1. Russell, A. H. (1970). “Cash flows in networks”, Management Sci., Vol. 16, No. 5, PP. 357- 373.
2. Grinold, R. C. (1972). “The payment scheduling problem”, Naval Research Logistics Quarterly, Vol. 19, No. 1, PP. 123- 136.
3. Amin-Tahmasbi, H., Tavakkoli-Moghaddam, R. & Iranmansh, H. (2009). “Project planning in presence of resource constraint with immune algorithm”, 5th Int project management Conf., Tehran.
4. Khalili-Damghani, K., Tavakkoli-Moghaddam, R. & Tabari, M. (2011). “Solve of resource-constrained project scheduling problem using modified ant colony algorithm”, J. of Industrial Engineering, Vol. 45, No. 1, PP. 59- 69.
5. Talbot, F. B. (1982). “Resource-constrained project scheduling with time-resource trade-offs: The nonpreemptive case”, Management Sci., Vol. 28, No. 10, PP. 1197– 1210.
6. Al-Fawzan, M. A. & Haouari, M. (2005). “A bi-objective model for robust resource-constrained project scheduling”, Int.J.of Production Economics, Vol. 96, No. 2, PP. 175-187.
7. Peteghem, V. & Vanhoucke, M. (2010). “A genetic algorithm for the preemptive and on reemptive multi-mode resource constrained project-scheduling problem”, European Journal of Operational Research, Vol. 201, No. 2, PP. 409– 418.
8. Seifi, M. & Tavakkoli-Moghaddam, R. (2008). “A new bi-objective model for a multimode resource-constrained project scheduling problem with discounted cash flows and four payments model”, International Journal of Engineering, Transactions A: Basics, Vol. 21, No. 4, PP. 347– 360.
9. Chen, Z. J. & Chyu, C. C. (2010). “A dual-population memetic algorithm for minimizing total cost of multi-mode resource-constrained project scheduling”, Industrial Engineering and Management Systems, Vol. 9, No. 2, PP. 70- 79.
10. Coelho, J. & Vanhoucke, M. (2011). “Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers Original”, European Journal of Operational Research, Vol. 213, No. 1, PP. 73- 82.
11. Azimi, F., Aboutalebi, R. & Najafi, A. A. (2011). “Using multi-objective particle swarm optimization for bi-objective multi-mode resource-constrained project scheduling problem”, World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, Vol. 5, No. 6, PP. 1015- 1019.
12. Wang, L. & Fang, Ch. (2012). “An effective estimation of distribution algorithm for the multi-mode resource-constrained project scheduling problem”, Computers & Operations Research, Vol, 39. No. 2, PP. 449- 460.
13. Li, H. & Zhang, H. (2013). “Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints”, Automation in Construction, Vol. 35, PP. 431- 438.
14. Hao, X., Lin, L. & Gen, M. (2014). “An effective multi-objective EDA for robust resource constrained project scheduling with uncertain durations”, Procedia Computer Science, Vol. 36, PP. 571- 578.
15. Roghanian, E. (2014). “A Bi-objective pre-emption multi-mode resource constrained project scheduling problem with due dates in the activities”, Journal of Optimization in Industrial Engineering, Vol 7, No. 15, PP. 15- 25
16. Cheng, J., Fowler, J., Kempf, K. & Mason, S. (2015). “Multi-mode resource-constrained project scheduling problems with non-preemptive activity splitting”, Computers & Operations Research, Vol. 53, PP. 275- 287.
17. Shou, Y., Li, Y. & Lai, Ch. (2015). “Hybrid particle swarm optimization for preemptive resource-constrained project scheduling”, Neurocomputing, Vol. 148, PP. 122- 128.
18. Moukrim, A., Quilliot, A. & Toussaint, H. (2015). “An effective branch-and-price algorithm for the preemptive resource constrained project scheduling problem based on minimal Interval Order Enumeration”, European Journal of Operational Research, Vol. 244, No. 2, PP. 360- 368.
19. Farshidi, S. & Ziarati, K. (2016). “A bi- population genetic algorithm with two novel greedy mode selection methods for MRCPSP”, ACSIJ Advances in Computer Science: An International Journal, Vol. 5, No. 22, PP. 66- 77.
20. Asta, Sh. Karapetyan, D. Kheiri, A. Özcan, E. & Parkes, A. J. (2016). “Combining Monte-Carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-project scheduling problem”,
Information Sciences, Vol. 373, PP. 476- 498.
21. Elloumi, S., Fortemps, Ph. & Loukilc, T. (2017). “Multi-objective algorithms to multi-mode resource-constrained projects under mode change disruption”, Computers & Industrial Engineering, Vol. 106, PP. 161– 173.
22. Ballestín, F. & Blanco, R. (2011). “Theoretical and practical fundamentals for multi-objective optimization in resource-constrained project scheduling problems”, Computers & Operations Research, Vol. 38, No. 1, PP. 51– 62.
23. Buddhakulsomsiri, J. & Kim, D. S. (2006). “Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting”, European Journal of Operational Research, Vol. 175, No. 1, PP. 279- 295.
24. Liu, B., Wang, L. & Jin, Y. H. (2008). “An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers”, Computers & Operations Research, Vol. 35, No. 9, PP. 2791- 2806.
25. Chen, R. M., Wu, C. L., Wang, C. M. and Lo, S. T. (2010). “Using novel particle swarm optimization scheme to solve resource-constrained scheduling problem in PSPLIB”, Expert systems with applications, Vol. 37, No. 3, PP. 1899- 1910.
26. Tavakkoli-Moghaddam, R., Azarkish, M. & Sadeghnejad-Barkousaraie, A. (2011). “Solving a multi-objective job shop-scheduling problem with sequence-dependent setup times by a Pareto archive PSO combined with genetic operators and VNS”, The International Journal of Advanced Manufacturing Technology, Vol. 53, No. 5- 8, PP. 733- 750.
27. Amiri, M., Abtahi, A. R. & Khalili-Damghani, K. (2013). “Solving a generalised precedence multi-objective multi-mode time-cost-quality trade-off project-scheduling problem using a modified NSGA-II algorithm”, International Journal of Services and Operations Management, Vol. 14, No. 3, PP. 355- 372.
28. Coello Coello, C. A., Van Veldhuizen, D. A. & Lamont, G. B. (2002). Evaluationary algorithm for solving multi-objective problems, Kluwer Academic Pub. Co., New York.