1. Hakimi, S. L. (1965). "Optimum distribution of switching centers in a communication network and some related graph theoretic problems." Operations Research, Vol. 13, No. 3, pp. 462-475.
2. Daskin, M. (1997). Network and discrete location:Modeles, algorithms and applications. Wiley, New York.
3. Drezner, Z., Hamacher, H. W. (Eds.). (2001). Facility location: applications and theory. Springer Science and Business Media.
4. Love, R. F., Morris, J. G., and Wesolowsky, G. O. (1988). Facilities location. Chapter, 3, pp. 51-60.
5. Burton, D., and Toint, P. L. (1992). "On an instance of the inverse shortest paths problem." Mathematical Programming, Vol. 53, No. 1, pp. 45-61.
6. Heuberger, C. (2004). "Inverse combinatorial optimization: A survey on problems, methods, and results." Journal of combinatorial optimization, Vol. 8, No. 3, pp. 329-361.
7. Cai, M. C., Yang, X. G., and Zhang, J. Z. (1999). "The complexity analysis of the inverse center location problem." Journal of Global Optimization, Vol. 15, No. 2, pp. 213-218.
8. Yang, X., and Zhang, J. (2008). "Inverse center location problem on a tree." Journal of Systems Science and Complexity, Vol. 21, No. 4, pp. 651–664.
9. Burkard, R. E., Pleschiutschnig, C., and Zhang, J. (2004). "Inverse median problems." Discrete Optimization, Vol. 1, No. 1, pp. 23-39.
10. Burkard, R. E., Pleschiutschnig, C., and Zhang, J. (2008). "The inverse 1-median problem on a cycle." Discrete Optimization, Vol. 5, No. 2, pp. 242-253.
11. Alizadeh, B., Burkard, R. E., and Pferschy, U. (2009). "Inverse 1-center location problems with edge length augmentation on trees." Computing, Vol. 86, No. 4, pp. 331-343.
12. Alizadeh, B., Burkard, R. E. (2011). "Combinatorial algorithms for inverse absolute and vertex 1‐center location problems on trees." Networks, Vol. 58, No. 3, pp. 190-200.
13.Hartman, J. M.,
and Kincaid, R. K. (2014). "P-Median Problems with Edge Reduction."
Systems and Information Engineering Design Symposium, pp. 159-161.
14. Nguyen, K. T., Sepasian, A. R. (2016). "The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance." Combinatorial Optimization, Vol. 32, No. 3, pp. 872-884.
15. Nguyen, K. T., Chassein, A. (2015). "The inverse convex ordered 1-median problem on trees under Chebyshev norm and Hamming distance." European Journal of Operational Research, Vol. 247, No. 3, pp. 774-781.
16. Nguyen, K. T., and Anh, L. Q. (2015). "Inverse k-centrum problem on trees with variable vertex weights." Mathematical Methods of Operations Research, Vol. 82, No. 1, pp. 19-30.
17. Nguyen, K. T. (2016). "Reverse 1-center problem on weighted trees." Optimization, Vol. 65, No. 1, pp. 253-264.
18.
Wolsey, L.,
Nemhauser, G. (1999). "Integer and Combinatorial Optimization."
19.Rashidifard, N., et al., (2014). "Optimal locate fire stations in urban traffic networks to aid the earthquake (Case study: Dehdasht)." Scientific- Research Quarterly of Geograghical data (SEPEHR), Article 6, Vol. 23, pp. 48-53, (In Persian).