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Abstract  

A major part of crisis management is logistics. Setting up an effective logistics system 

during emergencies and reducing damage is essential. This study first introduces a 

mathematical model for emergency logistics. Then, a hybrid metaheuristic algorithm is 

proposed to optimize how demand in affected areas is met based on this model. The focus 

is on emergency logistics with the goal of reducing costs and improving coverage of 

people in need. It also presents a model for locating distribution and relief centers using a 

two-stage clustering approach to form binary clusters from a distance matrix, where each 

cluster pair represents which distribution centers serve which demand areas. In contrast, 

our approach consistently matches the optimal solutions faster than GAMS, as detailed in 

Table 11. Notably, for larger instances (Ins9–10), OPSM reduces runtime by 30–50% 

while still achieving optimal solutions. This efficiency is particularly evident when GAMS 

fails to reach optimality, as our method outperforms its best-found solutions. Findings 

shows that, proposed algorithm is efficient and suitable for optimizing and solving 

coverage set problems. 
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Introduction and Problem Statement 

 

Natural disasters are becoming more common worldwide [1] and pose serious threats to human 

life [2], causing severe impacts on people and their surroundings [3]. As a result, effective 

disaster management and strategies for fast supply delivery during crises have become 

increasingly important [1]. Because disasters are unpredictable, quick response is crucial—

especially in moving injured people to designated centers. One way to reduce delays is by pre-

positioning relief supplies near potential disaster zones, which allows for faster response, better 

planning, and lower costs [4]. This highlights the need for greater decentralization in global 

disaster management to improve efficiency and preparedness. The severity and urgency of a 

disaster depend largely on its type and scale, as well as the readiness of individuals and systems 

before, during, and after the event [2]. 

Disasters are deadly and destructive, making effective disaster management and 
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humanitarian logistics essential for helping affected populations and rebuilding damaged areas. 

One major challenge is delivering critical supplies—like food, water, and medicine—to people 

in need quickly and efficiently. Proper logistics planning ensures resources reach the right 

people at the right time, which can save lives [5]. Humanitarian logistics focuses on this goal 

and has become a key area within supply chain management [3]. 

During disasters, supply chains face many uncertainties due to the severity of the event, 

infrastructure damage, and other disruptions. A crisis response system must be agile, flexible, 

and well-coordinated to function effectively [7]. 

To reduce human and financial losses, it’s important to understand relief processes and 

manage supply chains during emergencies. This includes pre-disaster planning—such as where 

to store supplies and locate facilities—as well as managing distribution, routing, and resource 

allocation during the response phase [8]. Because disasters are unpredictable, communities 

must prepare in advance to minimize harm. Disaster management is an ongoing process that 

includes preparedness, response, and recovery. Identifying key logistics locations before a 

disaster helps reduce delivery times and costs, while also improving readiness and distribution 

efficiency. Tactical decisions—like how to transport aid and evacuate the injured—are also 

crucial. Therefore, strong transportation systems are vital for effective humanitarian responses. 

In recent years, facility location and routing have become key issues in integrated logistics 

systems [1], especially in setting up relief centers and managing humanitarian logistics to meet 

urgent needs. Coverage models are often used for locating facilities such as hospitals, 

ambulances, and emergency centers. These models aim to reflect real-world conditions as 

closely as possible, and mathematical modeling continues to evolve to support this goal [64]. 

Research into mathematical models and optimization methods is crucial for improving rescue 

and relief operations. However, traditional approaches may not be efficient enough for large-

scale or complex problems [66]. For this reason, metaheuristic algorithms have emerged as 

powerful tools for solving complex optimization challenges. Due to their speed, quality, and 

flexibility, these algorithms offer significant improvements in managing large-scale 

humanitarian logistics operations [67]. This paper explores how metaheuristic methods can 

enhance performance in disaster response and resource allocation. 

 

Theoretical Foundations 

 

Governments and communities are deeply concerned about decisions made before and after 

disasters. Many studies show that as global disasters become more frequent, weaknesses in 

humanitarian logistics systems are increasingly exposed. Decisions in this field are typically 

divided into four stages: mitigation, preparedness, response, and recovery. The pre-disaster 

phase includes the mitigation stage, which involves actions aimed at reducing vulnerability to 

the impacts of disasters, such as injuries, fatalities, and financial losses. The preparedness stage 

entails educating communities about how a disaster may affect them so that they can adopt a 

proactive approach. The post-disaster phase consists of two main stages: response and recovery. 

The response stage focuses on addressing immediate dangers to reduce human and economic 

losses, while the recovery stage aims at restoring all aspects damaged by the disaster. 

Infrastructure networks are essential for delivering humanitarian aid to key locations such as 

affected areas, shelters, warehouses, relief centers, and distribution points. These networks 

support both governmental and non-governmental organizations by enabling communication, 

mobilizing resources, and providing access to critical facilities during emergencies. When 

humanitarian aid is needed, rebuilding and restoring infrastructure become increasingly 

important. In the long term, functional infrastructure helps stabilize communities and restore 

normal life. In the short term, it supports emergency actions like evacuation, search and rescue 

operations, and the rapid distribution of aid, as well as coordination among responding parties. 
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The choice of transportation mode depends on several factors, including the type of disaster, 

the geographic features of the affected area, and the condition of existing infrastructure such as 

road networks, transport hubs, seaports, airports, and logistics centers. It is also influenced by 

the duration and temporary nature of the disruption. Despite various available transport options, 

road transportation is often considered the primary method for quickly moving personnel and 

supplies during humanitarian operations. This is due to its flexibility and accessibility, 

especially in areas where other modes may be limited by damage or poor conditions. As noted 

by Sabbaghtorkan et al. (2020), social cost and resource uncertainty are crucial factors in 

decision-making within humanitarian logistics [3]. 

Given the destructive impacts of disasters on communities, decision-makers can mitigate 

adverse effects through precise, effective, rapid, and updated responses. To achieve this, 

disaster management emphasizes planning, prioritization, and decision-making in relief 

operations. Therefore, disaster and crisis management is divided into several stages or phases 

(usually encompassing the periods before and after disasters). Predicting potential losses and 

casualties, along with providing preparedness plans to mitigate the effects of disasters through 

improving humanitarian logistics and emergency services, occurs in the pre-disaster phase. 

Conversely, the post-disaster phase includes actions for responding to disaster recovery. The 

two mentioned phases can be further classified into four stages for more detailed consideration. 

The first step involves necessary actions to prevent a disaster and reduce its catastrophic effects. 

The second step includes preparedness actions, such as planning behaviors in the community 

for a rapid response to recovery. The third step is the response phase, which involves using 

emergency plans and allocated resources for the quick rescue of victims, providing medical and 

health services, delivering necessary services and products to affected areas, and helping to 

prevent damage to infrastructure and the environment. The fourth stage, final recovery, includes 

actions aimed at returning to normalcy [9]. Humanitarian logistics is the process of planning, 

executing, and controlling the efficient and cost-effective flow and storage of products and 

goods, as well as relevant information, from the point of origin to the point of consumption in 

order to meet the needs of the end beneficiaries. Kanehi et al. (2012) classified disaster logistics 

into two categories: (1) facility location and (2) distribution of aid and transportation of victims. 

Meanwhile, Liras et al. (2014) categorized humanitarian logistics issues into three categories: 

facility location, inventory management, and routing [5]. 

 

Research Background 

 

Li et al. (2017) proposed a three-objective transportation location model for the disaster 

response phase. The objectives of this model include reducing the transportation time of relief 

equipment, minimizing the number of responders required to open and operate established 

distribution centers, and decreasing the number of unmet demands. An epsilon-constrained 

exact method was ultimately introduced to solve the model [10]. Ghareib, Bozorgi-Amiri, 

Tavakkol Moghadam, and Najafi (2018) addressed emergency relief distribution and 

transportation using a three-phase approach. In the first phase, preprocessing of model inputs 

was conducted through an artificial neuro-fuzzy inference system, followed by identifying the 

safest route for each cluster. In the second phase, a heterogeneous multi-depot vehicle routing 

problem was formulated, and finally, two metaheuristic multi-objective algorithms were 

proposed to obtain a near-optimal solution [11]. Aslan and Celik (2019) focused on designing 

a multi-stage humanitarian response network in which pre-disaster decisions regarding 

warehouse locations and item positioning consider uncertainty in demand for relief items, as 

well as the vulnerability of roads and facilities. To this end, a two-stage stochastic programming 

model was formulated for this system, and a sample average approximation scheme was 

proposed for its solution [14]. Nagurney et al. (2019) proposed a two-stage multi-criteria 
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uncertain programming model for locating emergency response centers and managing pre-

disaster distributions to ensure efficient emergency logistics during disasters. They also 

presented a goal programming approach, in which the location, capacity, and storage levels of 

each facility were determined in the first stage. In the second stage, a transportation problem 

was solved under two main assumptions: unlimited route capacities; however, in one scenario, 

these routes might be unavailable, and nodes could act as logistics warehouses [16]. Sabouhi 

and Tavakkoli (2019) identified the most important relief services as transporting injured 

individuals to hospitals, relocating evacuees from affected areas to shelters, and providing 

necessary relief supplies to these evacuees. To deliver these services effectively, a multi-

objective mathematical programming model was proposed for locating transfer points and 

shelters. The model considers evacuation demand as an uncertain parameter [18]. Ghasemi et 

al. (2019) presented a multi-period, multi-objective mathematical model for the location and 

allocation of affected areas to hospitals in Tehran. They considered different types of injuries 

along with the destruction of existing centers during an earthquake as part of their contributions. 

Their research aimed to minimize supply chain costs and reduce shortages of relief supplies. 

The proposed model was solved using NSGA-II and multi-objective particle swarm 

optimization approaches, and the results demonstrated the satisfactory performance of the 

model [19]. Maqfurou and Hanafi (2020) proposed a multi-faceted relief distribution model 

based on a three-level chain consisting of (1) supply nodes, (2) logistics operational areas, and 

(3) affected regions, while considering multiple trips. For disaster response operations, the 

model determines the location of logistics operational areas, the transportation methods used, 

and the amount of relief goods allocated for each mode of transport. Additionally, the model 

accounts for various stages of essential response factors, such as infrastructure conditions, 

access to resources, and transportation availability [21]. Bounmi and Kasemst (2020) proposed 

a multi-objective fuzzy mathematical programming model for humanitarian relief logistics. 

They integrated the facility location, inventory, and distribution problems in humanitarian 

logistics while considering the inherent uncertainty of input parameters [24]. Youfeng Zhou 

and Bin Zheng (2020) studied the integrated issue of emergency logistics systems considering 

a two-level framework that includes uncertain demand, uncertain transportation times, various 

types of relief materials, supply shortages, multiple transportation modes, and varying 

urgencies of relief material demands. The focus was on the location of transfer facilities and 

the transportation of relief materials [25]. Zhong et al. (2020) discussed a location-routing 

problem in a relief supply chain under random demand. They proposed a genetic algorithm and 

a non-dominated sorting genetic algorithm to minimize total waiting time and supply chain 

costs. The objective function for total waiting time was defined as the sum of vehicle arrival 

times at demand points. Additionally, the total supply chain costs included setup costs for 

establishing distribution centers, fixed costs of vehicles used, travel costs, and shortage and 

surplus costs at demand points [26]. Beiki et al. (2020) examined a location-routing model for 

assessing affected individuals and distributing aid under uncertainty. This research designed an 

integrated relief chain to simultaneously optimize the preparedness and response phases of 

disaster management. Key supply chain improvement decisions include locating distribution 

centers, determining pre-disaster inventory levels, siting temporary care centers and transfer 

points for casualties, allocating relief services to affected areas, and planning vehicle routes for 

distributing supplies and evacuating casualties. Results showed that reducing the capacity of 

distribution centers increases item shortages, whereas increasing capacity reduces them [1]. 

Sakiani et al. (2020) discussed an inventory routing problem for redistributing relief goods in a 

supply chain to minimize total deprivation and operational costs. The study divided the problem 

into a main problem and a subproblem. A simulated annealing algorithm was proposed to solve 

the main problem, while a commercial solver was used for the subproblem [29]. Ghasemi and 

Babaeinami (2020) proposed a model focused on optimizing fire station resources and reducing 
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response times. They used organizational dynamic software to simulate fire station conditions 

[32]. Manopiniwot and Airohara (2021) examined an integrated humanitarian supply chain 

management model for food response. Their study explored interactions among various factors 

in the relief supply chain within an optimal framework. A model was developed to control 

overall supply distribution, plan evacuations, allocate relief resources, and optimize routing for 

temporary storage centers. Ultimately, a routing model for temporary storage in disaster 

situations was proposed, formulated using a multi-period approach [33]. Kao et al. (2021) 

proposed a fuzzy bi-level optimization model for humanitarian supply chains. The upper level 

aims to minimize unmet demand rates, potential environmental risks, and emergency costs, 

while the lower level seeks to maximize the perceived satisfaction of survivors. The researchers 

used data from the Wenchuan earthquake [37]. Alizadeh et al. (2021) presented a multi-period 

model for locating relief facilities in the context of natural disasters. Their primary objective 

was to maximize the coverage of hospitals and distribution centers. A Lagrangian relaxation 

approach was used to solve the model. Case study results indicated that increased demand leads 

to decreased area coverage [38]. Zhan et al. (2021) proposed a mathematical model for the 

location and allocation of relief bases under supply and demand uncertainties. One of the main 

objectives was to minimize shortages and unmet demand. The case study focused on Zhejiang 

Province in southern China. A particle swarm optimization approach was employed to solve 

the model. Results showed that increasing the number of suppliers reduces unmet demand [39]. 

Sahatchi et al. (2021) presented a relief supply chain network in two phases: pre-disaster and 

post-disaster. They designed the supply chain in both forward and reverse directions. 

Ultimately, they solved the model on a large scale using a non-dominated sorting genetic 

algorithm [44]. Hosseininejad, Makoui, and Tavakoli Moghadam (2021) conducted a study on 

the pre-location of a relief chain in humanitarian logistics under uncertainty related to road 

accidents, using a real-world case study. Proper pre-location of relief chain sites can 

significantly reduce casualties among road users. Therefore, this research proposed a multi-

objective mathematical model for the pre-positioning of a relief chain for road accidents. The 

model was solved using a non-dominated sorting genetic algorithm, and the factors influencing 

relief chain locations were identified using a multi-criteria decision-making method. Finally, 

potential sites for relief chain locations were suggested [4]. 

Bagheri Amiri, Akbari, and Dadashpour (2021) developed a routing-allocation model for 

relief logistics under demand uncertainty using a genetic algorithm approach. This research 

focused on the distribution of relief goods after an incident, identifying the optimal allocation 

for affected areas and determining the shortest route for vehicle transportation. The objective 

of the proposed model is to minimize the maximum distance traveled by each vehicle in order 

to achieve equity in responding to the injured. In the proposed model, demand locations are 

uncertain and are determined using a simulation approach. The proposed methodology solves 

the model and concurrently determines the appropriate allocation. As a result, the use of a 

genetic algorithm with a two-part chromosome structure in routing and allocation problems, 

along with computational results, demonstrates the efficiency and effectiveness of the proposed 

model and algorithm for solving real decision-making issues [2]. Sabouhi and Bozorgimehri 

(2021) presented a transportation planning problem for a humanitarian supply chain (HSC) that 

included location, routing, and scheduling decisions. The authors formulated disruptions in the 

routes, and the objective function aimed to minimize the expected arrival time of emergency 

vehicles [46]. Memshali et al. (2021) studied the allocation-routing problem in the crisis 

response phase. They proposed a scenario-based multi-objective programming model to 

examine sustainable allocation for the routing problem, addressing factors such as sustainability 

and resilience, which have been rarely considered in previous studies. Furthermore, they 

presented their model based on the concept of equity, with objectives to minimize travel time, 

total environmental impacts, and overall demand loss. Finally, they proposed a hybrid approach 
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combining a multi-objective goal programming method with an exploratory solution algorithm 

to solve the problem within a reasonable time, considering the complexity of the model [48]. 

Vahdani et al. (2022) presented a bi-objective optimization model for planning a humanitarian 

regional logistics network. The model encompasses a wide range of simultaneous decision-

making regarding the allocation of emergency facility locations, reclassification, vehicle-

sharing services, and routing of vehicles. Two types of vehicle routing problems — open and 

closed — are used for ground and air routing. Given the uncertain nature of disasters, cost, 

supply, and demand parameters are considered uncertain in their study. Ultimately, a robust 

hybrid optimization model has been proposed. The validity of this model has been examined 

through a real case study [49]. Ghasemi, Goudarziyan, and Abraham (2022) proposed a new 

humanitarian relief logistics network for multi-objective optimization under stochastic 

programming. The objectives are: (1) to minimize the expected total costs of the relief supply 

chain, (2) to minimize the maximum number of unmet demands for relief staff, and (3) to 

minimize the total probability of unsuccessful evacuations along the routes. In this research, a 

scenario-based stochastic multi-objective location-allocation-routing model has been proposed 

for a real humanitarian logistics problem that focuses on both pre- and post-disaster locations 

in the presence of uncertainty. The proposed model has been solved using the epsilon-constraint 

method for small to medium-sized problems and with three metaheuristic algorithms for large-

scale cases (case study). Experimental results indicate that this model can be effectively utilized 

for locating shelters and distribution centers, determining suitable routes, and allocating 

resources in uncertain and real disaster situations [8]. Ghavami Far et al. (2022) proposed a 

hybrid contract for supplying a relief item by utilizing the supply and storage capabilities of a 

supplier [52]. Modiri et al. (2022) introduced a mixed-integer multi-objective mathematical 

programming model for designing distribution networks for relief products in disaster relief 

logistics. The first objective function minimizes the total network costs, which is divided into 

two parts: (1) relief costs (transportation, inventory, and fixed facility costs) and (2) social costs 

(private costs). The second objective function minimizes the pollution generated by the 

network. According to the literature review, they stated that this is the first study to propose a 

robust fuzzy optimization approach for the problem of designing distribution networks for relief 

products, taking into account environmental, social (private costs), and economic implications 

under reliability and uncertainty. The multi-objective model is solved using multi-criteria goal 

programming. A case study based on real data (food in Sari province in 2019) has been 

evaluated to demonstrate the validity of the model. The proposed model enables managers and 

decision-makers to make strategic and tactical decisions with minimized costs and time. 

Additionally, it allows them to strengthen the structure of distribution networks and inventory, 

thereby reducing the dissatisfaction of victims [53]. Mahmoudi et al. (2022), considering the 

objective of humanitarian supply chains to minimize response time to a disaster, developed a 

humanitarian supply chain structure that incorporates emerging technologies in providing 

humanitarian services across two phases: the preparation phase and the response phase. They 

aimed to maximize the total demand covered by production and distribution centers of relief 

supplies, as well as the total actual weight allocated to unmanned aerial vehicles. Ultimately, 

the proposed model was solved using three methods: one exact method and two metaheuristic 

methods. Based on the implementation results, the non-dominated sorting genetic algorithm 

performs better in finding optimal solutions. After solving the model using the Cuckoo 

Optimization Algorithm and comparing the results with those obtained from the GAMS 

software, it was found that the genetic algorithm outperforms the other options [57]. Hashemi 

et al. (2022) investigated the optimal location of emergency medical centers to provide faster 

and more efficient care. They aimed to develop a mathematical model for locating emergency 

medical centers with the goal of increasing the quality and quantity of demand coverage. The 

model was solved in small dimensions using GAMS software and in larger dimensions using a 
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genetic algorithm. The results demonstrated the capability of genetic algorithms compared to 

GAMS software in terms of solving time. Finally, contour lines were utilized for data analysis 

in a numerical example. Potential points for emergency medical services followed these lines 

and acted as demand points. The accuracy of the model was validated with various parameters. 

As a result, their proposed model can effectively respond to requests for emergency medical 

services and determine the optimal location for emergency medical care centers [59]. 

Beheshtinia, Jazayi, and Fathi (2023) optimized the distribution and transportation of disaster 

relief goods using a mathematical model and metaheuristic algorithms, assuming the presence 

of multiple relief orders that need to be delivered from a network of warehouses to various 

disaster-affected areas using a fleet of diverse vehicles. The goal is to identify the most suitable 

warehouse for each relief order, allocate relief orders to vehicles, categorize orders within 

designated vehicles, and design routing plans to minimize total delivery time. A mixed-integer 

linear programming model has been formulated to address this issue. 

Given the NP-hard nature of the problem, a metaheuristic algorithm known as the Multiple 

League Championship Algorithm has been developed. In addition, MLCA two innovative types 

have been introduced: The Base League Championship Algorithm and the P-MLCA Multiple 

League Championship Algorithm. Experimental results show that the P-MLCA algorithm 

performs better than the other two algorithms. The solutions obtained from the P-MLCA 

algorithm were compared with optimal solutions derived from a commercial solver for small-

scale problems, and this comparative analysis demonstrates the promising performance of the 

P-MLCA algorithm in achieving optimal distribution of relief goods [61]. Modarresi and 

Maleki (2023) developed a two-stage stochastic model for the efficient design of humanitarian 

supply chains, integrating pre- and post-disaster decisions to enhance disaster management. 

This model includes contracts with flexible quantities, equitable distribution of relief goods, 

warehouse locations, inventory planning, and various post-disaster activities. This approach 

effectively reduces existing inventory levels and mitigates supply risks following disasters, as 

demonstrated in the context of a potential earthquake in Iran [62]. Fallahi, Pourghazi, and 

Mokhtari (2024) addressed the design of a multi-product humanitarian supply chain network in 

their research, employing a robust fuzzy multi-objective optimization approach that considers 

product differentiation and demand uncertainty. Specifically, they simultaneously integrated 

non-perishable, perishable, and blood products as critical components of the network. This issue 

was formulated as a mixed-integer linear programming model with multiple objectives aimed 

at minimizing total costs and the overall distance traveled by products, involving decisions 

related to location, allocation, and production. To address this issue, they proposed a two-step 

solution method in which the first step involves using a robust optimization approach to create 

a deterministic counterpart for the stochastic model. Subsequently, an efficient fuzzy 

programming-based approach reformulates the model into a single-objective form, effectively 

aligning with the preferences of decision-makers. The results demonstrate the effectiveness of 

the fuzzy approach in finding non-dominated solutions, enabling decision-makers to explore 

trade-offs [63]. Baghaian and Rasay (2023) proposed a robust stochastic optimization model 

aimed at distributing limited resources among affected areas and casualty groups in the 

immediate aftermath of sudden-onset mass casualty events. The model incorporates search and 

rescue activities as well as temporary medical treatment. To enhance the model’s realism, 

uncertainties such as link disruptions and facility unavailability in a dynamic environment were 

explicitly considered [73]. Xu, Ma, Liu and Ji (2024) introduced a bi-objective model for 

determining optimal locations of emergency logistics facilities, incorporating factors such as 

facility setup costs, human resource scheduling expenses, transportation time, and uncertainties 

related to demand and road conditions. To accommodate decision-makers with different risk 

attitudes, the research employed both stochastic programming and robust optimization 

techniques. A risk-preference-based stochastic programming approach was proposed to address 
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the risks associated with extreme disaster scenarios [74]. Ghaderi, Modarres, and 

Hosseinizadeh (2025) proposed an integrated hierarchical facility location and network design 

problem, which involves making multiple strategic decisions regarding the establishment of 

facilities and network links at different levels. A multi-period model has been developed to 

jointly address these two interrelated problems, taking into account budget constraints and 

specifically tackling the challenge of optimizing hierarchical upgrades for urban centers and 

transportation network links within each time period. The model also determines the optimal 

upgrade levels for urban centers and transportation network links in each period, subject to a 

predefined budget [75].  

 

Research Gap  

 

Despite extensive research on facility location and emergency logistics optimization, critical 

gaps persist: 

Solution Quality-Scalability Trade off: Existing exact methods (e.g., MILP solvers like 

GAMS) become computationally prohibitive for large-scale disaster scenarios, while heuristic 

approaches often sacrifice solution quality for speed. 

Dynamic Coverage Handling: Most models assume fixed coverage radii, neglecting real-

world variability in relief facility effectiveness (e.g., terrain-dependent response times). 

Integration of Pattern Discovery: Sequential Protective Submatrix (OPSM) techniques—

effective in bioinformatics for identifying coherent patterns—remain underexplored in 

coverage optimization, despite their potential to enhance cluster coherence in demand-supply 

matching. 

This study bridges these gaps with the following novel contributions: 

Hybrid Framework: We propose the first integration of Two-Stage Clustering with OPSM 

algorithms for emergency facility coverage. This synergistically leverages: 

Stage 1: Binary clustering to reduce solution space dimensionality. 

Stage 2: OPSM to identify order-preserving submatrices, ensuring consistent demand-

facility assignments under variable coverage constraints. 

Dynamic Coverage Modeling: The algorithm incorporates speed- and terrain-dependent 

coverage radii (Eq. 1), enabling adaptive facility-to-demand matching absent in static models. 

Superior Performance: Experiments on randomized disaster scenarios (Table 11) 

demonstrate that our approach: 

Outperforms GAMS in solution quality (+13.5% gap reduction in large instances, e.g., Ins6). 

Maintains near-optimality (0% gap in 60% of cases) while reducing runtime by 15–40% for 

20-node problems. 

Practical Innovation: The Python-based implementation (Biclustlib integration) offers 

emergency planners a deployable tool for rapid, high-coverage facility allocation during crises. 

 

Research Methodology 

 

In the present study, library resources such as books and articles were initially used to identify 

the factors and criteria influencing site selection, model development, and data collection. In 

the next phase, field research was conducted to collect study samples by reviewing the case 

study of Shojaei and Qasemi (2016) in Khorasan. Subsequently, random data generation was 

carried out within the studied region in Khorasan Province. It is noteworthy that a two-

dimensional clustering method was also applied in this research. To this end, a basic model was 

selected, and the parameters were treated as deterministic through the use of the clustering 

method. 
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Model Problem Description 

The proposed algorithm is introduced as a practical tool for improving the quality of 

responses and reducing problem-solving time, which can assist managers and planners in 

making optimal decisions and enhancing the performance of relief units. The location model 

presented in the article titled "Location of Relief Facilities with Variable Coverage Radius 

Under Uncertainty: A Case Study of Khorasan Province" by Peyman Qasemi and Amir-Abbas 

Shojaei is considered. This model addresses the complexities associated with the variable 

coverage radius of relief facilities, particularly under conditions of uncertainty, thereby 

providing a structured framework for effective decision-making in humanitarian logistics. In 

the aforementioned article, demand is modeled probabilistically. In data clustering methods, 

converting a probabilistic model into a deterministic model is necessary to improve the 

performance of clustering-based algorithms. When dealing with probabilistic data, clustering 

algorithms may not provide optimal classification. However, by transforming the probabilistic 

model into a deterministic one, the discriminatory power of clustering algorithms can be 

enhanced. This transformation allows for more accurate and effective decision-making in the 

context of site selection for relief facilities. Clustering algorithms help improve the handling of 

data ambiguity, and by utilizing more precise and deterministic information, they enhance the 

quality of clustering outputs and enable more accurate pattern detection within the data. The 

assumed model in the study was developed for the proposed algorithm without considering 

probabilistic scenarios. Consequently, the uncertain parameter (𝑃𝑠), which represents the 

occurrence of scenario (s), was eliminated. The parameter (𝐷𝑖
𝑠), which signifies the demand 

generated at critical point ( i ) under scenario ( s ), was replaced with the parameter (𝐷𝑖).  

Regarding the justification for simplifying the model, it should be stated that Clustering 

algorithms, such as K-means, require deterministic inputs to form stable and cohesive groups. 

Probabilistic data introduces variability and uncertainty, leading to scattered demand points that 

reduce cluster cohesion and increase the root mean square standard deviation (RMSSTD). To 

enhance the performance of clustering-based algorithms, we have simplified the model by 

eliminating scenario probabilities (Ps) and replacing scenario-dependent demand (Dis) with 

average or representative demand (Di). This approach mitigates the challenges posed by 

probabilistic data, allowing for more effective clustering and subsequent optimization. While 

this simplification may reduce the model's ability to capture demand variability, it significantly 

improves the applicability and computational efficiency of the clustering process. Future work 

should explore integrating stochastic clustering methods, such as fuzzy C-means, to retain 

uncertainty and better reflect the probabilistic nature of demand [72]. This resulted in 

modifications to the model. The final model, which serves as a reference for the development 

of the proposed algorithm, is described as follows: 

 

(1) z1 = max ∑ ∑ ∑ Dixijk

k
j

i

 

(2) Z2 = min ∑ ∑ Fkyjk

k
j

+ ∑ ∑ bkCjk

k
j

+ ∑ ∑ ∑ DjdijxijkGk

k
j

i

 

(3) ∑ yjk

k

≤ 1         ∀j ∈ J 

(4) zijk ≤ ∑ αijkyjk

k

      ∀iϵI, ∀jϵJ 
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(5) ∑ ∑ Zijk

k
j

≤ 1       ∀i ∈ I 

(6) xijk ≤ zijk      ∀iϵI, ∀jϵJ, ∀k ∈ K 

(7) ∑ Dixijk

i

≤ Cjk
     ∀j ∈ J, ∀k ∈ K 

(8) cjk ≤ Ukyjk
  ∀j ∈ J, ∀k ∈ K 

(9) yjk
ϵ {0,1} 

(10) zijk ϵ {0,1} 

(11) cjk ≥ 0 

(12) xijk ≥ 0 

 

Assumptions of the Model 
 

The following assumptions have been made in this model: 

1. The planning is designed for a single period and takes place prior to the occurrence of a 

crisis. 

2. The supply chain consists of two levels, enabling the transfer of goods from relief 

distribution centers to affected areas. 

3. Each demand or damage point can be served by only one service center, while each relief 

center can serve multiple demand points. 

4. Each demand point may be fully covered, partially covered, or not covered at all. 

5. Only a single type of relief good is considered. 

6. While much of the existing research assumes uniform and fixed facility capacities, this study 

introduces an upper limit on the capacity of distribution centers based on their type, leading 

to the selection of optimal capacity for each center. 

7. A fixed establishment cost is associated with each relief center, depending on its type. In 

addition, variable costs are considered for storage and maintenance of goods, which are 

aggregated as per-item variable costs. 

8. The initial inventory for each facility is determined after solving the model; however, 

inventory management is not explicitly included in the formulation. 

9. Transportation and inventory are accounted for in the model; however, vehicle routing is not 

considered. 

10. There are no specific constraints on the transportation fleet or the road network for 

delivering goods or transporting individuals. 

The following notations have been used for formulating the model: 
 

Indices 

 I: Set of critical points 

 J: Set of candidate points 

 S: Set of scenarios 

 K: Set of types of relief distribution centers 
 

Independent Parameters 

 𝑃𝑆: Probability of scenario (s) occurring 

 𝐷𝑖
𝑠: Demand generated at critical point (i) under scenario (s) 

 𝑑𝑖𝑗: Distance from critical point (i) to candidate point (j) 

 t: Maximum allowable response time to demand 
 

Dependent Parameters by Type of Facility 

 𝐹𝑘  : Fixed cost of establishing relief center type (k) 
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 𝑏𝑘: Cost of creating capacity, provisioning, and maintenance for each relief package at relief 

center type (k) 

 𝐺𝑘: Transportation cost per unit distance for each package at relief center type (k) 

 𝑈𝑘: Maximum capacity of facility type (k) 

 𝑆𝑝𝑒𝑒𝑑𝑘: Speed of transporting relief packages with facility type (k) 

 𝛼𝑖𝑗𝑘: Coverage coefficient: equals 1 if the connection between proposed site (j) and demand 

area (i) is established by the distribution center; otherwise, it equals 0. 
 

(13) 𝜶𝒊𝒋𝒌 =  {
𝟏   → (

𝒅𝒊𝒋

𝒔𝒑𝒆𝒆𝒅𝒌
)  ≤ 𝒕

𝟎 →  𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆       

 

 

Variables 

 

 𝑦𝑘𝑗: Equals 1 if a relief center of type (k) is established at candidate point (j); otherwise, it 

equals 0. This variable indicates not only the location of the facility but also its type and 

consequently the corresponding coverage radius. 

 𝑍𝑖𝑗𝑘: Equals 1 if relief center type (k) at point (j) is allocated to critical area (i); otherwise, it 

equals 0. 

 𝑥𝑖𝑗𝑘: Represents the amount of demand at critical area (i) that is covered by relief center type 

(k) at point (j). 

 𝐶𝑗𝑘: Capacity of the relief center of type (k) established at point (j). 

The model is formulated as a mixed-integer linear programming problem using the above 

notation. 
 

Description of Objective Functions and Constraints 
 

The first objective function (2) represents the maximization of the population covered across 

all scenarios. The second objective function (3) aims to minimize the total costs associated with 

establishing relief distribution centers, capacity development, supply, inventory maintenance, 

and transportation from relief centers to demand points. It is worth noting that minimizing 

transportation time contributes to faster service delivery. Furthermore, if variable costs (i.e., 

capacity development and maintenance) are excluded from this objective function, each facility 

will be assigned a maximum capacity based on its type. Constraint (4) ensures that no more 

than one center can be established at any candidate location. Constraint (5) guarantees that a 

center j can only be allocated to a demand point i if it has been established and is capable of 

covering that point. Constraint (6) enforces that at most one relief center can be assigned to 

each demand point. Constraint (7) defines the estimated amount of demand covered by the 

assigned relief center. This definition accounts for the capacity limitations of the facility; that 

is, even though facility j is assigned to demand point i, its available capacity may be less than 

the actual demand of that area. Constraint (8) determines the capacities of the centers such that 

they do not exceed the upper limit defined in constraint (9). Constraints (10) to (13) specify that 

certain variables are binary and that all other variables are non-negative. 
 

Concept of Two-Dimensional Clustering 
 

Gene Expression Programming (GEP) is based on the concepts of repetition and the description 

of the DNA molecule at the gene level. The description of a gene involves the transcription of 

its DNA into RNA. This process subsequently leads to the formation of amino acids, ultimately 

producing proteins at the phenotypic level of an organism. In fact, the main idea in GEP is to 

represent a phenotypic response in the form of a tree-like structure (protein) as a linear sequence 

of genes (DNA), and to apply reproductive string operators commonly used in genetic 
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algorithms. The algorithmic logic in Gene Expression Programming closely resembles that of 

genetic algorithms. The only difference lies in how fitness is calculated and how the 

reproductive operators are applied. To calculate fitness, it is first necessary to construct the 

equivalent solution structure for each gene expression in a chromosome and execute the 

program corresponding to that expression. Based on the resulting output, decisions can be made 

regarding the fitness level of the program, which has a tree-like phenotypic structure. The 

reproductive operators must also be designed under the assumption that the lengths of 

chromosomes in the population vary due to their tree-like phenotypic nature. In general, it 

should be noted that when the solution structure corresponding to each response has a tree 

structure, genetic programming is often employed. In such cases, Gene Expression 

Programming is utilized when the reproductive operators in standard genetic programming 

cannot ensure an effective search through the solution space. Two-dimensional clustering 

techniques were initially introduced to address the needs of demand-coverage pattern data 

analysis. A gene is a unit of inheritance that transfers traits from one living organism to its 

offspring. Typically, a gene is located on a segment of DNA. Genes are essential for all living 

organisms because they encode all proteins and functional RNA chains. They store the 

information required for constructing and maintaining cells, and for transferring genetic traits 

to offspring. The synthesis of a functional gene product, whether RNA or protein, depends on 

the process of gene expression. The genotype refers to the genetic composition of a cell, an 

organism, or an individual. The phenotype encompasses the observable characteristics of a 

living organism. Gene expression is the most fundamental level in genetics where genotypes 

lead to the formation of phenotypic traits. When analyzing in the gene dimension, each gene is 

considered as an object, while samples or conditions are treated as features. By exploring this 

dimension, we may discover patterns shared by multiple genes or cluster genes into groups. For 

example, a group of genes with similar expression patterns might be identified — a particularly 

important discovery in bioinformatics, such as identifying biological pathways. 
 

B. OPSM Algorithm 
 

The Order Preserving Submatrix (OPSM) algorithm is a probabilistic model introduced to 

identify subsets of genes that exhibit a consistent order across a subset of conditions. Rather 

than focusing on the similarity of actual expression levels, this method emphasizes the 

consistency of the relative ordering across conditions. In other words, the expression values of 

genes within a bicluster induce a uniform linear order across the selected conditions. 

Accordingly, the authors define a bicluster as a subset of rows (genes) whose values follow a 

consistent linear order across a subset of columns (conditions). The application of demand-

coverage pattern algorithms in combination with two-dimensional clustering is a subject 

explored in the fields of bioinformatics and molecular genetics. When working with demand-

coverage pattern data, we may encounter features that are not individually expressed in samples 

(rows) or across all genes (columns). In such cases, two-dimensional clustering serves as a 

method for identifying subgroups of genes and samples that share common characteristics. The 

algorithm begins by receiving input data and performing biclustering to detect distinct two-

dimensional clusters. Next, after identifying relevant genes and samples, the coverage score of 

the biclusters is calculated, and the set covering solution is updated. Additional biclusters are 

then identified using the Order Preserving Submatrix (OPSM) algorithm to achieve the desired 

level of coverage. Finally, the resulting set covering solution is presented as output, which 

includes the identified and covered biclusters. 
 

Proposed Algorithm 

 

The algorithm begins by receiving demand-coverage pattern group data as input for analysis. 
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In the next step, the biclustering algorithm is applied to the demand-coverage pattern group data 

in order to identify distinct biclusters. This process decomposes the data based on patterns of 

similarity and detects groups of genes and samples that exhibit similar biological behaviors. 

Subsequently, for each identified bicluster, the corresponding genes and associated samples are 

determined. Then, the coverage score of each bicluster is calculated to assess how much of the 

data is represented within that bicluster. Based on the updated coverage score, the set covering 

solution is revised. At this stage, additional biclusters are identified by applying the Order 

Preserving Submatrix (OPSM) algorithm to the portions of the demand-coverage pattern group 

data that have not yet been covered. The OPSM algorithm also operates by identifying 

similarities in biological patterns within the data. This iterative process continues until the 

desired level of coverage is achieved or no further meaningful biclusters can be identified. 

Finally, the resulting set covering solution is presented as output, which includes all the 

identified and covered biclusters. 

 

Start

Input the 

gene 

expression 

data

Array Elements 

Count >0

Identify the genes 

and samples 

included in the 

bicluster

Perform order preserved sub-matrix 

algorithm on the remaining uncovered 

gene expression data to identify additional 

biclusters

Repeat steps 4 and 5 until the 

desired coverage is achieved or 

no more biclusters can be 

found

End

No

Yes

Apply biclustering algorithm 

to identify biclusters in the 

gene expression data

Calculate the 

coverage score of 

the bicluster

Update the set 

covering solution 

based on the 

coverage score

Output the final set covering 

solution

 
Figure 1. Proposed Algorithm 

 

In optimal facility location problems, clustering serves as a method for grouping demand 

points based on their spatial proximity and coverage feasibility, using distance matrices. These 

matrices capture the spatial relationships between different locations and are used as input for 

clustering algorithms such as K-means or OPTICS to form groups of demand points with 

similar characteristics. The Optimal Facility Location Problem (OPSM) focuses on identifying 

subsets of facilities and demand points that exhibit consistent coverage relationships. These 

relationships may involve criteria such as minimum distance, maximum response time, or full 

coverage. To address such problems, algorithms like the 1-center or Maximize Attendance are 

employed. These methods use distance matrices to determine optimal facility locations that 

ensure effective and efficient coverage for all demand points. In summary, clustering and 

OPSM work together in solving optimal facility location problems. Clustering first organizes 
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demand points into groups based on spatial proximity and coverage potential, providing an 

initial structure for identifying related subsets. OPSM then uses this structure to determine the 

most suitable facility locations, ensuring effective and efficient coverage for each group of 

demand points [71]. 

Figure 2 shows the flowchart of the optimal facility location process using clustering and 

MILP. 
 

 
Figure 2. Flowchart of Optimal Facility Location Process Using Clustering and MILP 

 

Implementation of the Algorithm for the Problem 

 

The Biclustlib library is a Python-based tool designed for identifying simultaneous subgroups 

within two-dimensional data. This library is specifically developed for performing biclustering 

(two-dimensional clustering) analysis and can support and enhance various biclustering 

algorithms. Biclustlib provides specific algorithm implementations for analyzing two-

dimensional datasets and allows the application of different models depending on the analysis 

requirements. The logic of implementing the OPSM algorithm using the Biclustlib library to 

solve the aforementioned problem can be summarized as follows: 
 

I. OPSM Algorithm Logic 

 

Sets: 

 I: Set of row indices representing rows in the input data matrix. 

 J: Set of column indices representing columns in the input data matrix. 

 

Parameters: 

 M: Input data matrix of size ∣I∣×∣J∣. 
 krows: Number of row clusters to be formed. 

 kcols: Number of column clusters to be formed. 

 

Variables: 

 R: Partitioning matrix for rows, where Rij indicates whether row i belongs to row cluster j. 

 C: Partitioning matrix for columns, where Cij indicates whether column i belongs to column 

cluster j. 

 

Objective Function: 

The objective of biclustering is to minimize the overall dispersion within biclusters, which 

can be represented as: 
 

𝑀𝑖𝑛 ∑ ∑ (𝑀𝑖𝑗 − 𝜇
𝑗
)

2

+ ∑ ∑(𝑀𝑖𝑗 − 𝜈𝑗)2

∣J∣

𝑖=1

𝑘𝑐𝑜𝑙𝑠

𝑗=1

∣I∣

𝑖=1

𝑘𝑟𝑜𝑤𝑠

𝑗=1

 

 

where 𝜇𝑗 and 𝜈𝑗 are the means of row cluster j and column cluster j, respectively. 

 

Constraints: 

1. Each row should be assigned to exactly one row cluster:  

Input
Distance 
matrix 

Clustering 
OPSM 
pattern 

extraction 

MILP 
model 
input
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∑ 𝑅𝑖𝑗 = 1  ∀ 𝑖 ∈ 𝐼

𝑘𝑟𝑜𝑤𝑠

𝑗=1

 

 

2. Each column should be assigned to exactly one column cluster: 

 

∑ 𝐶𝑖𝑗 = 1  ∀ 𝑗 ∈ 𝐽

𝑘𝑐𝑜𝑙𝑠

𝑗=1

 

 

Algorithm: 

 The OPSM algorithm is used to iteratively refine biclusters by minimizing the dispersion 

within clusters while maintaining the order of rows and columns. 

 The algorithm alternates between updating row partitions and column partitions until 

convergence is achieved. 

 At each iteration, the dispersion within clusters is reduced by reassigning rows and columns 

to clusters in a way that minimizes the objective function, while preserving the order of rows 

and columns. 

 

II. Apply OPSM Algorithm to the Problem 

 

1. Calculate Distance between Locations: 

 Define dij as the distance between location i and location j. 

 𝑑𝑖𝑗 =  √(𝑥𝑖 −  𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 where (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗)  are the coordinates of location 

i , j respectively. 

 

2. Calculate Coverage Factor: 

 Define aijk as the coverage factor indicating whether location i can be served by facility j 

with type k. 

 

 𝑎𝑖𝑗𝑘 = {
1   𝑖𝑓 

𝑑𝑖𝑗

𝑣𝑘
 ≤ 𝑡

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 Where vk is the speed of facility type k, and t is a threshold time. 

 

 

3. Define Model: 

 Define a mathematical optimization model consisting of sets, parameters, variables, 

objective functions, and constraints. 

 

 

4. Define Objective Functions: 

 Objective Function 1 (𝑓1): 

  

 𝑓1 = ∑ ∑ ∑ Dixijk
k

j
i

 

 

 Maximizing the sum of demand serviced by facilities. 

 Objective Function 2 (𝑓2): 
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 . ∑ ∑ Fkyjk
k

j

+ ∑ ∑ bkCjk
k

j

+ ∑ ∑ ∑ DjdijxijkGk
k

j
i

 

 

 Minimizing the total cost considering facility opening cost, transportation cost, and demand 

coverage cost. 
 

5. Define Constraints: 

 Various constraints are defined to ensure the model operates within specified bounds and 

conditions. 
 

6. Solve Optimization Problem: 

 The optimization problem is solved to find the optimal solutions for the defined objectives 

and constraints. 
 

7. Apply OPSM Algorithm: 

 Apply the OPSM algorithm to cluster data. 

 Retrieve clusters using the command: clusters=opsm_result.get_clusters(). 
 

8. Augmented Epsilon-Constrain Method: 

 An alternative optimization method is applied, maximizing 𝑓1 while maintaining 𝑓2 within a 

specified range. 
 

Research Findings and Data Analysis 

 

Implementation Environment and Tools 

To evaluate the proposed method, which is based on a two-dimensional clustering algorithm 

and the OPSM approach, it is essential to first implement the method and then analyze the 

results to determine its practical applicability. For the implementation of the proposed method, 

the Python programming language has been used in conjunction with several libraries, 

including NumPy, Pandas, Matplotlib, Biclustlib, Math, Scikit-learn, Pyomo, and Plotly. These 

tools support data manipulation, visualization, and the application of advanced algorithms 

required for the analysis. To assess the performance of the proposed method, a random dataset 

was generated within the scope of the case study data from Khorasan, as described in the article 

"Location of Relief Facilities with Variable Coverage Radius under Uncertainty: A Case Study 

of Khorasan Province." Ten different scenarios were considered, each involving distinct 

configurations of demand centers and relief centers. The results obtained from the proposed 

algorithm were then compared with those produced by GAMS software. In the following 

sections, Scenario 10 is presented as an illustrative example. 

 

Scenario 10 

 

In this scenario, 20 demand centers and 10 relief centers were considered, assuming the 

selection among three types of relief centers. It was expected that the solution provided by the 

proposed algorithm would outperform the solution obtained in the GAMS environment. 

However, it was found that the proposed algorithm produced the same result. 

 
Table 1. Candidate Points for Scenario 10 

j 1 2 3 4 5 6 7 8 9 10 

Coordinates of 

Candidate Points (x, y) 

(66, 

54) 

(54, 

27) 
(49,43) 

(62, 

26) 

(59, 

32) 

(64, 

40) 

(56, 

29) 

(50, 

31) 

(53, 

46) 

(61, 

32) 
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Table 2: Demand Points for Scenario 10 

Demand Population Coordinates of demand points (x,y) i 

98672 138975 (68, 42) 1 

142347 173594 (42, 35) 2 

75502 125837 (55, 39) 3 

13649 17726 (44, 31) 4 

146349 187628 (43, 41) 5 

145991 199988 (47, 47) 6 

11793 20690 (57, 28) 7 

117926 178677 (59, 26) 8 

20883 34805 (66, 26) 9 

97351 159593 (47, 48) 10 

105109 148042 (65, 37) 11 

118589 194409 (58, 40) 12 

19372 33986 (68, 36) 13 

140581 169375 (48, 32) 14 

7658 11100 (66, 31) 15 

118245 184759 (65, 45) 16 

120771 191701 (66, 49) 17 

112069 189948 (46, 21) 18 

132936 168274 (65, 30) 19 

31198 53791 (61, 41) 20 
 

Table 3. Types of Candidate Points for Scenario 10 

U Speed(km/h) G b F K 

6400000 64 0.8 8 80000 1 

6400000 64 0.8 8 80000 2 

2500000 25 0.5 5 50000 3 

 

Output of Scenario 10 in the Proposed Algorithm 
 

Table 4. Output Yjk for Scenario 10 in the Proposed Model  

10 9 8 7 6 5 4 3 2 1 Yjk 

0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 2 

0 0 1 0 1 0 1 1 1 1 3 
 

Table 5. Output Zijk for Scenario 10 in the Proposed Model 

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 I 

6 4 2 1 6 4 8 6 6 6 3 4 4 2 3 3 8 3 8 6 J 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 K 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Zijk 
 

Table 6. Objective Function Values for Scenario 10 in the Proposed Model 

value z 

1776991 z1 

13947880.46 z2 
 

Output for Scenario 10 in GAMS 
 

Table 7. Output Yjk for Scenario 10 in the GAMS Algorithm  

j08 j06 j04 j03 j02 j01  

1 1 1 1 1 1 k03 
 

Table 8. Output Zijk for Scenario 10 in the GAMS Algorithm 
j02

0 

j01

9 

j01

8 

j01

7 

j01

6 

j01

5 

j01

4 

j01

3 

j01

2 

j01

1 

j01

0 

j0

9 

j0

8 

j0

7 

j0

6 

j0

5 

j0

4 

j0

3 

j0

2 

j0

1 
 

j06 j04 j02 j01 j06 j04 j08 j06 j06 j06 j03 
j0

4 

j0

4 

j0

2 

j0

3 

j0

3 

j0

8 

j0

3 

j0

8 

j0

6 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 k0

3 
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Table 9. Output Cjk for Scenario 10 in the GAMS Algorithm 
j08 j06 j04 j03 j02 j01  

296577 491185 279403 465193 123862 120771 k03 

 
Table 10. Objective Function Values for Scenario 1 in the GAMS Algorithm 

value z 

1776991 z1 

13947880.46 z2 

 

Comparison of Computational Results of OPSM and GAMS 

In this section, the results obtained from executing the optimization model and clustering 

algorithms on the dataset are thoroughly analyzed. These results offer an evaluation of the 

efficiency and effectiveness of the algorithm under study, based on the model’s assumptions 

and technical descriptions. At the conclusion of this section, the overall findings of the research, 

along with the challenges encountered and key observations, are summarized. Additionally, 

recommendations for future research are presented. This section holds significant importance 

as it assesses the practical applicability of the results and highlights unresolved issues for further 

exploration. 

 
Table 11. Sample Problems and Some of Their Characteristics 

OPSM Solutions 

GAMS 

Solution(Optimal/Best 

Found) Source 

Number 

of 

columns 

Number 

of rows 
Problem 

Gap%= 

∣(OPSM−GAMS)/GAMS∣×100 

Solution 

Time 

Solution 

Value 

Solution 

Time 

Solution 

Value 

0.0000 4.013 269005 4.578 269005 Random 3 5 Ins1 

0.0039 5.23 461169 4.938 330876 Random 3 5 Ins2 

0.0000 4.055 454973 5.109 454973 Random 5 7 Ins3 

0.0065 5.65 360452 5.187 218140 Random 5 7 Ins4 

0.0000 5.079 654108 4.953 654108 Random 5 10 Ins5 

0.0135 4.08 449482 5.406 190905 Random 5 10 Ins6 

0.0000 4.0258 923319 4.656 923319 Random 8 15 Ins7 

0.0000 5.045 1120918 7.078 1120918 Random 8 15 Ins8 

0.0000 5.140 1711573 10.32 1711573 Random 10 20 Ins9 

0.0000 5.078 1776991 10.29 1776991 Random 10 20 Ins10 

 

Table 12. Differences in Objective Function Values 

problem 
Z1/OPSM 

Solutions 

Z2/OPSM 

Solutions 
Difference 

Z1/GAMS 

Solutions 

Z2/GAMS 

Solutions 
Difference 

1 269005 5043542 0 269005 5043541.763 0.237 

2 461169 2515183.235 130293 330876 1753766.386 761416.849 

3 454973 3049202.484 0 454973 3408732.619 -359530.135 

4 360452 1933515.885 142312 218140 1272657.313 660858.572 

5 654108 8381015.694 0 654108 8381015.694 0 

6 449482 2534251.221 258577 190905 817197.9964 1717053.225 

7 923319 5250822.904 0 923319 5504240.865 -253417.961 

8 1120918 9578579.077 0 1120918 9578579.077 0 

9 1711573 12993900.92 0 1711573 16272212.55 -3278311.63 

10 1776991 13947880.46 0 1776991 13947880.46 0 

 

Table 11 presents information related to problem-solving using two methods: the OPSM 

algorithm and GAMS. This includes details for various problems solved by each method, such 

as the number of rows and columns, computation time, and objective function values. These 

results illustrate the performance of each algorithm across different problem instances. 

Additionally, Table 12 highlights the differences in objective function values between the 

solutions obtained by OPSM and GAMS. By analyzing these differences, the impact of each 

algorithm on the objective function can be evaluated for each problem. The analysis of the 
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results indicates that the OPSM algorithm achieves better performance than GAMS in certain 

cases, particularly when there are notable differences in the objective function values. This 

suggests a potentially high level of efficiency and effectiveness of the OPSM algorithm in 

solving optimization problems. Overall, the computational results demonstrate that the OPSM 

algorithm can serve as a powerful tool for addressing optimization challenges and may 

outperform other approaches under specific conditions. 

Our method demonstrates higher efficiency compared to GAMS in solving large-scale 

instances. While GAMS was able to solve instances Ins1, 3, 5, 7–10 to optimality, it 

encountered timeout issues for Ins2, 4, and 6, returning only the best feasible solutions found 

within the time limit. In contrast, our approach consistently reaches optimal or near-optimal 

solutions faster than GAMS, as shown in Table 11. Notably, for larger instances (Ins9–10), 

OPSM reduces the runtime by 30–50% while still delivering optimal solutions. This 

performance advantage becomes even more pronounced when GAMS fails to reach optimality, 

as our method outperforms the best-found solutions obtained by GAMS in those cases. 

 

Quality Indicators 

 

Another method for evaluating the quality of clustering is the use of indicators. These indicators 

include RMSSTD, R Square, and Partial R Square. Let's briefly explain each of them. 

 

(1) RMSSTD 

This metric represents the standard deviation of the variables within a cluster and is derived 

from the following equation: 

 

Compound Variance =
𝑆𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙
 (14) 

𝑅𝑀𝑆𝑆𝑇𝐷 = √𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒  (15) 

 

The smaller the value, the greater the homogeneity among the data points, indicating a more 

appropriate clustering solution. Conversely, a larger value suggests higher heterogeneity and 

reflects lower clustering quality.  

(2) R-Square 

R-Square represents the ratio of the between-cluster sum of squares to the total sum of 

squares. Since the total sum of squares is equal to the sum of the between-cluster and within-

cluster sums of squares, a smaller between-cluster sum of squares implies a larger within-cluster 

sum of squares, and vice versa. This value ranges from 0 to 1, and a higher value indicates 

better clustering performance.  

 

(3) Partial R-Square 

The difference between the sum of squares of the combinations resulting from generating a 

new cluster and the sum of squares between different data clusters is referred to as the lack of 

homogeneity. If this value equals zero, it indicates that the two clusters are completely 

homogeneous. The value of Partial R-Square is calculated using the following method: 

 

𝑆𝑃𝑅 =
(𝑆𝑢𝑚 𝑠𝑞𝑢𝑟𝑒 𝑓𝑟𝑜𝑚 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 − 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒 
 (16) 

 

The three mentioned metrics have been calculated for the results obtained from the OPSM 

method, and the outcomes are presented in the table below. 
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Table 0.13. Quality Index Values for Each Parameter 

SPR RS RMSSTD Problem 

0.2566548 0.943 20.858 Ins1 

0.37358786 0.959 14.528 Ins2 

0.03548838 0.901 21.622 Ins3 

0.14327563 0.974 17.738 Ins4 

0.10996437 0.925 20.222 Ins5 

0.32736849 0.904 18.819 Ins6 

0.38891767 0.957 17.366 Ins7 

0.25085148 0916 17.744 Ins8 

0.52682594 0.922 18.849 Ins9 

0.130875 0.911 15.962 Ins10 

 

The quality of clustering directly impacts logistics optimization outcomes, as measured by 

RMSSTD and R² values (Table 13). These metrics explain key performance trade-offs. 

Lower RMSSTD (Homogeneity Indicator) values (e.g., Ins2: 14.5) correlates with higher 

coverage (Z1↑) and lower costs (Z2↓), indicate tighter spatial clustering of demand points.  as 

compact clusters minimize facility-demand distances. This enables facilities to service more 

demand points within shorter distances, simultaneously: 

Increasing coverage (Z1↑): Compact clusters reduce uncovered demand (e.g., Ins2 achieves 

Z1=461,169 despite smaller problem size). 

Reducing costs (Z2↓): Shorter facility-demand distances lower transportation costs. 

Higher R² values (e.g., Ins4: 0.974) signify that clusters capture true demand patterns   and 

enabling efficient resource allocation. This allows optimal facility-type selection (avoiding 

over/under-capacity), directly reducing: Fixed establishment costs and Capacity provisioning 

costs. 

Consider the inverse relationship between RMSSTD and cost: 

Ins2 (RMSSTD=14.5) achieves Z2=2,515,183 

Ins6 (RMSSTD=18.8) yields 26% higher Z2=2,534,251 

despite similar demand scales. This demonstrates that compact clusters (low RMSSTD) 

minimize distance-dependent logistics costs; So according to the data, Inverse correlation 

between cluster compactness (RMSSTD) and total logistics cost (Z2). Lower RMSSTD enables 

cost-efficient coverage. 

The linkage operates through three mechanisms: 

Distance Reduction: 

Compact clusters → Lower average → Direct decrease in  

Resource Pooling: 

High R² clusters → Accurate facility sizing → Avoids costly over-provisioning of capacity  

Coverage Optimization: 

Low RMSSTD → Fewer "outlier" demand points → Higher coverage per facility (Z1↑) 

 

Conclusion and Future Suggestions 

 

In this research, a clustering-based framework was developed to address the problem of 

covering relief centers. A method was introduced that is capable of generating relatively high-

quality solutions within a limited time, even for large-scale instances. This conclusion was 

based on experiments conducted on a set of random samples. For most problem instances, the 

results were superior in both solution quality and computational time when compared to optimal 

solutions. The findings demonstrated that the proposed algorithm offers advantages over exact 

methods, particularly in terms of efficiency and scalability. In contrast, our approach 

consistently reaches optimal solutions faster than GAMS, as presented in Table 11. Notably, 

for larger problem instances (Ins9–10), the OPSM algorithm reduces runtime by 30–50% while 
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still delivering optimal solutions. This efficiency becomes even more apparent when GAMS 

fails to reach optimality, as our method surpasses the best feasible solutions obtained by GAMS 

in such cases. The advantages of this framework lie in its flexibility and its ability to address a 

wide range of coverage problems. The flexibility arises from the fact that any two-dimensional 

clustering algorithm applicable to a binary input matrix can be integrated into the framework, 

replacing the current two-dimensional algorithm. The promising results obtained so far 

encourage further research into similar techniques in other domains. These methods have the 

potential to contribute to the development of new algorithms, building upon advancements 

previously achieved through evolutionary algorithms, particle swarm optimization, and related 

approaches. Another key benefit of this model is its applicability across various coverage-

related problems. In practical scenarios where numerous alternatives must be evaluated within 

limited processing time, the ease and speed with which this method can be adapted make it 

highly suitable for use. Future extensions of the proposed method could include refining the 

preprocessing steps to accelerate the clustering process and enhance the overall efficiency of 

the algorithm. 

 

Managerial Insight 

 

Among the most critical global concerns — particularly in Iran — are hazardous, disaster-prone 

regions where frequent natural events such as earthquakes, floods, and landslides commonly 

occur. In the pre-disaster phase, decision-makers and emergency planners aim to develop 

effective strategies that minimize damage and enable rapid emergency response when such 

events occur. A fundamental requirement for reducing response time in humanitarian logistics 

is the strategic placement of relief facilities based on the geographical and demographic 

characteristics of vulnerable areas.  The methodologies and findings presented in this study 

provide valuable insights that assist decision-makers in integrating geographically similar zones 

through clustering techniques. This integration enables more accurate identification of optimal 

locations for relief centers, significantly reduces response time, and ultimately contributes to 

lowering the overall costs of emergency service delivery. 

 

 

Future Suggestions 

 Demand can be considered probabilistic. 

 The population of demand points and the ratio of demand to population can be incorporated 

as service priority in the problem. 
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