[1] J. R. Vergara and P. A. Estévez, “A review of feature selection methods based on mutual information,” Neural Comput. Appl., vol. 24, no. 1, pp. 175–186, Jan. 2014, doi: 10.1007/S00521-013-1368-0/METRICS.
[2] M. DASH and H. LIU, “Feature selection for classification,” Intell. Data Anal., vol. 1, no. 1–4, pp. 131–156, Jan. 1997, doi: 10.1016/S1088-467X (97)00008-5.
[3] R. Sihwail, K. Omar, K. A. Z. Ariffin, and M. Tubishat, “Improved Harris Hawks Optimization Using Elite Opposition-Based Learning and Novel Search Mechanism for Feature Selection,” IEEE Access, vol. 8, pp. 121127–121145, 2020, doi: 10.1109/ACCESS.2020.3006473.
[4] K. H. Sheikh et al., “EHHM: Electrical harmony based hybrid meta-heuristic for feature selection,” IEEE Access, vol. 8, pp. 158125–158141, 2020, doi: 10.1109/ACCESS.2020.3019809.
[5] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A Survey on Evolutionary Computation Approaches to Feature Selection,” IEEE Trans. Evol. Comput., vol. 20, no. 4, pp. 606–626, 2016, doi: 10.1109/TEVC.2015.2504420.
[6] M. Du, K. Wang, Z. Xia, and Y. Zhang, “Differential Privacy Preserving of Training Model in Wireless Big Data with Edge Computing,” IEEE Trans. Big Data, vol. 6, no. 2, pp. 283–295, 2018, doi: 10.1109/tbdata.2018.2829886.
[7] F. Peres and M. Castelli, “Combinatorial Optimization Problems and Metaheuristics: Review, Challenges, Design, and Development,” Appl. Sci., vol. 11, no. 14, p. 6449, Jul. 2021, doi: 10.3390/app11146449.
[8] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, 1997, doi: 10.1109/4235.585893.
[9] Z. Sadeghian, E. Akbari, H. Nematzadeh, and H. Motameni, “A review of feature selection methods based on meta-heuristic algorithms,” J. Exp. Theor. Artif. Intell., 2023, doi: 10.1080/0952813X.2023.2183267.
[10] H. Rao et al., “Feature selection based on artificial bee colony and gradient boosting decision tree,” Appl. Soft Comput. J., vol. 74, pp. 634–642, 2019, doi: 10.1016/j.asoc.2018.10.036.
[11] Z. M. Elgamal, N. B. M. Yasin, M. Tubishat, M. Alswaitti, and S. Mirjalili, “An improved harris hawks optimization algorithm with simulated annealing for feature selection in the medical field,” IEEE Access, vol. 8, pp. 186638–186652, 2020, doi: 10.1109/ACCESS.2020.3029728.
[12] M. Tubishat, N. Idris, L. Shuib, M. A. M. Abushariah, and S. Mirjalili, “Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection,” Expert Syst. Appl., vol. 145, 2020, doi: 10.1016/j.eswa.2019.113122.
[13] N. Neggaz, E. H. Houssein, and K. Hussain, “An efficient henry gas solubility optimization for feature selection,” Expert Syst. Appl., vol. 152, 2020, doi: 10.1016/j.eswa.2020.113364.
[14] P. Hu, J. S. Pan, and S. C. Chu, “Improved Binary Grey Wolf Optimizer and Its application for feature selection,” Knowledge-Based Syst., vol. 195, 2020, doi: 10.1016/j.knosys.2020.105746.
[15] F. Kılıç, Y. Kaya, and S. Yildirim, “A novel multi population based particle swarm optimization for feature selection,” Knowledge-Based Syst., vol. 219, 2021, doi: 10.1016/j.knosys.2021.106894.
[16] H. Alazzam, A. Sharieh, and K. E. Sabri, “A feature selection algorithm for intrusion detection system based on Pigeon Inspired Optimizer,” Expert Syst. Appl., vol. 148, 2020, doi: 10.1016/j.eswa.2020.113249.
[17] M. Abdel-Basset, G. Manogaran, D. El-Shahat, and S. Mirjalili, “A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem,” Futur. Gener. Comput. Syst., vol. 85, pp. 129–145, 2018, doi: 10.1016/j.future.2018.03.020.
[18] M. Tubishat, M. Alswaitti, S. Mirjalili, M. A. Al-Garadi, M. T. Alrashdan, and T. A. Rana, “Dynamic butterfly optimization algorithm for feature selection,” IEEE Access, vol. 8, pp. 194303–194314, 2020, doi: 10.1109/ACCESS.2020.3033757.
[19] M. D. Toksari, “A hybrid algorithm of Ant Colony Optimization (ACO) and Iterated Local Search (ILS) for estimating electricity domestic consumption: Case of Turkey,” Int. J. Electr. Power Energy Syst., vol. 78, pp. 776–782, 2016, doi: 10.1016/j.ijepes.2015.12.032.
[20] C. Yan, J. Ma, H. Luo, and A. Patel, “Hybrid binary Coral Reefs Optimization algorithm with Simulated Annealing for Feature Selection in high-dimensional biomedical datasets,” Chemom. Intell. Lab. Syst., vol. 184, pp. 102–111, 2019, doi: 10.1016/j.chemolab.2018.11.010.
[21] M. Shehab, A. T. Khader, M. A. Al-Betar, and L. M. Abualigah, “Hybridizing cuckoo search algorithm with hill climbing for numerical optimization problems,” ICIT 2017 - 8th Int. Conf. Inf. Technol. Proc., pp. 36–43, 2017, doi: 10.1109/ICITECH.2017.8079912.
[22] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, “Multi-Verse Optimizer: a nature-inspired algorithm for global optimization,” Neural Comput. Appl., vol. 27, no. 2, pp. 495–513, 2016, doi: 10.1007/s00521-015-1870-7.
[23] M. Tubishat, Z. Rawshdeh, H. Jarrah, Z. M. Elgamal, A. Elnagar, and M. T. Alrashdan, “Dynamic generalized normal distribution optimization for feature selection,” Neural Comput. Appl., vol. 34, no. 20, pp. 17355–17370, 2022, doi: 10.1007/s00521-022-07398-9.
[24] M. M. Mafarja and S. Mirjalili, “Hybrid Whale Optimization Algorithm with simulated annealing for feature selection,” Neurocomputing, vol. 260, pp. 302–312, 2017, doi: 10.1016/j.neucom.2017.04.053.
[25] Q. Al-Tashi, S. J. Abdul Kadir, H. M. Rais, S. Mirjalili, and H. Alhussian, “Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection,” IEEE Access, vol. 7, pp. 39496–39508, 2019, doi: 10.1109/ACCESS.2019.2906757.
[26] E. Emary, H. M. Zawbaa, and A. E. Hassanien, “Binary ant lion approaches for feature selection,” Neurocomputing, vol. 213, pp. 54–65, 2016, doi: 10.1016/j.neucom.2016.03.101.
[27] S. B. Imandoust and M. Bolandraftar, “Application of K-Nearest Neighbor (KNN) Approach for Predicting Economic Events: Theoretical Background,” Int. J. Eng. Res. Appl., vol. 3, no. 5, pp. 605–610, 2013, Accessed: Jul. 19, 2024. [Online]. Available: www.ijera.com
[28] L. Wang, L. Khan, and B. Thuraisingham, “An effective evidence theory based K-nearest neighbor (KNN) classification,” Proc. - 2008 IEEE/WIC/ACM Int. Conf. Web Intell. WI 2008, pp. 797–801, 2008, doi: 10.1109/WIIAT.2008.411.
[29] K. Hussain, N. Neggaz, W. Zhu, and E. H. Houssein, “An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection,” Expert Syst. Appl., vol. 176, p. 114778, Aug. 2021, doi: 10.1016/J.ESWA.2021.114778.
[30] J. Too and S. Mirjalili, “A Hyper Learning Binary Dragonfly Algorithm for Feature Selection: A COVID-19 Case Study,” Knowledge-Based Syst., vol. 212, p. 106553, Jan. 2021, doi: 10.1016/J.KNOSYS.2020.106553.
[31] I. Aljarah, M. Mafarja, A. A. Heidari, H. Faris, Y. Zhang, and S. Mirjalili, “Asynchronous accelerating multi-leader salp chains for feature selection,” Appl. Soft Comput., vol. 71, pp. 964–979, Oct. 2018, doi: 10.1016/J.ASOC.2018.07.040.
[32] M. Mafarja et al., “Evolutionary Population Dynamics and Grasshopper Optimization approaches for feature selection problems,” Knowledge-Based Syst., vol. 145, pp. 25–45, Apr. 2018, doi: 10.1016/J.KNOSYS.2017.12.037.
[33] M. M. Mafarja and S. Mirjalili, “Hybrid Whale Optimization Algorithm with simulated annealing for feature selection,” Neurocomputing, vol. 260, pp. 302–312, Oct. 2017, doi: 10.1016/J.NEUCOM.2017.04.053.
[34] M. Tubishat, Z. Rawshdeh, H. Jarrah, Z. M. Elgamal, A. Elnagar, and M. T. Alrashdan, “Dynamic generalized normal distribution optimization for feature selection,” Neural Comput. Appl., vol. 34, no. 20, pp. 17355–17370, Oct. 2022, doi: 10.1007/s00521-022-07398-9.
[35] M. Tubishat et al., “Dynamic Salp swarm algorithm for feature selection,” Expert Syst. Appl., vol. 164, p. 113873, Feb. 2021, doi: 10.1016/j.eswa.2020.113873.
[36] A. E. Hegazy, M. A. Makhlouf, and G. S. El-Tawel, “Improved salp swarm algorithm for feature selection,” J. King Saud Univ. - Comput. Inf. Sci., vol. 32, no. 3, pp. 335–344, Mar. 2020, doi: 10.1016/j.jksuci.2018.06.003.
[37] A. E. Hegazy, M. A. Makhlouf, and G. S. El-Tawel, “Feature Selection Using Chaotic Salp Swarm Algorithm for Data Classification,” Arab. J. Sci. Eng., vol. 44, no. 4, pp. 3801–3816, Apr. 2019, doi: 10.1007/s13369-018-3680-6.
[38] S. Arora and P. Anand, “Binary butterfly optimization approaches for feature selection,” Expert Syst. Appl., vol. 116, pp. 147–160, Feb. 2019, doi: 10.1016/j.eswa.2018.08.051.
[39] T. Thaher, A. A. Heidari, M. Mafarja, J. S. Dong, and S. Mirjalili, “Binary Harris Hawks Optimizer for High-Dimensional, Low Sample Size Feature Selection,” 2020, pp. 251–272. doi: 10.1007/978-981-32-9990-0_12.
[40] E. BAŞ and E. ÜLKER, “An efficient binary social spider algorithm for feature selection problem,” Expert Syst. Appl., vol. 146, p. 113185, May 2020, doi: 10.1016/j.eswa.2020.113185.