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Abstract

A major part of crisis management is logistics. Setting up an effective logistics system | Keywords:

during emergencies and reducing damage is essential. This study first introduces a | Location Allocation,
mathematical model for emergency logistics. Then, a hybrid metaheuristic algorithm is | Coverage Set, Relief
proposed to optimize how demand in affected areas is met based on this model. The focus | Facility Location,

is on emergency logistics with the goal of reducing costs and improving coverage of | Emergency

people in need. It also presents a model for locating distribution and relief centers using a | Logistics, Two-
two-stage clustering approach to form binary clusters from a distance matrix, where each | Stage Clustering.
cluster pair represents which distribution centers serve which demand areas. In contrast,
our approach consistently matches the optimal solutions faster than GAMS, as detailed in
Table 11. Notably, for larger instances (Ins9-10), OPSM reduces runtime by 30-50%
while still achieving optimal solutions. This efficiency is particularly evident when GAMS
fails to reach optimality, as our method outperforms its best-found solutions. Findings
shows that, proposed algorithm is efficient and suitable for optimizing and solving
coverage set problems.

Introduction and Problem Statement

Natural disasters are becoming more common worldwide [1] and pose serious threats to human
life [2], causing severe impacts on people and their surroundings [3]. As a result, effective
disaster management and strategies for fast supply delivery during crises have become
increasingly important [1]. Because disasters are unpredictable, quick response is crucial—
especially in moving injured people to designated centers. One way to reduce delays is by pre-
positioning relief supplies near potential disaster zones, which allows for faster response, better
planning, and lower costs [4]. This highlights the need for greater decentralization in global
disaster management to improve efficiency and preparedness. The severity and urgency of a
disaster depend largely on its type and scale, as well as the readiness of individuals and systems
before, during, and after the event [2].

Disasters are deadly and destructive, making effective disaster management and
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humanitarian logistics essential for helping affected populations and rebuilding damaged areas.
One major challenge is delivering critical supplies—Ilike food, water, and medicine—to people
in need quickly and efficiently. Proper logistics planning ensures resources reach the right
people at the right time, which can save lives [5]. Humanitarian logistics focuses on this goal
and has become a key area within supply chain management [3].

During disasters, supply chains face many uncertainties due to the severity of the event,
infrastructure damage, and other disruptions. A crisis response system must be agile, flexible,
and well-coordinated to function effectively [7].

To reduce human and financial losses, it’s important to understand relief processes and
manage supply chains during emergencies. This includes pre-disaster planning—such as where
to store supplies and locate facilities—as well as managing distribution, routing, and resource
allocation during the response phase [8]. Because disasters are unpredictable, communities
must prepare in advance to minimize harm. Disaster management is an ongoing process that
includes preparedness, response, and recovery. ldentifying key logistics locations before a
disaster helps reduce delivery times and costs, while also improving readiness and distribution
efficiency. Tactical decisions—Ilike how to transport aid and evacuate the injured—are also
crucial. Therefore, strong transportation systems are vital for effective humanitarian responses.
In recent years, facility location and routing have become key issues in integrated logistics
systems [1], especially in setting up relief centers and managing humanitarian logistics to meet
urgent needs. Coverage models are often used for locating facilities such as hospitals,
ambulances, and emergency centers. These models aim to reflect real-world conditions as
closely as possible, and mathematical modeling continues to evolve to support this goal [64].
Research into mathematical models and optimization methods is crucial for improving rescue
and relief operations. However, traditional approaches may not be efficient enough for large-
scale or complex problems [66]. For this reason, metaheuristic algorithms have emerged as
powerful tools for solving complex optimization challenges. Due to their speed, gquality, and
flexibility, these algorithms offer significant improvements in managing large-scale
humanitarian logistics operations [67]. This paper explores how metaheuristic methods can
enhance performance in disaster response and resource allocation.

Theoretical Foundations

Governments and communities are deeply concerned about decisions made before and after
disasters. Many studies show that as global disasters become more frequent, weaknesses in
humanitarian logistics systems are increasingly exposed. Decisions in this field are typically
divided into four stages: mitigation, preparedness, response, and recovery. The pre-disaster
phase includes the mitigation stage, which involves actions aimed at reducing vulnerability to
the impacts of disasters, such as injuries, fatalities, and financial losses. The preparedness stage
entails educating communities about how a disaster may affect them so that they can adopt a
proactive approach. The post-disaster phase consists of two main stages: response and recovery.
The response stage focuses on addressing immediate dangers to reduce human and economic
losses, while the recovery stage aims at restoring all aspects damaged by the disaster.
Infrastructure networks are essential for delivering humanitarian aid to key locations such as
affected areas, shelters, warehouses, relief centers, and distribution points. These networks
support both governmental and non-governmental organizations by enabling communication,
mobilizing resources, and providing access to critical facilities during emergencies. When
humanitarian aid is needed, rebuilding and restoring infrastructure become increasingly
important. In the long term, functional infrastructure helps stabilize communities and restore
normal life. In the short term, it supports emergency actions like evacuation, search and rescue
operations, and the rapid distribution of aid, as well as coordination among responding parties.
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The choice of transportation mode depends on several factors, including the type of disaster,
the geographic features of the affected area, and the condition of existing infrastructure such as
road networks, transport hubs, seaports, airports, and logistics centers. It is also influenced by
the duration and temporary nature of the disruption. Despite various available transport options,
road transportation is often considered the primary method for quickly moving personnel and
supplies during humanitarian operations. This is due to its flexibility and accessibility,
especially in areas where other modes may be limited by damage or poor conditions. As noted
by Sabbaghtorkan et al. (2020), social cost and resource uncertainty are crucial factors in
decision-making within humanitarian logistics [3].

Given the destructive impacts of disasters on communities, decision-makers can mitigate
adverse effects through precise, effective, rapid, and updated responses. To achieve this,
disaster management emphasizes planning, prioritization, and decision-making in relief
operations. Therefore, disaster and crisis management is divided into several stages or phases
(usually encompassing the periods before and after disasters). Predicting potential losses and
casualties, along with providing preparedness plans to mitigate the effects of disasters through
improving humanitarian logistics and emergency services, occurs in the pre-disaster phase.
Conversely, the post-disaster phase includes actions for responding to disaster recovery. The
two mentioned phases can be further classified into four stages for more detailed consideration.
The first step involves necessary actions to prevent a disaster and reduce its catastrophic effects.
The second step includes preparedness actions, such as planning behaviors in the community
for a rapid response to recovery. The third step is the response phase, which involves using
emergency plans and allocated resources for the quick rescue of victims, providing medical and
health services, delivering necessary services and products to affected areas, and helping to
prevent damage to infrastructure and the environment. The fourth stage, final recovery, includes
actions aimed at returning to normalcy [9]. Humanitarian logistics is the process of planning,
executing, and controlling the efficient and cost-effective flow and storage of products and
goods, as well as relevant information, from the point of origin to the point of consumption in
order to meet the needs of the end beneficiaries. Kanehi et al. (2012) classified disaster logistics
into two categories: (1) facility location and (2) distribution of aid and transportation of victims.
Meanwhile, Liras et al. (2014) categorized humanitarian logistics issues into three categories:
facility location, inventory management, and routing [5].

Research Background

Li et al. (2017) proposed a three-objective transportation location model for the disaster
response phase. The objectives of this model include reducing the transportation time of relief
equipment, minimizing the number of responders required to open and operate established
distribution centers, and decreasing the number of unmet demands. An epsilon-constrained
exact method was ultimately introduced to solve the model [10]. Ghareib, Bozorgi-Amiri,
Tavakkol Moghadam, and Najafi (2018) addressed emergency relief distribution and
transportation using a three-phase approach. In the first phase, preprocessing of model inputs
was conducted through an artificial neuro-fuzzy inference system, followed by identifying the
safest route for each cluster. In the second phase, a heterogeneous multi-depot vehicle routing
problem was formulated, and finally, two metaheuristic multi-objective algorithms were
proposed to obtain a near-optimal solution [11]. Aslan and Celik (2019) focused on designing
a multi-stage humanitarian response network in which pre-disaster decisions regarding
warehouse locations and item positioning consider uncertainty in demand for relief items, as
well as the vulnerability of roads and facilities. To this end, a two-stage stochastic programming
model was formulated for this system, and a sample average approximation scheme was
proposed for its solution [14]. Nagurney et al. (2019) proposed a two-stage multi-criteria
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uncertain programming model for locating emergency response centers and managing pre-
disaster distributions to ensure efficient emergency logistics during disasters. They also
presented a goal programming approach, in which the location, capacity, and storage levels of
each facility were determined in the first stage. In the second stage, a transportation problem
was solved under two main assumptions: unlimited route capacities; however, in one scenario,
these routes might be unavailable, and nodes could act as logistics warehouses [16]. Sabouhi
and Tavakkoli (2019) identified the most important relief services as transporting injured
individuals to hospitals, relocating evacuees from affected areas to shelters, and providing
necessary relief supplies to these evacuees. To deliver these services effectively, a multi-
objective mathematical programming model was proposed for locating transfer points and
shelters. The model considers evacuation demand as an uncertain parameter [18]. Ghasemi et
al. (2019) presented a multi-period, multi-objective mathematical model for the location and
allocation of affected areas to hospitals in Tehran. They considered different types of injuries
along with the destruction of existing centers during an earthquake as part of their contributions.
Their research aimed to minimize supply chain costs and reduce shortages of relief supplies.
The proposed model was solved using NSGA-II and multi-objective particle swarm
optimization approaches, and the results demonstrated the satisfactory performance of the
model [19]. Magfurou and Hanafi (2020) proposed a multi-faceted relief distribution model
based on a three-level chain consisting of (1) supply nodes, (2) logistics operational areas, and
(3) affected regions, while considering multiple trips. For disaster response operations, the
model determines the location of logistics operational areas, the transportation methods used,
and the amount of relief goods allocated for each mode of transport. Additionally, the model
accounts for various stages of essential response factors, such as infrastructure conditions,
access to resources, and transportation availability [21]. Bounmi and Kasemst (2020) proposed
a multi-objective fuzzy mathematical programming model for humanitarian relief logistics.
They integrated the facility location, inventory, and distribution problems in humanitarian
logistics while considering the inherent uncertainty of input parameters [24]. Youfeng Zhou
and Bin Zheng (2020) studied the integrated issue of emergency logistics systems considering
a two-level framework that includes uncertain demand, uncertain transportation times, various
types of relief materials, supply shortages, multiple transportation modes, and varying
urgencies of relief material demands. The focus was on the location of transfer facilities and
the transportation of relief materials [25]. Zhong et al. (2020) discussed a location-routing
problem in a relief supply chain under random demand. They proposed a genetic algorithm and
a non-dominated sorting genetic algorithm to minimize total waiting time and supply chain
costs. The objective function for total waiting time was defined as the sum of vehicle arrival
times at demand points. Additionally, the total supply chain costs included setup costs for
establishing distribution centers, fixed costs of vehicles used, travel costs, and shortage and
surplus costs at demand points [26]. Beiki et al. (2020) examined a location-routing model for
assessing affected individuals and distributing aid under uncertainty. This research designed an
integrated relief chain to simultaneously optimize the preparedness and response phases of
disaster management. Key supply chain improvement decisions include locating distribution
centers, determining pre-disaster inventory levels, siting temporary care centers and transfer
points for casualties, allocating relief services to affected areas, and planning vehicle routes for
distributing supplies and evacuating casualties. Results showed that reducing the capacity of
distribution centers increases item shortages, whereas increasing capacity reduces them [1].
Sakiani et al. (2020) discussed an inventory routing problem for redistributing relief goods in a
supply chain to minimize total deprivation and operational costs. The study divided the problem
into a main problem and a subproblem. A simulated annealing algorithm was proposed to solve
the main problem, while a commercial solver was used for the subproblem [29]. Ghasemi and
Babaeinami (2020) proposed a model focused on optimizing fire station resources and reducing
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response times. They used organizational dynamic software to simulate fire station conditions
[32]. Manopiniwot and Airohara (2021) examined an integrated humanitarian supply chain
management model for food response. Their study explored interactions among various factors
in the relief supply chain within an optimal framework. A model was developed to control
overall supply distribution, plan evacuations, allocate relief resources, and optimize routing for
temporary storage centers. Ultimately, a routing model for temporary storage in disaster
situations was proposed, formulated using a multi-period approach [33]. Kao et al. (2021)
proposed a fuzzy bi-level optimization model for humanitarian supply chains. The upper level
aims to minimize unmet demand rates, potential environmental risks, and emergency costs,
while the lower level seeks to maximize the perceived satisfaction of survivors. The researchers
used data from the Wenchuan earthquake [37]. Alizadeh et al. (2021) presented a multi-period
model for locating relief facilities in the context of natural disasters. Their primary objective
was to maximize the coverage of hospitals and distribution centers. A Lagrangian relaxation
approach was used to solve the model. Case study results indicated that increased demand leads
to decreased area coverage [38]. Zhan et al. (2021) proposed a mathematical model for the
location and allocation of relief bases under supply and demand uncertainties. One of the main
objectives was to minimize shortages and unmet demand. The case study focused on Zhejiang
Province in southern China. A particle swarm optimization approach was employed to solve
the model. Results showed that increasing the number of suppliers reduces unmet demand [39].
Sahatchi et al. (2021) presented a relief supply chain network in two phases: pre-disaster and
post-disaster. They designed the supply chain in both forward and reverse directions.
Ultimately, they solved the model on a large scale using a non-dominated sorting genetic
algorithm [44]. Hosseininejad, Makoui, and Tavakoli Moghadam (2021) conducted a study on
the pre-location of a relief chain in humanitarian logistics under uncertainty related to road
accidents, using a real-world case study. Proper pre-location of relief chain sites can
significantly reduce casualties among road users. Therefore, this research proposed a multi-
objective mathematical model for the pre-positioning of a relief chain for road accidents. The
model was solved using a non-dominated sorting genetic algorithm, and the factors influencing
relief chain locations were identified using a multi-criteria decision-making method. Finally,
potential sites for relief chain locations were suggested [4].

Bagheri Amiri, Akbari, and Dadashpour (2021) developed a routing-allocation model for
relief logistics under demand uncertainty using a genetic algorithm approach. This research
focused on the distribution of relief goods after an incident, identifying the optimal allocation
for affected areas and determining the shortest route for vehicle transportation. The objective
of the proposed model is to minimize the maximum distance traveled by each vehicle in order
to achieve equity in responding to the injured. In the proposed model, demand locations are
uncertain and are determined using a simulation approach. The proposed methodology solves
the model and concurrently determines the appropriate allocation. As a result, the use of a
genetic algorithm with a two-part chromosome structure in routing and allocation problems,
along with computational results, demonstrates the efficiency and effectiveness of the proposed
model and algorithm for solving real decision-making issues [2]. Sabouhi and Bozorgimehri
(2021) presented a transportation planning problem for a humanitarian supply chain (HSC) that
included location, routing, and scheduling decisions. The authors formulated disruptions in the
routes, and the objective function aimed to minimize the expected arrival time of emergency
vehicles [46]. Memshali et al. (2021) studied the allocation-routing problem in the crisis
response phase. They proposed a scenario-based multi-objective programming model to
examine sustainable allocation for the routing problem, addressing factors such as sustainability
and resilience, which have been rarely considered in previous studies. Furthermore, they
presented their model based on the concept of equity, with objectives to minimize travel time,
total environmental impacts, and overall demand loss. Finally, they proposed a hybrid approach
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combining a multi-objective goal programming method with an exploratory solution algorithm
to solve the problem within a reasonable time, considering the complexity of the model [48].
Vahdani et al. (2022) presented a bi-objective optimization model for planning a humanitarian
regional logistics network. The model encompasses a wide range of simultaneous decision-
making regarding the allocation of emergency facility locations, reclassification, vehicle-
sharing services, and routing of vehicles. Two types of vehicle routing problems — open and
closed — are used for ground and air routing. Given the uncertain nature of disasters, cost,
supply, and demand parameters are considered uncertain in their study. Ultimately, a robust
hybrid optimization model has been proposed. The validity of this model has been examined
through a real case study [49]. Ghasemi, Goudarziyan, and Abraham (2022) proposed a new
humanitarian relief logistics network for multi-objective optimization under stochastic
programming. The objectives are: (1) to minimize the expected total costs of the relief supply
chain, (2) to minimize the maximum number of unmet demands for relief staff, and (3) to
minimize the total probability of unsuccessful evacuations along the routes. In this research, a
scenario-based stochastic multi-objective location-allocation-routing model has been proposed
for a real humanitarian logistics problem that focuses on both pre- and post-disaster locations
in the presence of uncertainty. The proposed model has been solved using the epsilon-constraint
method for small to medium-sized problems and with three metaheuristic algorithms for large-
scale cases (case study). Experimental results indicate that this model can be effectively utilized
for locating shelters and distribution centers, determining suitable routes, and allocating
resources in uncertain and real disaster situations [8]. Ghavami Far et al. (2022) proposed a
hybrid contract for supplying a relief item by utilizing the supply and storage capabilities of a
supplier [52]. Modiri et al. (2022) introduced a mixed-integer multi-objective mathematical
programming model for designing distribution networks for relief products in disaster relief
logistics. The first objective function minimizes the total network costs, which is divided into
two parts: (1) relief costs (transportation, inventory, and fixed facility costs) and (2) social costs
(private costs). The second objective function minimizes the pollution generated by the
network. According to the literature review, they stated that this is the first study to propose a
robust fuzzy optimization approach for the problem of designing distribution networks for relief
products, taking into account environmental, social (private costs), and economic implications
under reliability and uncertainty. The multi-objective model is solved using multi-criteria goal
programming. A case study based on real data (food in Sari province in 2019) has been
evaluated to demonstrate the validity of the model. The proposed model enables managers and
decision-makers to make strategic and tactical decisions with minimized costs and time.
Additionally, it allows them to strengthen the structure of distribution networks and inventory,
thereby reducing the dissatisfaction of victims [53]. Mahmoudi et al. (2022), considering the
objective of humanitarian supply chains to minimize response time to a disaster, developed a
humanitarian supply chain structure that incorporates emerging technologies in providing
humanitarian services across two phases: the preparation phase and the response phase. They
aimed to maximize the total demand covered by production and distribution centers of relief
supplies, as well as the total actual weight allocated to unmanned aerial vehicles. Ultimately,
the proposed model was solved using three methods: one exact method and two metaheuristic
methods. Based on the implementation results, the non-dominated sorting genetic algorithm
performs better in finding optimal solutions. After solving the model using the Cuckoo
Optimization Algorithm and comparing the results with those obtained from the GAMS
software, it was found that the genetic algorithm outperforms the other options [57]. Hashemi
et al. (2022) investigated the optimal location of emergency medical centers to provide faster
and more efficient care. They aimed to develop a mathematical model for locating emergency
medical centers with the goal of increasing the quality and quantity of demand coverage. The
model was solved in small dimensions using GAMS software and in larger dimensions using a
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genetic algorithm. The results demonstrated the capability of genetic algorithms compared to
GAMS software in terms of solving time. Finally, contour lines were utilized for data analysis
in a numerical example. Potential points for emergency medical services followed these lines
and acted as demand points. The accuracy of the model was validated with various parameters.
As a result, their proposed model can effectively respond to requests for emergency medical
services and determine the optimal location for emergency medical care centers [59].
Beheshtinia, Jazayi, and Fathi (2023) optimized the distribution and transportation of disaster
relief goods using a mathematical model and metaheuristic algorithms, assuming the presence
of multiple relief orders that need to be delivered from a network of warehouses to various
disaster-affected areas using a fleet of diverse vehicles. The goal is to identify the most suitable
warehouse for each relief order, allocate relief orders to vehicles, categorize orders within
designated vehicles, and design routing plans to minimize total delivery time. A mixed-integer
linear programming model has been formulated to address this issue.

Given the NP-hard nature of the problem, a metaheuristic algorithm known as the Multiple
League Championship Algorithm has been developed. In addition, MLCA two innovative types
have been introduced: The Base League Championship Algorithm and the P-MLCA Multiple
League Championship Algorithm. Experimental results show that the P-MLCA algorithm
performs better than the other two algorithms. The solutions obtained from the P-MLCA
algorithm were compared with optimal solutions derived from a commercial solver for small-
scale problems, and this comparative analysis demonstrates the promising performance of the
P-MLCA algorithm in achieving optimal distribution of relief goods [61]. Modarresi and
Maleki (2023) developed a two-stage stochastic model for the efficient design of humanitarian
supply chains, integrating pre- and post-disaster decisions to enhance disaster management.
This model includes contracts with flexible quantities, equitable distribution of relief goods,
warehouse locations, inventory planning, and various post-disaster activities. This approach
effectively reduces existing inventory levels and mitigates supply risks following disasters, as
demonstrated in the context of a potential earthquake in Iran [62]. Fallahi, Pourghazi, and
Mokhtari (2024) addressed the design of a multi-product humanitarian supply chain network in
their research, employing a robust fuzzy multi-objective optimization approach that considers
product differentiation and demand uncertainty. Specifically, they simultaneously integrated
non-perishable, perishable, and blood products as critical components of the network. This issue
was formulated as a mixed-integer linear programming model with multiple objectives aimed
at minimizing total costs and the overall distance traveled by products, involving decisions
related to location, allocation, and production. To address this issue, they proposed a two-step
solution method in which the first step involves using a robust optimization approach to create
a deterministic counterpart for the stochastic model. Subsequently, an efficient fuzzy
programming-based approach reformulates the model into a single-objective form, effectively
aligning with the preferences of decision-makers. The results demonstrate the effectiveness of
the fuzzy approach in finding non-dominated solutions, enabling decision-makers to explore
trade-offs [63]. Baghaian and Rasay (2023) proposed a robust stochastic optimization model
aimed at distributing limited resources among affected areas and casualty groups in the
immediate aftermath of sudden-onset mass casualty events. The model incorporates search and
rescue activities as well as temporary medical treatment. To enhance the model’s realism,
uncertainties such as link disruptions and facility unavailability in a dynamic environment were
explicitly considered [73]. Xu, Ma, Liu and Ji (2024) introduced a bi-objective model for
determining optimal locations of emergency logistics facilities, incorporating factors such as
facility setup costs, human resource scheduling expenses, transportation time, and uncertainties
related to demand and road conditions. To accommodate decision-makers with different risk
attitudes, the research employed both stochastic programming and robust optimization
techniques. A risk-preference-based stochastic programming approach was proposed to address
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the risks associated with extreme disaster scenarios [74]. Ghaderi, Modarres, and
Hosseinizadeh (2025) proposed an integrated hierarchical facility location and network design
problem, which involves making multiple strategic decisions regarding the establishment of
facilities and network links at different levels. A multi-period model has been developed to
jointly address these two interrelated problems, taking into account budget constraints and
specifically tackling the challenge of optimizing hierarchical upgrades for urban centers and
transportation network links within each time period. The model also determines the optimal
upgrade levels for urban centers and transportation network links in each period, subject to a
predefined budget [75].

Research Gap

Despite extensive research on facility location and emergency logistics optimization, critical
gaps persist:

Solution Quality-Scalability Trade off: Existing exact methods (e.g., MILP solvers like
GAMS) become computationally prohibitive for large-scale disaster scenarios, while heuristic
approaches often sacrifice solution quality for speed.

Dynamic Coverage Handling: Most models assume fixed coverage radii, neglecting real-
world variability in relief facility effectiveness (e.g., terrain-dependent response times).

Integration of Pattern Discovery: Sequential Protective Submatrix (OPSM) techniques—
effective in bioinformatics for identifying coherent patterns—remain underexplored in
coverage optimization, despite their potential to enhance cluster coherence in demand-supply
matching.

This study bridges these gaps with the following novel contributions:

Hybrid Framework: We propose the first integration of Two-Stage Clustering with OPSM
algorithms for emergency facility coverage. This synergistically leverages:

Stage 1: Binary clustering to reduce solution space dimensionality.

Stage 2: OPSM to identify order-preserving submatrices, ensuring consistent demand-
facility assignments under variable coverage constraints.

Dynamic Coverage Modeling: The algorithm incorporates speed- and terrain-dependent
coverage radii (Eq. 1), enabling adaptive facility-to-demand matching absent in static models.

Superior Performance: Experiments on randomized disaster scenarios (Table 11)
demonstrate that our approach:

Outperforms GAMS in solution quality (+13.5% gap reduction in large instances, e.g., Ins6).

Maintains near-optimality (0% gap in 60% of cases) while reducing runtime by 15-40% for
20-node problems.

Practical Innovation: The Python-based implementation (Biclustlib integration) offers
emergency planners a deployable tool for rapid, high-coverage facility allocation during crises.

Research Methodology

In the present study, library resources such as books and articles were initially used to identify
the factors and criteria influencing site selection, model development, and data collection. In
the next phase, field research was conducted to collect study samples by reviewing the case
study of Shojaei and Qasemi (2016) in Khorasan. Subsequently, random data generation was
carried out within the studied region in Khorasan Province. It is noteworthy that a two-
dimensional clustering method was also applied in this research. To this end, a basic model was
selected, and the parameters were treated as deterministic through the use of the clustering
method.
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Model Problem Description

The proposed algorithm is introduced as a practical tool for improving the quality of
responses and reducing problem-solving time, which can assist managers and planners in
making optimal decisions and enhancing the performance of relief units. The location model
presented in the article titled "Location of Relief Facilities with Variable Coverage Radius
Under Uncertainty: A Case Study of Khorasan Province" by Peyman Qasemi and Amir-Abbas
Shojaei is considered. This model addresses the complexities associated with the variable
coverage radius of relief facilities, particularly under conditions of uncertainty, thereby
providing a structured framework for effective decision-making in humanitarian logistics. In
the aforementioned article, demand is modeled probabilistically. In data clustering methods,
converting a probabilistic model into a deterministic model is necessary to improve the
performance of clustering-based algorithms. When dealing with probabilistic data, clustering
algorithms may not provide optimal classification. However, by transforming the probabilistic
model into a deterministic one, the discriminatory power of clustering algorithms can be
enhanced. This transformation allows for more accurate and effective decision-making in the
context of site selection for relief facilities. Clustering algorithms help improve the handling of
data ambiguity, and by utilizing more precise and deterministic information, they enhance the
quality of clustering outputs and enable more accurate pattern detection within the data. The
assumed model in the study was developed for the proposed algorithm without considering
probabilistic scenarios. Consequently, the uncertain parameter (P®), which represents the
occurrence of scenario (s), was eliminated. The parameter (D;’), which signifies the demand
generated at critical point (i ) under scenario ( s ), was replaced with the parameter (D;).
Regarding the justification for simplifying the model, it should be stated that Clustering
algorithms, such as K-means, require deterministic inputs to form stable and cohesive groups.
Probabilistic data introduces variability and uncertainty, leading to scattered demand points that
reduce cluster cohesion and increase the root mean square standard deviation (RMSSTD). To
enhance the performance of clustering-based algorithms, we have simplified the model by
eliminating scenario probabilities (Ps) and replacing scenario-dependent demand (Dis) with
average or representative demand (Di). This approach mitigates the challenges posed by
probabilistic data, allowing for more effective clustering and subsequent optimization. While
this simplification may reduce the model's ability to capture demand variability, it significantly
improves the applicability and computational efficiency of the clustering process. Future work
should explore integrating stochastic clustering methods, such as fuzzy C-means, to retain
uncertainty and better reflect the probabilistic nature of demand [72]. This resulted in
modifications to the model. The final model, which serves as a reference for the development
of the proposed algorithm, is described as follows:
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- k
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Cjk =0 (11)

Xijk = 0 (12)

Assumptions of the Model

The following assumptions have been made in this model:

1.

2.

o ok

10.

The planning is designed for a single period and takes place prior to the occurrence of a
crisis.

The supply chain consists of two levels, enabling the transfer of goods from relief
distribution centers to affected areas.

Each demand or damage point can be served by only one service center, while each relief
center can serve multiple demand points.

Each demand point may be fully covered, partially covered, or not covered at all.

Only a single type of relief good is considered.

While much of the existing research assumes uniform and fixed facility capacities, this study
introduces an upper limit on the capacity of distribution centers based on their type, leading
to the selection of optimal capacity for each center.

. A fixed establishment cost is associated with each relief center, depending on its type. In

addition, variable costs are considered for storage and maintenance of goods, which are
aggregated as per-item variable costs.
The initial inventory for each facility is determined after solving the model; however,
inventory management is not explicitly included in the formulation.
Transportation and inventory are accounted for in the model; however, vehicle routing is not
considered.

There are no specific constraints on the transportation fleet or the road network for
delivering goods or transporting individuals.
The following notations have been used for formulating the model:

Indices

I: Set of critical points

J: Set of candidate points

S: Set of scenarios

K: Set of types of relief distribution centers

Independent Parameters

PS: Probability of scenario (s) occurring

D;: Demand generated at critical point (i) under scenario (s)
d;;: Distance from critical point (i) to candidate point (j)

t: Maximum allowable response time to demand

Dependent Parameters by Type of Facility

F,, : Fixed cost of establishing relief center type (k)
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» by Cost of creating capacity, provisioning, and maintenance for each relief package at relief
center type (k)

e Gy Transportation cost per unit distance for each package at relief center type (k)

e U,: Maximum capacity of facility type (k)

e Speed,: Speed of transporting relief packages with facility type (k)

 a;jx: Coverage coefficient: equals 1 if the connection between proposed site (j) and demand
area (i) is established by the distribution center; otherwise, it equals 0.

1 - L <t
Qjj = speed, ) (13)

0 —» Otherwise

Variables

» i Equals 1 if a relief center of type (k) is established at candidate point (j); otherwise, it
equals 0. This variable indicates not only the location of the facility but also its type and
consequently the corresponding coverage radius.

o Zij: Equals 1 if relief center type (K) at point (j) is allocated to critical area (i); otherwise, it
equals 0.

* X;jx. Represents the amount of demand at critical area (i) that is covered by relief center type
(k) at point (j).

 Cj: Capacity of the relief center of type (k) established at point (j).

The model is formulated as a mixed-integer linear programming problem using the above
notation.

Description of Objective Functions and Constraints

The first objective function (2) represents the maximization of the population covered across
all scenarios. The second objective function (3) aims to minimize the total costs associated with
establishing relief distribution centers, capacity development, supply, inventory maintenance,
and transportation from relief centers to demand points. It is worth noting that minimizing
transportation time contributes to faster service delivery. Furthermore, if variable costs (i.e.,
capacity development and maintenance) are excluded from this objective function, each facility
will be assigned a maximum capacity based on its type. Constraint (4) ensures that no more
than one center can be established at any candidate location. Constraint (5) guarantees that a
center j can only be allocated to a demand point i if it has been established and is capable of
covering that point. Constraint (6) enforces that at most one relief center can be assigned to
each demand point. Constraint (7) defines the estimated amount of demand covered by the
assigned relief center. This definition accounts for the capacity limitations of the facility; that
is, even though facility j is assigned to demand point i, its available capacity may be less than
the actual demand of that area. Constraint (8) determines the capacities of the centers such that
they do not exceed the upper limit defined in constraint (9). Constraints (10) to (13) specify that
certain variables are binary and that all other variables are non-negative.

Concept of Two-Dimensional Clustering

Gene Expression Programming (GEP) is based on the concepts of repetition and the description
of the DNA molecule at the gene level. The description of a gene involves the transcription of
its DNA into RNA. This process subsequently leads to the formation of amino acids, ultimately
producing proteins at the phenotypic level of an organism. In fact, the main idea in GEP is to
represent a phenotypic response in the form of a tree-like structure (protein) as a linear sequence
of genes (DNA), and to apply reproductive string operators commonly used in genetic
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algorithms. The algorithmic logic in Gene Expression Programming closely resembles that of
genetic algorithms. The only difference lies in how fitness is calculated and how the
reproductive operators are applied. To calculate fitness, it is first necessary to construct the
equivalent solution structure for each gene expression in a chromosome and execute the
program corresponding to that expression. Based on the resulting output, decisions can be made
regarding the fitness level of the program, which has a tree-like phenotypic structure. The
reproductive operators must also be designed under the assumption that the lengths of
chromosomes in the population vary due to their tree-like phenotypic nature. In general, it
should be noted that when the solution structure corresponding to each response has a tree
structure, genetic programming is often employed. In such cases, Gene Expression
Programming is utilized when the reproductive operators in standard genetic programming
cannot ensure an effective search through the solution space. Two-dimensional clustering
techniques were initially introduced to address the needs of demand-coverage pattern data
analysis. A gene is a unit of inheritance that transfers traits from one living organism to its
offspring. Typically, a gene is located on a segment of DNA. Genes are essential for all living
organisms because they encode all proteins and functional RNA chains. They store the
information required for constructing and maintaining cells, and for transferring genetic traits
to offspring. The synthesis of a functional gene product, whether RNA or protein, depends on
the process of gene expression. The genotype refers to the genetic composition of a cell, an
organism, or an individual. The phenotype encompasses the observable characteristics of a
living organism. Gene expression is the most fundamental level in genetics where genotypes
lead to the formation of phenotypic traits. When analyzing in the gene dimension, each gene is
considered as an object, while samples or conditions are treated as features. By exploring this
dimension, we may discover patterns shared by multiple genes or cluster genes into groups. For
example, a group of genes with similar expression patterns might be identified — a particularly
important discovery in bioinformatics, such as identifying biological pathways.

B. OPSM Algorithm

The Order Preserving Submatrix (OPSM) algorithm is a probabilistic model introduced to
identify subsets of genes that exhibit a consistent order across a subset of conditions. Rather
than focusing on the similarity of actual expression levels, this method emphasizes the
consistency of the relative ordering across conditions. In other words, the expression values of
genes within a bicluster induce a uniform linear order across the selected conditions.
Accordingly, the authors define a bicluster as a subset of rows (genes) whose values follow a
consistent linear order across a subset of columns (conditions). The application of demand-
coverage pattern algorithms in combination with two-dimensional clustering is a subject
explored in the fields of bioinformatics and molecular genetics. When working with demand-
coverage pattern data, we may encounter features that are not individually expressed in samples
(rows) or across all genes (columns). In such cases, two-dimensional clustering serves as a
method for identifying subgroups of genes and samples that share common characteristics. The
algorithm begins by receiving input data and performing biclustering to detect distinct two-
dimensional clusters. Next, after identifying relevant genes and samples, the coverage score of
the biclusters is calculated, and the set covering solution is updated. Additional biclusters are
then identified using the Order Preserving Submatrix (OPSM) algorithm to achieve the desired
level of coverage. Finally, the resulting set covering solution is presented as output, which
includes the identified and covered biclusters.

Proposed Algorithm

The algorithm begins by receiving demand-coverage pattern group data as input for analysis.



Advances in Industrial Engineering, December 2025, 59(2): 377-399
389

In the next step, the biclustering algorithm is applied to the demand-coverage pattern group data
in order to identify distinct biclusters. This process decomposes the data based on patterns of
similarity and detects groups of genes and samples that exhibit similar biological behaviors.
Subsequently, for each identified bicluster, the corresponding genes and associated samples are
determined. Then, the coverage score of each bicluster is calculated to assess how much of the
data is represented within that bicluster. Based on the updated coverage score, the set covering
solution is revised. At this stage, additional biclusters are identified by applying the Order
Preserving Submatrix (OPSM) algorithm to the portions of the demand-coverage pattern group
data that have not yet been covered. The OPSM algorithm also operates by identifying
similarities in biological patterns within the data. This iterative process continues until the
desired level of coverage is achieved or no further meaningful biclusters can be identified.
Finally, the resulting set covering solution is presented as output, which includes all the
identified and covered biclusters.

Input the

gene
expression
data

Apply biclustering algorithm

to identify biclusters in the
gene expression data

Identify the genes
Array Elements and samples
Count >0 included in the
bicluster

Nog

Perform order preserved sub-matrix
algorithm on the remaining uncovered
gene expression data to identify additional
biclusters

Calculate the
coverage score of
the bicluster

Update the set
covering solution
based on the
coverage score

Repeat steps 4 and 5 until the
desired coverage is achieved or
no more biclusters can be
found

Output the final set covering End
solution

Figure 1. Proposed Algorithm

In optimal facility location problems, clustering serves as a method for grouping demand
points based on their spatial proximity and coverage feasibility, using distance matrices. These
matrices capture the spatial relationships between different locations and are used as input for
clustering algorithms such as K-means or OPTICS to form groups of demand points with
similar characteristics. The Optimal Facility Location Problem (OPSM) focuses on identifying
subsets of facilities and demand points that exhibit consistent coverage relationships. These
relationships may involve criteria such as minimum distance, maximum response time, or full
coverage. To address such problems, algorithms like the 1-center or Maximize Attendance are
employed. These methods use distance matrices to determine optimal facility locations that
ensure effective and efficient coverage for all demand points. In summary, clustering and
OPSM work together in solving optimal facility location problems. Clustering first organizes
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demand points into groups based on spatial proximity and coverage potential, providing an
initial structure for identifying related subsets. OPSM then uses this structure to determine the
most suitable facility locations, ensuring effective and efficient coverage for each group of
demand points [71].

Figure 2 shows the flowchart of the optimal facility location process using clustering and
MILP.

OPSM
Clustering pattern
extraction

Distance
matrix

Input

Figure 2. Flowchart of Optimal Facility Location Process Using Clustering and MILP

Implementation of the Algorithm for the Problem

The Biclustlib library is a Python-based tool designed for identifying simultaneous subgroups
within two-dimensional data. This library is specifically developed for performing biclustering
(two-dimensional clustering) analysis and can support and enhance various biclustering
algorithms. Biclustlib provides specific algorithm implementations for analyzing two-
dimensional datasets and allows the application of different models depending on the analysis
requirements. The logic of implementing the OPSM algorithm using the Biclustlib library to
solve the aforementioned problem can be summarized as follows:

I.  OPSM Algorithm Logic

Sets:
 |: Set of row indices representing rows in the input data matrix.
e J: Set of column indices representing columns in the input data matrix.

Parameters:

e M: Input data matrix of size [I1x|J].

o krows: Number of row clusters to be formed.

e kcols: Number of column clusters to be formed.

Variables:

« R: Partitioning matrix for rows, where Rij indicates whether row i belongs to row cluster j.

 C: Partitioning matrix for columns, where Cij indicates whether column i belongs to column
cluster j.

Objective Function:
The objective of biclustering is to minimize the overall dispersion within biclusters, which
can be represented as:

krows I keots 11
. 2 2
j=1 i=1 j=1 i=1
where u i and v; are the means of row cluster j and column cluster j, respectively.

Constraints:
1. Each row should be assigned to exactly one row cluster:
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2. Each column should be assigned to exactly one column cluster:

kcots

j=1

Algorithm:

e The OPSM algorithm is used to iteratively refine biclusters by minimizing the dispersion
within clusters while maintaining the order of rows and columns.

e The algorithm alternates between updating row partitions and column partitions until
convergence is achieved.

e At each iteration, the dispersion within clusters is reduced by reassigning rows and columns
to clusters in a way that minimizes the objective function, while preserving the order of rows
and columns.

I1.  Apply OPSM Algorithm to the Problem

Calculate Distance between Locations:

Define dij as the distance between location i and location j.

e di;j= J(x;— x)*>+ (v; — y;)* where (x;,y;) and (x;,y;) are the coordinates of location
i, j respectively.

o

2. Calculate Coverage Factor:
o Define aijk as the coverage factor indicating whether location i can be served by facility j
with type k.

d..
1if 2 <t

L ai}-k = { f 1473
0 otherwise

o Where vk is the speed of facility type k, and t is a threshold time.

3. Define Model:
e Define a mathematical optimization model consisting of sets, parameters, variables,
objective functions, and constraints.

4. Define Objective Functions:
e Objective Function 1 (f;):

* fi= 2 Z Zk Dixiji
) j

e Maximizing the sum of demand serviced by facilities.
e Objective Function 2 (f3):
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. z Fkyjk + z bijk + Z Djdijxijka
: :] k : :] k : :] k
i

e Minimizing the total cost considering facility opening cost, transportation cost, and demand
coverage cost.

5. Define Constraints:
e Various constraints are defined to ensure the model operates within specified bounds and
conditions.

6. Solve Optimization Problem:
e The optimization problem is solved to find the optimal solutions for the defined objectives
and constraints.

7. Apply OPSM Algorithm:
e Apply the OPSM algorithm to cluster data.
e Retrieve clusters using the command: clusters=opsm_result.get_clusters().

8. Augmented Epsilon-Constrain Method:
¢ An alternative optimization method is applied, maximizing f; while maintaining f, within a
specified range.

Research Findings and Data Analysis

Implementation Environment and Tools

To evaluate the proposed method, which is based on a two-dimensional clustering algorithm
and the OPSM approach, it is essential to first implement the method and then analyze the
results to determine its practical applicability. For the implementation of the proposed method,
the Python programming language has been used in conjunction with several libraries,
including NumPy, Pandas, Matplotlib, Biclustlib, Math, Scikit-learn, Pyomo, and Plotly. These
tools support data manipulation, visualization, and the application of advanced algorithms
required for the analysis. To assess the performance of the proposed method, a random dataset
was generated within the scope of the case study data from Khorasan, as described in the article
"Location of Relief Facilities with Variable Coverage Radius under Uncertainty: A Case Study
of Khorasan Province.” Ten different scenarios were considered, each involving distinct
configurations of demand centers and relief centers. The results obtained from the proposed
algorithm were then compared with those produced by GAMS software. In the following
sections, Scenario 10 is presented as an illustrative example.

Scenario 10

In this scenario, 20 demand centers and 10 relief centers were considered, assuming the
selection among three types of relief centers. It was expected that the solution provided by the
proposed algorithm would outperform the solution obtained in the GAMS environment.
However, it was found that the proposed algorithm produced the same result.

Table 1. Candidate Points for Scenario 10
j 1 2 3 4 5 6 7 8 9 10
Coordinates of (66, (54, (49,43) (62, (59, (64, (56, (50, (53, (61,
Candidate Points (x,y) | 54) 27) ' 26) 32) 40) 29) 31) 46) 32)
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Table 2: Demand Points for Scenario 10
i Coordinates of demand points (x,y) Population Demand
1 (68, 42) 138975 98672
2 (42, 35) 173594 142347
3 (55, 39) 125837 75502
4 (44, 31) 17726 13649
5 (43, 41) 187628 146349
6 (47, 47) 199988 145991
7 (57, 28) 20690 11793
8 (59, 26) 178677 117926
9 (66, 26) 34805 20883
10 (47, 48) 159593 97351
1 (65, 37) 148042 105109
12 (58, 40) 194409 118589
13 (68, 36) 33986 19372
14 (48, 32) 169375 140581
15 (66, 31) 11100 7658
16 (65, 45) 184759 118245
17 (66, 49) 191701 120771
18 (46, 21) 189948 112069
19 (65, 30) 168274 132936
20 (61, 41) 53791 31198
Table 3. Types of Candidate Points for Scenario 10
K F b G Speed(km/h) U
1 80000 8 0.8 64 6400000
2 80000 8 0.8 64 6400000
3 50000 5 0.5 25 2500000
Output of Scenario 10 in the Proposed Algorithm
Table 4. Output Yjk for Scenario 10 in the Proposed Model
Yjk 1 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 1 1 1 1 0 1 0 1 0 0
Table 5. Output Zijk for Scenario 10 in the Proposed Model
| 112,/3/4/5/6|7/8]9)10]11 12|13 14|15 16|17 |18 19| 20
J 6/8/ Y833/ 2/4/4, 3|6 6|6 8| F¥ |6 |]1]|]2]4.]6
K [3/3/3/3/3/3/3/3/[3/3|3]3|3|3]3|]3|3]3]|]3]3
Zik (12 ]1]1]1)1)1|1]1]1]1 1 1 1 1 1 1 1 1 1 1
Table 6. Objective Function Values for Scenario 10 in the Proposed Model
z value
z1 1776991
72 13947880.46
Output for Scenario 10 in GAMS
Table 7. Output Yjk for Scenario 10 in the GAMS Algorithm
jo1 j02 jo3 jo4 joé jo8
k03 1 1 1 1 1 1
Table 8. Output Zijk for Scenario 10 in the GAMS Algorithm
joljoljoljoljoljo joljo]jol[jor]jor]jor]jor]ijor]jor]jor]|jor]ijo1r]ijo1rl]jo2
1123|456 7]8]9 0 1 2 3 4 5 6 7 8 9 0
19 10019 100 100900 D19 o3 | jos | jos | jos | jos | joa | jo | joi | jo2 | joa | jos
koj1/1}|1|{1 1|11 |1|1]1 1 1 1 1 1 1 1 1 1 1
3
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Table 9. Output Cjk for Scenario 10 in the GAMS Algorithm
jo1l jo2 jo3 jo4 jo6 jo8
k03 120771 123862 465193 279403 491185 296577

Table 10. Objective Function Values for Scenario 1 in the GAMS Algorithm

z value

z1 1776991

72 13947880.46

Comparison of Computational Results of OPSM and GAMS

In this section, the results obtained from executing the optimization model and clustering
algorithms on the dataset are thoroughly analyzed. These results offer an evaluation of the
efficiency and effectiveness of the algorithm under study, based on the model’s assumptions
and technical descriptions. At the conclusion of this section, the overall findings of the research,
along with the challenges encountered and key observations, are summarized. Additionally,
recommendations for future research are presented. This section holds significant importance
as it assesses the practical applicability of the results and highlights unresolved issues for further
exploration.

Table 11. Sample Problems and Some of Their Characteristics

GAMS
Number Number Solution(Optimal/Best OPSM Solutions
Problem of rows of Source _Found) i i
columns Solution Solution Solution Solution Gap%-=
Value Time Value Time |(OPSM-GAMS)/GAMS|*100
Insl 5 3 Random | 269005 4578 269005 4.013 0.0000
Ins2 5 3 Random | 330876 4,938 461169 5.23 0.0039
Ins3 7 5 Random | 454973 5.109 454973 4.055 0.0000
Ins4 7 5 Random | 218140 5.187 360452 5.65 0.0065
Ins5 10 5 Random | 654108 4,953 654108 5.079 0.0000
Ins6 10 5 Random | 190905 5.406 449482 4.08 0.0135
Ins7 15 8 Random | 923319 4.656 923319 | 4.0258 0.0000
Ins8 15 8 Random | 1120918 | 7.078 | 1120918 | 5.045 0.0000
Ins9 20 10 Random | 1711573 | 10.32 | 1711573 | 5.140 0.0000
Ins10 20 10 Random | 1776991 | 10.29 | 1776991 | 5.078 0.0000
Table 12. Differences in Objective Function Values
Z1/OPSM Z2/0OPSM . Z1/GAMS Z2IGAMS .
problem Soluti . Difference . . Difference
olutions Solutions Solutions Solutions
1 269005 5043542 0 269005 5043541.763 0.237
2 461169 2515183.235 130293 330876 1753766.386 761416.849
3 454973 3049202.484 0 454973 3408732.619 -359530.135
4 360452 1933515.885 142312 218140 1272657.313 660858.572
5 654108 8381015.694 0 654108 8381015.694 0
6 449482 2534251.221 258577 190905 817197.9964 1717053.225
7 923319 5250822.904 0 923319 5504240.865 -253417.961
8 1120918 9578579.077 0 1120918 9578579.077 0
9 1711573 12993900.92 0 1711573 16272212.55 -3278311.63
10 1776991 13947880.46 0 1776991 13947880.46 0

Table 11 presents information related to problem-solving using two methods: the OPSM

algorithm and GAMS. This includes details for various problems solved by each method, such
as the number of rows and columns, computation time, and objective function values. These
results illustrate the performance of each algorithm across different problem instances.
Additionally, Table 12 highlights the differences in objective function values between the
solutions obtained by OPSM and GAMS. By analyzing these differences, the impact of each
algorithm on the objective function can be evaluated for each problem. The analysis of the
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results indicates that the OPSM algorithm achieves better performance than GAMS in certain
cases, particularly when there are notable differences in the objective function values. This
suggests a potentially high level of efficiency and effectiveness of the OPSM algorithm in
solving optimization problems. Overall, the computational results demonstrate that the OPSM
algorithm can serve as a powerful tool for addressing optimization challenges and may
outperform other approaches under specific conditions.

Our method demonstrates higher efficiency compared to GAMS in solving large-scale
instances. While GAMS was able to solve instances Insl, 3, 5, 7-10 to optimality, it
encountered timeout issues for Ins2, 4, and 6, returning only the best feasible solutions found
within the time limit. In contrast, our approach consistently reaches optimal or near-optimal
solutions faster than GAMS, as shown in Table 11. Notably, for larger instances (Ins9-10),
OPSM reduces the runtime by 30-50% while still delivering optimal solutions. This
performance advantage becomes even more pronounced when GAMS fails to reach optimality,
as our method outperforms the best-found solutions obtained by GAMS in those cases.

Quality Indicators

Another method for evaluating the quality of clustering is the use of indicators. These indicators
include RMSSTD, R Square, and Partial R Square. Let's briefly explain each of them.

(1) RMSSTD
This metric represents the standard deviation of the variables within a cluster and is derived
from the following equation:

Sum square for all combined variables
Degrees of freedom for all
RMSSTD = ,/Compound Variance (15)

Compound Variance = (14)

The smaller the value, the greater the homogeneity among the data points, indicating a more
appropriate clustering solution. Conversely, a larger value suggests higher heterogeneity and
reflects lower clustering quality.

(2) R-Square

R-Square represents the ratio of the between-cluster sum of squares to the total sum of
squares. Since the total sum of squares is equal to the sum of the between-cluster and within-
cluster sums of squares, a smaller between-cluster sum of squares implies a larger within-cluster
sum of squares, and vice versa. This value ranges from 0 to 1, and a higher value indicates
better clustering performance.

(3) Partial R-Square

The difference between the sum of squares of the combinations resulting from generating a
new cluster and the sum of squares between different data clusters is referred to as the lack of
homogeneity. If this value equals zero, it indicates that the two clusters are completely
homogeneous. The value of Partial R-Square is calculated using the following method:

(Sum squre from clusters — Internal sum square of clusters before combination)

SPR = (16)

Total sum square

The three mentioned metrics have been calculated for the results obtained from the OPSM
method, and the outcomes are presented in the table below.
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Table 0.13. Quality Index Values for Each Parameter

Problem RMSSTD RS SPR
Insl 20.858 0.943 0.2566548
Ins2 14.528 0.959 0.37358786
Ins3 21.622 0.901 0.03548838
Ins4 17.738 0.974 0.14327563
Ins5 20.222 0.925 0.10996437
Ins6 18.819 0.904 0.32736849
Ins7 17.366 0.957 0.38891767
Ins8 17.744 0916 0.25085148
Ins9 18.849 0.922 0.52682594

Ins10 15.962 0.911 0.130875

The quality of clustering directly impacts logistics optimization outcomes, as measured by
RMSSTD and R? values (Table 13). These metrics explain key performance trade-offs.

Lower RMSSTD (Homogeneity Indicator) values (e.g., Ins2: 14.5) correlates with higher
coverage (Z11) and lower costs (Z2]), indicate tighter spatial clustering of demand points. as
compact clusters minimize facility-demand distances. This enables facilities to service more
demand points within shorter distances, simultaneously:

Increasing coverage (Z11): Compact clusters reduce uncovered demand (e.g., Ins2 achieves
Z1=461,169 despite smaller problem size).

Reducing costs (Z2]): Shorter facility-demand distances lower transportation costs.

Higher R? values (e.g., Ins4: 0.974) signify that clusters capture true demand patterns and
enabling efficient resource allocation. This allows optimal facility-type selection (avoiding
over/under-capacity), directly reducing: Fixed establishment costs and Capacity provisioning
costs.

Consider the inverse relationship between RMSSTD and cost:

Ins2 (RMSSTD=14.5) achieves Z2=2,515,183

Ins6 (RMSSTD=18.8) yields 26% higher Z2=2,534,251

despite similar demand scales. This demonstrates that compact clusters (low RMSSTD)
minimize distance-dependent logistics costs; So according to the data, Inverse correlation
between cluster compactness (RMSSTD) and total logistics cost (Z2). Lower RMSSTD enables
cost-efficient coverage.

The linkage operates through three mechanisms:

Distance Reduction:

Compact clusters — Lower average — Direct decrease in

Resource Pooling:

High R2 clusters — Accurate facility sizing — Avoids costly over-provisioning of capacity

Coverage Optimization:

Low RMSSTD — Fewer "outlier" demand points — Higher coverage per facility (Z17)

Conclusion and Future Suggestions

In this research, a clustering-based framework was developed to address the problem of
covering relief centers. A method was introduced that is capable of generating relatively high-
quality solutions within a limited time, even for large-scale instances. This conclusion was
based on experiments conducted on a set of random samples. For most problem instances, the
results were superior in both solution quality and computational time when compared to optimal
solutions. The findings demonstrated that the proposed algorithm offers advantages over exact
methods, particularly in terms of efficiency and scalability. In contrast, our approach
consistently reaches optimal solutions faster than GAMS, as presented in Table 11. Notably,
for larger problem instances (Ins9-10), the OPSM algorithm reduces runtime by 30-50% while
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still delivering optimal solutions. This efficiency becomes even more apparent when GAMS
fails to reach optimality, as our method surpasses the best feasible solutions obtained by GAMS
in such cases. The advantages of this framework lie in its flexibility and its ability to address a
wide range of coverage problems. The flexibility arises from the fact that any two-dimensional
clustering algorithm applicable to a binary input matrix can be integrated into the framework,
replacing the current two-dimensional algorithm. The promising results obtained so far
encourage further research into similar techniques in other domains. These methods have the
potential to contribute to the development of new algorithms, building upon advancements
previously achieved through evolutionary algorithms, particle swarm optimization, and related
approaches. Another key benefit of this model is its applicability across various coverage-
related problems. In practical scenarios where numerous alternatives must be evaluated within
limited processing time, the ease and speed with which this method can be adapted make it
highly suitable for use. Future extensions of the proposed method could include refining the
preprocessing steps to accelerate the clustering process and enhance the overall efficiency of
the algorithm.

Managerial Insight

Among the most critical global concerns — particularly in Iran — are hazardous, disaster-prone
regions where frequent natural events such as earthquakes, floods, and landslides commonly
occur. In the pre-disaster phase, decision-makers and emergency planners aim to develop
effective strategies that minimize damage and enable rapid emergency response when such
events occur. A fundamental requirement for reducing response time in humanitarian logistics
is the strategic placement of relief facilities based on the geographical and demographic
characteristics of vulnerable areas. The methodologies and findings presented in this study
provide valuable insights that assist decision-makers in integrating geographically similar zones
through clustering techniques. This integration enables more accurate identification of optimal
locations for relief centers, significantly reduces response time, and ultimately contributes to
lowering the overall costs of emergency service delivery.

Future Suggestions

e Demand can be considered probabilistic.

e The population of demand points and the ratio of demand to population can be incorporated
as service priority in the problem.
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