A Multiple Objective Programming Model for Designing of Supply Chain Network with Efficient Manufacturers and Distributers

Document Type : Research Paper

Authors

Faculty of Industrial Engineering, Urmia University of Technology, Urmia, Iran

Abstract

One of the most important decisions in supply chain network (SCN) design is choosing the optimal location for the facilities. The facilities in SCN have different efficiency according to their locations. In this paper, efficiency of facilities is added to the supply chain network design by using data envelopment analysis model, and a multi-objective model is presented for the design of efficient supply chain network. The proposed model chooses the most appropriate place for manufacturers and distributors thereby decreases the total cost of the supply chain and simultaneously increases the efficiency. The desired supply chain has several raw materials and products, with four layers of suppliers, manufacturers, distributors and customers. The proposed model is locating manufacturers and distributors, and planning the purchase of any suppliers. The results of numerical example show that adding efficiency promotes the supply chain network model. Namely, with regard to the tradeoff between cost and efficiency objectives, SCN design with efficient facilities is better than networks based only on cost objective function.

Keywords

Main Subjects


  1. Castillo-Villar, K. K., Smith, N. R. and Herbert-Acero, J. F. (2014). “Design and optimization of capacitated supply chain networks including quality measures”, Mathematical Problems in Engineering, Vol. 2014, 17, doi:10.1155/2014/218913.
  2. Bala, K. (2014). “Supply chain management: Some issues and challenges-a review”, International Journal of Current Engineering and Technology, Vol. 4, No. 2, PP. 947- 953.
  3. S. Chopra, P. Meindl, (2007). Supply Chain Management: Strategy, Planning and Operations. Prentice Hall, New Jersey.
  4. Melo, M. T. S. N and da Gama, F. S. (2005). “Dynamic multi-commodity capacitated facility location: A mathematical modeling framework for strategic supply chain planning”, Computers and Operations Research, Vol. 33, No.1, PP. 181- 208.
  5. Melo, M. T., Nickel, S. and Saldanha-Da-Gama, F. (2009). “Facility location and supply chain management–A review”, European Journal of Operational Research, Vol. 196, No. 2, PP. 401- 412.
  6. Correia, I., Melo, T. and Saldanha-da-Gama, F. (2013). “Comparing classical performance measures for a multi-period, two-echelon supply chain network design problem with sizing decisions”, Computers & Industrial Engineering, Vol. 64, No. 1, PP. 366- 380.
  7. Solo, C. J. (2009). Multi-objective, integrated supply chain design and operation under uncertainty. Ph.D thesis, The Pennsylvania State University, https://etda.libraries.psu.edu/paper/9709/5222
  8. Pan, F. and Nagi, R. (2013). “Multi-echelon supply chain network design in agile manufacturing”, Omega, Vol. 41, No. 6, PP. 969- 983.
  9. Seuring, S. (2013). “A review of modeling approaches for sustainable supply chain management”, Decision Support Systems, Vol. 54, No. 4, PP. 1513- 1520.
  10. 10.  Tang, O. and Nurmaya Musa, S. (2011). “Identifying risk issues and research advancements in supply chain risk management”, International Journal of Production Economics, Vol. 133, No.1, PP. 25- 34.
  11. 11.  Minner, S. (2003). “Multiple-supplier inventory models in supply chain management: A review”, International Journal of Production Economics, Vol. 81, PP. 265- 279.
  12. 12.  Sarkis, J., Zhu, Q. and Lai, K. H. (2011). “An organizational theoretic review of green supply chain management literature”, International Journal of Production Economics, Vol. 130, No. 1, PP. 1- 15.
  13. 13.  Meixell, M. J. and Gargeya, V. B. (2005). “Global supply chain design: A literature review and critique”, Transportation Research Part E: Logistics and Transportation Review, Vol. 41, No. 6, PP. 531- 550.
    1.  Gan, M., Li, Z. and Chen, S. (2014). “On the transformation mechanism for formulating a multiproduct two-layer supply chain network design problem as a network flow model”, Mathematical Problems in Engineering, Vol. 2014, doi:10.1155/2014/480127.
  14. 15.  Xu, N. and Nozick, L. (2009). “Modeling supplier selection and the use of option contracts for global supply chain design”, Computers & Operations Research, Vol. 36, No. 10, PP. 2786- 2800.
  15. 16.  Syam, S. S. and Côté, M. J. (2010). “A location–allocation model for service providers with application to not-for-profit health care organizations”, Omega, Vol. 38, No. 3, PP. 157- 166.
  16. 17.  Altiparmak, F., Gen, M., Lin, L. and Paksoy, T. (2006). “A genetic algorithm approach for multi-objective optimization of supply chain networks”, Computers & Industrial Engineering, Vol. 51, No. 1, PP. 196- 215.
  17. 18.  Altiparmak, F., Gen, M., Lin, L. and Karaoglan, I. (2009). “A steady-state genetic algorithm for multi-product supply chain network design”, Computers & Industrial Engineering, Vol. 56, No. 2, PP. 521- 537.
  18. 19.  Sahraeian, R., Bashiri, M. and Ramezani, M. (2010). “A Stochastic multi-product, multi-stage supply chain design considering products waiting time in the queue”, International Conference of Industrial Engineering and Operations Management Dhaka, Bangladesh.
  19. 20.  Bashiri, M. et al., (2010). Facilities Planning II: Applications & research areas, Shahed University Pub. Co., Tehran.
  20. 21.  Georgiadis, M. C., Tsiakis, P., Longinidis, P. and Sofioglou, M. K. (2011). “Optimal design of supply chain networks under uncertain transient demand variations”, Omega, Vol. 39, No. 3, PP. 254- 272.
  21. 22.  Baghalian, A., Rezapour, S. and Farahani, R. Z. (2013). “Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case”, European Journal of Operational Research, Vol. 227, No. 1, PP. 199- 215.
  22. 23.  Mirzapour Al-E-Hashem, S. M. J., Malekly, H. and Aryanezhad, M. B. (2011). “A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty”, International Journal of Production Economics, Vol. 134, No. 1, PP. 28- 42.
  23. 24.  Pishvaee, M. S., Rabbani, M. and Torabi, S. A. (2011). “A robust optimization approach to closed-loop supply chain network design under ncertainty”, Applied Mathematical Modeling, Vol. 35, No. 2, PP. 637-649.
  24. 25.  Pishvaee, M. S. and Torabi, S. A. (2010). “A possibilistic programming approach for closed-loop supply chain network design under uncertainty”, Fuzzy sets and systems, Vol. 161, No. 20, PP. 2668- 2683.
  25. 26.  Pishvaee, M. S., Razmi, J. and Torabi, S. A. (2012). “Robust possibilistic programming for socially responsible supply chain network design: A new approach”, Fuzzy Sets and Systems, Vol. 206, PP. 1- 20.
  26. 27.  Tavana, M., Mirzagoltabar, H., Mirhedayatian, S. M., Saen, R. F. and Azadi, M. (2013). “A new network epsilon-based DEA model for supply chain performance evaluation”, Computers & Industrial Engineering, Vol. 66, No. 2, PP. 501- 513.
  27. 28.  Parmigiani, A., Klassen, R. D. and Russo, M. V. (2011). “Efficiency meets accountability: Performance implications of supply chain configuration, control, and capabilities”, Journal of Operations Management, Vol. 29, No. 3, PP. 212- 223.
  28. 29.  Shafiee, M., Lotfi, F. H. and Saleh, H. (2014). “Supply chain performance evaluation with data envelopment analysis and balanced scorecard approach.” Applied Mathematical Modelling, Vol. 38, No. 21, PP. 5092-5112.
  29. 30.  Charnes, A., Cooper, W. W. and Rhodes, E. (1978). “Measuring the efficiency of decision making units”, European Journal of Operational Research, Vol. 2, No. 6, PP. 429- 444.
  30. 31.  Klimberg, R. K. and Ratick, S. J. (2008). “Modeling data envelopment analysis (DEA) efficient location/allocation decisions”, Computers & Operations Research, Vol. 35, No. 2, PP. 457- 474.
  31. 32.  Moheb-Alizadeh, H., Rasouli, S. M. and Tavakkoli-Moghaddam, R. (2011). “The use of multi-criteria data envelopment analysis (MCDEA) for location–allocation problems in a fuzzy environment”, Expert Systems with Applications, Vol. 38, No. 5, PP. 5687- 5695.
  32. 33.  Ganeshan, R. and Harrison, T. P. (1995). “An introduction to supply chain management”, Department of Management Science and Information Systems, Vol. 1, No.1, PP. 1-7.
  33. 34.  Shen, Z. (2007). “Integrated supply chain design models: A survey and future research directions”, Journal of Industrial and Management Optimization, Vol. 3, No. 1, PP. 1- 12.
  34. 35.  Pierce, N. A. and Giles, M. B. (1997). “Preconditioned multi-grid methods for compressible flow calculations on stretched meshes”, Journal of Computational Physics, Vol. 136, No. 2, PP. 425- 445.
  35. 36.  Porembski, M., Breitenstein, K. and Alpar, P. (2005). “Visualizing efficiency and reference relations in data envelopment analysis with an application to the branches of a German bank”, Journal of Productivity Analysis, Vol. 23, No. 2, PP. 203- 221.
  36. 37.  Salema, M. I. G., Barbosa-Povoa, A. P. and Novais, A. Q. (2007). “An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty”, European Journal of Operational Research, Vol. 179, No. 3, PP. 1063- 1077.
  37. 38.  Koski, J. and Silvennoinen, R. (1987). “Norm methods and partial weighting in multi-criterion optimization of structures”, Int. J. Numer. Methods Eng., Vol. 24, No.6, PP. 1101– 1121.
  38. 39.  Yoon, K. P. and Hwang, C. L. (1995). Multiple Attribute Decision Making, an Introduction, Sage Publications, London.
  39. 40.  Messac, A., Sukam, C. P. and Melachrinoudis, E. (2000). “Aggregate objective functions and Pareto frontiers: Required relationships and practical implications”, Optim. Eng., Vol. 1, No.2, PP. 171– 188.
  40. 41.  Messac, A. and Hattis, P. (1996). “Physical programming design optimization for high speed civil transport (HSCT)”, J. Aircr., Vol. 33, No.2, PP. 446– 449.
  41. 42.  Das, I. and Dennis, J. E. (1998). “Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multi-criteria optimization problems”, SIAM J. Optim., Vol. 8, No.3, PP. 631– 657.
  42. 43.  Messac, A., Sundararaj, G. J., Tappeta, R. V. and Renaud, J. E. (2000). “Ability of objective functions to generate points on nonconvex Pareto frontiers”, AIAA J., Vol. 38, No.6, PP. 1084– 1091.
  43. 44.  Das, I. and Dennis, J. E. (1997). “A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multi-criteria optimization problems”, Struct. Optim., Vol. 14, No.1, PP. 63– 69.
  44. 45.  Miettinen, K. (1999). Nonlinear Multi-objective Optimization, Kluwer Academic Publishers, Boston.
  45. 46.  Ruiz-Canales, P. and Rufian-Lizana, A. (1995). “A characterization of weakly efficient points”, Math. Program., Vol. 68, No.1, PP. 205– 212.
  46. 47.  Chankong, V. and Haimes, Y. Y. (1983). Multi-objective Decision Making Theory and Methodology, Elsevier Science Publishing, New York.
  47. 48.  Carmichael, D. G. (1980). “Computation of Pareto optima in structural design”, Int. J. Numer. Methods Eng., Vol. 15, No.6, PP. 925– 952.
  48. 49.  Laumanns, M., Thiele, L. and Zitzler, E. (2006). “An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method.”, European Journal of Operational Research, Vol. 169, No. 3, PP. 932- 942.

50. Bérubé, J. F., Gendreau, M. and Potvin, J. Y. (2009). “An exact ϵ-constraint method for bi-objective combinatorial optimization problems: Application to the traveling salesman problem with profits”, European Journal of Operational Research, Vol. 194. No. 1, PP. 39- 50.