1- Samavat, T., Hojjatzadeh, A., Shams, M., Afkhami, A., Mahdavi, A., Bashti, Sh., Pouraram, H., Ghotbi, M., Rezvani, A. (1391). “Prevention and control of cardiovascular disease (for government employees).”second edition.
2- Selker, H.P., Griffith, J.L., Patil, S., Long, W.J., D'Agostino, R.B. (1995). “A comparison of performance of mathematicalpredictive methods for medical diagnosis: identifying acute cardiac ischemia among emergency department patients. ”J. Investig. Med, Vol. 43, PP. 468-476.
3- Wang, S.J., Ohno-Machado, L., Fraser, H.S., Lee Kennedy, R. (2001). “Using patient-reportable clinicalhistory factors to predict myocardial infarction. ”Computers in Biology and Medicine, Vol, 31, PP. 1-13.
4- Kennedy, R.L., Burton, A.M., Fraser, H.S.,McStay, L.N., Harrison, R.F. (1996).“Early diagnosisof acutemyocardial infarction using clinical and electrocardiographic data at presentation: derivationand evaluation of logistic regression models. ”Eur. Heart J., Vol. 17, PP. 1181-1191.
5- Do, D., West, J.A., Morise, A., Atwood, E.,Froelicher, V. (1997). “A consensus approach to diagnosingcoronary artery disease based on clinical and exercise test data. ”Chest, Vol. 111, PP. 1742- 1749.
6- Haraldsson, H.,Edenbrandt, L.,Ohlsson, M. (2004).“Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions and neural networks. ”Artificial Intelligence in Medicine,Vol. 32, PP. 127-136.
7- Biglarian, A., Hajizadeh, E., Kazemnejad, A., Zayeri, F. (2010). “Determining of prognostic factors in gastric cancer patients using artificial neural networks. ”Asian Pac J Cancer Prev, Vol.11(2), PP. 533-536.
8- Anooj, P.K. (2012). “Clinical decision support system: Risk level prediction of heart disease usingweighted fuzzy rules. ”Journal of King Saud University – Computer and Information Sciences,Vol. 24, PP. 27-40.
9- Rajeswari, K., Vaithiyanathan, V.,Neelakantan, T.R. ( 2012 ). “ Feature Selection in Ischemic Heart DiseaseIdentification using Feed Forward Neural Networks. ”Procedia Engineering, Vol. 41, PP. 1818 – 1823 .
10- Atkov, O.YU.,Gorokhova, S.G., Sboev, A.G., Generozov, E.V., Muraseyeva, E.V., Moroshkina, S.Y., Cherniy, N.N. (2012). “Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters. ”Journal of Cardiology, Vol. 59, PP. 190-194.
11- Safdari, R.,GhaziSaeedi, M.,Arji, G.,Gharooni, M.,Soraki, M.,Nasiri, M. (2013).“A model for predictingmyocardial infarction using data mining techniques. ”Iranian journal of medical informatics, vol 2, issue 4.
12- Suchithra, Maheswari, P.U. (2014). “Survey on Clinical Decision Support System for DiagnosingHeartDisease. ”International Journal of Computer Science and Mobile Computing, vol 3, Issue 2, PP. 21-28 .
13- Heden, B., Ohlin, H.,Rittner, R.,Edenbrandt, L. (1997).“Acute myocardial infarction detected in the 12-lead ECG byartificial neural networks. ”Circulation, Vol. 96, PP. 1798-1802.
14-
Harrison, R.F.,
Kennedy, R.L. (2005). “Artificial neural network models for prediction of acutecoronary syndromes using clinical data from the time of presentation. ”
Ann Emerg Med, Vol. 46, PP. 431-439.
15- Austin, P.C.,Tu, J.V., Ho, J.E., Levy, D., Lee, D.S. (2013). “Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. ”Journal of Clinical Epidemiology, Vol. 66, PP. 398-407.
16- Chen, C.M., Hsu, C.Y., Chiu, H.W., Rau, H.H. (2011). “Prediction of survival in patients with liver cancerusing artificial neural networks and classification and regression trees. ”IN Natural Computation (ICNC),Seventh International Conference on Vol. 2, pp. 811-815. IEEE.
17- Vinterbo, S.,Ohno-Machado, L. (1999). “A genetic algorithm to select variables in logistic regression: example in the domain of myocardial infarction. ”Proceedings of AMIA Annual Fall Symposium, pp. 984-988.
18- Kurt, I., Ture, M., Kurum, AT. (2008). “Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. ”Expert SystAppl, Vol. 34, PP. 366-374.
19- Zweig, M.H., Campbell, G. (1993). “Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. ”Clin. Chem., Vol. 39, PP. 561-577.
20- Scott, M. (2001). “Applied logistic Regression Analysis. ”Second Publication,Sage Publication.