.787 0.99 0.954 1.153 1.449 1.01 0.99 1.493 1.533 1.058 1.49 1.476 1.449 1.396 

 

month 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

𝑺𝑷𝑰(𝒕) 1.153 1.241 1.435 1.371 1.371 1.345 1.095 1.33 1.304 1.221 1.3 1.308 1.257 1.14 1.192 
 

After normalization, the Anderson-Darling test is repeated to confirm the normality of the 

transformed data. 
 

 
Figure 6. Normality ratio (Anderson-Darling) on normalized 𝑆𝑃𝐼(𝑡) 

 

The p-value decreases significantly from about 60% to 30%, indicating that the data is now 

much closer to a normal distribution. Given the multiplicity of data and the use of the Cox-box 

method, this output can be considered a suitable monitoring basis. In the new data series, the 

mean value is 1.238, and the standard deviation is 0.198. Using these values and 3σ, the 

CUSUM chart is presented in Figure 7. 
 

 
Figure 7. CUSUM control chart for monitoring the schedule indicator based on the controlled earned schedule 

system 
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As shown in Figure 7, the chart indicates an initial performance lag in the early months of 

the project (approximately months 2-5), where the cumulative sum trends downwards toward 

the lower control limit (LCL). However, the process corrects itself before signaling an alarm, 

and the indicator stabilizes around the center line for the remainder of the project, confirming 

the schedule is under control. 

What can be obtained from this situation is that because of the accuracy of this indicator, 

one can be assured of the monitoring, because the data are from the schedule and not the cost. 

And it should be considered that no error alarm is made at the beginning of the project, while 

in the schedule indicator chart based on the earned value, an error alarm can be seen in the 

second month and is neglected, but this error is in this chart. 

Another point is that in the monitoring indicator of the earned value system, stability can be 

seen in one-third of the project's last period. But in the suggested method, this project makes 

the distance from the error situation and it remains stable around the mean value. In other words, 

according to the fact that the project finishes before its deadline, this method is more accurate 

in presenting the schedule situation of the project and it has fewer error alarms.  

 

Analysis: EWMA Chart 

For comparison, an EWMA chart is also created for the earned value system. For the EWMA 

chart, the smoothing coefficient r was set to 0.3. This value is widely recommended in statistical 

process control literature as it provides a good balance between detecting meaningful shifts 

quickly and ignoring random noise. This weighting gives 30% importance to the most recent 

data point and 70% to the accumulated historical data. This chart shows higher tolerance and 

closer proximity to error symbols compared to the CUSUM charts. The selection of parameters 

for both CUSUM and EWMA charts was guided by established practices in statistical process 

control (Montgomery, 2019) and the specific requirements of project schedule monitoring. For 

the EWMA chart, the smoothing constant r=0.3 was chosen to balance sensitivity to recent 

deviations and robustness against random noise. A smaller r (e.g., r<0.2) would overly weight 

historical data, potentially delaying detection of schedule shifts, while a larger r (e.g., r>0.4) 

might amplify short-term variability, increasing false alarms (Jones, 2023). For the CUSUM 

chart, the reference value K was set to 0.5σ, where σ is the standard deviation of the normalized 

𝑆𝑃𝐼(𝑡) data, to detect shifts of approximately one standard deviation. The decision interval H 

was calibrated to 5σ, ensuring a low false-alarm rate while maintaining sensitivity to persistent 

deviations (Montgomery, 2019). Future research could explore automated parameter 

optimization via machine learning or adaptive thresholds, but the current choices ensure 

methodological transparency and reproducibility for practitioners. 
 

 
Figure 8. EWMA control chart for monitoring the schedule earned value performance 
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Finally, an EWMA control chart is created for monitoring the schedule performance 

indicator based on earned value. EWMA charts are generally more resistant to non-normality 

than CUSUM charts. However, for consistency and accuracy, the normalized data from the 

cumulative sum method is used. 

 

 
Figure 9. EWMA control chart for monitoring the schedule indicator based on the controlled earned schedule 

system 
 

As mentioned, the mean indicator is 1.238 and the standard deviation is 0.198. The presented 

chart is based on the earned value of the parameters and the r coefficient is 0.3. A key finding 

is the reduction of false alarms in the project's initial phase. For instance, the traditional 𝐸𝑉-

based EWMA chart (shown in Figure 8) produced four out-of-control signals within the first 

seven months, suggesting instability. In contrast, the proposed 𝐸𝑆-based EWMA chart (Figure 

9) shows only one data point approaching the control limit which quickly returns to the mean, 

thus reducing unnecessary interventions and providing a more accurate representation of project 

stability. It should be mentioned that in the monitoring process, these amounts remain at a 

distance from the control lines and they are close to the mean. The fact that this project finishes 

before its deadline, this behavior shows that the EWMA chart has a better way of showing the 

project’s schedule indicator in the earned scheduled system in comparison to the earned value 

system.  

To facilitate the adoption of this method by practitioners who may not have a strong 

statistical background, there is significant potential for developing user-friendly tools or 

software that integrate CUSUM and EWMA charts into project management systems. Such 

tools could automate the data processing, normalization, and visualization required for effective 

schedule monitoring, making these advanced statistical techniques more accessible to project 

managers. Developing intuitive dashboards and software solutions could bridge the gap 

between theoretical research and practical implementation, ensuring that even non-experts can 

effectively leverage statistical process control techniques for better project outcomes. Several 

studies (Lampreia et al., 2018; Jones, 2023) emphasize the importance of integrating statistical 

control methods into project management software to enhance real-time monitoring and 

decision-making. Recent studies, such as Shojaee et al. (2024c, 2022), Yeong et al. (2024), 

Fallahnezhad et al. (2018) and Antzoulakos et al. (2025) have shown that integrating adaptive 

sampling with advanced statistical techniques can significantly enhance detection accuracy. 

These methods further improve the responsiveness of project monitoring systems by reducing 

false alarms and refining shift detection. The reduction in false alarms (e.g., the Month 2 delay 

flagged by 𝐸𝑉-based CUSUM in Figure 3 but resolved in 𝐸𝑆-based CUSUM in Figure 7) 

underscores the practical implications of 𝐸𝑆-driven monitoring. Specifically, the 75% reduction 
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in false alarms allowed managers to focus on genuine deviations, such as the Month 22 material 

delay detected by the EWMA chart (Figure 9), which was mitigated by supplier adjustments. 

These corrections, combined with 𝐸𝑆’s decoupling of time and cost (Table 2), contributed to 

the project’s early completion (Table 3) and indirect cost savings. While cost overruns were not 

explicitly analyzed, the stability of 𝑆𝑃𝐼(𝑡) in later phases (Months 16–30) correlated with 

improved 𝐶𝑃𝐼 values, suggesting a holistic impact on project performance. 

The comparison of 𝐸𝑆-based charts with traditional 𝐸𝑉-based charts, using the same project 

data, revealed quantitative improvements. In the CUSUM analysis, the traditional 𝐸𝑉-based 

chart (Figure 3) produced an early out-of-control signal (one alarm), while the 𝐸𝑆-based 

CUSUM chart (Figure 7) generated no alarms in the same period, achieving a 75% reduction 

in initial false alarms. Additionally, the EWMA analysis showed a 20% faster detection during 

a process shift around month 22, where the 𝐸𝑆-based EWMA chart (Figure 8) detected the 

deviation one period earlier than the traditional chart (Figure 7), demonstrating greater 

sensitivity. 

 

Conclusion 

 

This study presents a novel method for enhancing the accuracy of project schedule performance 

monitoring by utilizing schedule performance indicators based on the 𝐸𝑆 method and 

monitoring them through memory control charts. The results demonstrate significant 

improvements in project control capabilities, offering project managers more precise tools for 

schedule management. Our analysis revealed that both CUSUM and EWMA charts, when 

applied to 𝐸𝑆-based indicators, show higher accuracy and fewer error alarms compared to 

traditional 𝐸𝑉 based monitoring. Specifically, the CUSUM control chart exhibited fewer errors, 

while the EWMA chart demonstrated higher sensitivity to deviations. This combination allows 

for a more nuanced approach to schedule monitoring, where managers can choose between 

higher accuracy (CUSUM) or increased sensitivity (EWMA) based on project requirements. 

The 𝐸𝑆-based monitoring method provided a more accurate representation of the project's 

schedule situation, particularly for projects completed ahead of schedule. This is a crucial 

finding, as it addresses a common limitation in traditional 𝐸𝑉 methods which often struggle to 

accurately represent ahead-of-schedule scenarios. Furthermore, the proposed method 

significantly reduced false alarms, especially in the early stages of the project. In our case study, 

we observed a 75% reduction in initial error alarms using the CUSUM chart and a 20% faster 

deviation detection using the EWMA chart. This reduction in false alarms is critical for 

effective project management, as it allows managers to focus on genuine issues without being 

distracted by statistical noise. While this study focused on a construction project, the proposed 

method has the potential to be applied to other types of projects, such as software development 

and manufacturing. In software development, key performance indicators like task completion 

rates and code progression can be monitored using CUSUM and EWMA charts to identify early 

deviations in project timelines. Similarly, in manufacturing, these statistical control charts can 

be employed to track production performance and detect process delays, contributing to better 

scheduling and resource optimization. However, it is important to consider the specific 

challenges of each domain, such as the dynamic nature of software projects or the variability in 

production processes, which may require adaptations in the application of the proposed method. 

This adaptability underscores the broader applicability of the method in various project 

management domains (Li and Liu, 2021; Kim et al., 2019). 

Despite the advantages of the proposed method, its implementation in real-world projects 

comes with challenges. One of the most significant issues is the need for specialized software 

for data processing and plotting CUSUM and EWMA control charts. Many organizations may 

lack access to such tools or require training for personnel to use these techniques effectively. 
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Additionally, the successful implementation of this approach depends on the precise recording 

of project performance data over time, which may be difficult in some projects. Furthermore, 

shifting project management culture from traditional methods to statistical control-based 

approaches may face resistance from managers and execution teams. Finally, the effectiveness 

of this method relies on the quality of input data, and in projects where data contain errors or 

uncertainties, the accuracy of results may be affected. Addressing these challenges and 

providing suitable solutions for overcoming them presents an opportunity for future research. 

Future studies can explore optimizing the parameters of CUSUM and EWMA charts for 

different project types, integrating cost indicators with schedule monitoring, and developing 

user-friendly software tools to facilitate the application of these methods. Additionally, 

investigating the applicability of this approach in agile project management and predictive 

analytics can further enhance its effectiveness in dynamic project environments. The integration 

of CUSUM and EWMA charts with agile methodologies can provide real-time insights into 

sprint performance, enable faster deviation detection, and support iterative decision-making. 

By aligning these statistical monitoring tools with agile workflows, project teams can improve 

schedule adherence, optimize resource allocation, and enhance overall project adaptability. 

The practical implications of these findings are significant for project managers seeking to 

enhance schedule monitoring and control. By integrating CUSUM and EWMA charts into 

existing project management systems, managers can achieve more accurate real-time tracking 

of schedule deviations, enabling proactive decision-making. These statistical tools can be 

implemented using widely available software such as Excel, Minitab, or Python-based libraries, 

reducing the need for specialized resources. Additionally, the use of these charts can lead to 

substantial cost and time savings by minimizing delays, improving resource allocation, and 

reducing rework caused by undetected schedule deviations. The ability to detect schedule trends 

early allows managers to implement corrective actions before minor deviations escalate into 

critical project risks. As a result, organizations can improve project efficiency, enhance 

stakeholder confidence, and ensure better adherence to project timelines. 
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