زمانبندی در سلول های تولیدی رباتیک دو ماشینه با در نظر گرفتن وابستگی زمان ‏پردازش و زمان تعویض ابزار

Document Type : Research Paper

Authors

1 گروه مهندسی صنایع، واحد بناب، دانشگاه آزاد اسلامی، بناب، ایران

2 گروه مهندسی صنایع دانشگاه کردستان، کردستان، ایران

Abstract

در این مقاله مسئله ی زمانبندی در سلولهای تولیدی رباتیک دو ماشینه مورد بررسی قرار گرفته است. مجموعه ای از قطعات مختلف توسط سلول تولیدی ‏رباتیک تولید میشوند و هر قطعه جهت تکمیل شدن به تعدادی ابزار روی هر ماشین نیاز دارد و با توجه به اینکه مخزن ابزار ماشینها دارای ظرفیت محدودی ‏هستند، نحوه ی تعویض ابزارها و زمان لازم برای این کار یک مسئله ی تصمیم گیری میباشد. همچنین فرض شده است که زمان پردازش هر قطعه روی ماشین ‏دوم تابعی از عمر ابزارهای ماشین اول میباشد. بر اساس زمان تعویض ابزار و وابستگی زمان پردازش به عمر ابزارها به عنوان دو فرض جدید، مدل برنامه ریزی ‏ریاضی برای کمینه سازی زمان سیکل در یک سلول تولیدی رباتیک دو ماشینه ارائه شده است و سپس تاثیر آنها بر زمان سیکل تحلیل شده و مدل ارائه شده با ‏استفاده از نرم افزار ‏GAMS‏ و الگوریتم ژنتیک حل شده است.‏

Keywords


  1. Foumani, M., Smith Miles, K., and Gunawan, I., (2017). “Scheduling of Two-Machine Robotic Rework Cells: In-Process, Post-Process and In-Line Inspection Scenarios”, Robotics and Autonomous Systems, No. 91, PP. 210-225.
    2. Gultekin, H., Tula, A., and Akturk, M. S., (2016). “Automated Robotic Assembly Line Design with Unavailability Periods and Tool Changes”, European Journal of Industrial Engineering, Vol. 10, No. 4, PP. 499-526.
    3. Tang, C. S., and Denardo, E. V., (1988). “Models Arising From a Flexible Manufacturing Machine, Part I: Minimization of the Number of Tool Switches”, Operations Research, Vol. 36, No. 5, PP. 767-777.
    4. Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J., and Kubiak, W., (1992). “Sequencing of Parts and Robot Moves in a Robotic Cell”, International Journal of Flexible Manufacturing Systems, Vol. 4, No. 3, PP. 331-358.
    5. Shirazi, R., and Frizelle, G., (2001). “Minimizing the Number of Tool Switches on a Flexible Machine: An Empirical Study”, International Journal of Production Research, Vol. 39, No. 15, PP. 3547-3560.
    6. Crama, Y., Oerlemans, A. G., and Spieksma, F. C., (1996). Minimizing the Number of Tool Switches on a Flexible Machine: Springer.
    7. Privault, C., and Finke, G., (1995). “Modelling a Tool Switching Problem on a Single NC-Machine”, Journal of Intelligent Manufacturing, Vol. 6, No. 2, PP. 87-94.
    8. Hertz, A., Laporte, G., Mittaz, M., and Stecke, K. E., (1998). “Heuristics for Minimizing Tool Switches When Scheduling Part Types on a Flexible Machine”, IIE Transactions, Vol. 30, No. 8, PP. 689-694.
    9. Al-Fawzan, M., and Al-Sultan, K., (2003). “A Tabu Search Based Algorithm for Minimizing the Number of Tool Switches on a Flexible Machine”, Computers and Industrial Engineering, Vol. 44, No. 1, PP. 35-47.
    10. Akturk, M. S., Ghosh, J. B., and Gunes, E. D., (2003). “Scheduling with Tool Changes to Minimize Total Completion Time: A Study of Heuristics and Their Performance”, Naval Research Logistics (NRL), Vol. 50, No. 1, PP. 15-30.
    11. Laporte, G., Salazar-Gonzalez, J. J., and Semet, F., (2004). “Exact Algorithms for the Job Sequencing and Tool Switching Problem”, IIE Transactions, Vol. 36, No. 1, PP. 37-45.
    12. Zhou, B. H., Xi, L. F., and Cao, Y. S., (2005). “A Beam-Search-Based Algorithm for the Tool Switching Problem on a Flexible Machine”, The International Journal of Advanced Manufacturing Technology, Vol. 25, No. 9 and 10, PP. 876-882.
    13. Crama, Y., Moonen, L. S., Spieksma, F. C., ans Talloen, E., (2007). “The Tool Switching Problem Revisited”, European Journal of Operational Research, Vol. 182, No. 2, PP. 952-957.
    14. Konak, A., Kulturel Konak, S., and Azizoğlu, M., (2008). “Minimizing the Number of Tool Switching Instants in Flexible Manufacturing Systems”, International Journal of Production Economics, Vol. 116, No. 2, PP. 298-307.
    15. Yanasse, H. H., Rodrigues, R. D. C. M., and Senne, E. L. F., (2009). “An Enumeration Algorithm Based on Partial Ordering to Solve the Minimization of Tool Switches Problem”, Gestão and Produção, Vol. 16, No. 3, PP. 370-381.
    16. Amaya, J. E., Cotta, C., and Fernández Leiva, A. J., (2012). “Solving the Tool Switching Problem with Memetic Algorithms”, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol. 26, No. 02, PP. 221-235.
    17. Catanzaro, D., Gouveia, L., and Labbé, M., (2015). “Improved Integer Linear Programming Formulations for the Job Sequencing and Tool Switching Problem”, European Journal of Operational Research, Vol. 244, No. 3, PP. 766-777.
    18. Chaves, A. A., Lorena, L. A. N., Senne, E. L. F., and Resende, M. G., (2016). “Hybrid Method with CS and BRKGA Applied to the Minimization of Tool Switches Problem”, Computers and Operations Research, No. 67, PP.174-183.
    19. Cheng, T. E., Ding, Q., and Lin, B. M., (2004). “A Concise Survey of Scheduling with Time-Dependent Processing Times”, European Journal of Operational Research, Vol. 152 No. 1, PP. 1-13.
    20. Alidaee, B., and Womer, N. K., (1999). “Scheduling with Time Dependent Processing Times: Review and Extensions”, Journal of the Operational Research Society, Vol. 50, No. 7, PP. 711-720.
    21. Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J., and Kubiak, W., (1992). “Sequencing of Parts and Robot Moves in a Robotic Cell”, International Journal of Flexible Manufacturing Systems, Vol. 4, No. 3 and 4, PP. 331-358.
    22. Zarandi, M. F., Mosadegh, H., and Fattahi, M., (2013). “Two-Machine Robotic Cell Scheduling Problem with Sequence-Dependent Setup Times”, Computers and Operations Research, Vol. 40, No. 5, PP. 1420-1434.
    23. Al-Ahmari, A., (2016). “Optimal Robotic Cell Scheduling with Controllers Using Mathematically Based Timed Petri Nets”, Information Sciences, No. 329, PP. 638-648.
    24. Gultekin, H., Akturk, M. S., and Karasan, O. E., (2006). “Cyclic Scheduling of a 2-Machine Robotic Cell with Tooling Constraints”, European Journal of Operational Research, Vol. 174, No. 2, PP. 777-796.
    25. Abadi, I. K., and Gholami, S., (2009). Robot Movements in a Cyclic Multiple Part Type Three-Machine Flexible Robotic Cell Problem, Transactions E: Industrial Engineering, Vol. 16, PP. 36-54.
    26. Fathian, M., Kamalabadi, I. N., Heydari, M., and Farughi, H., (2011). “A Petri Net Model for Part Sequencing and Robot Moves Sequence in a 2-Machine Robotic Cell”, Journal of Software Engineering and Applications, Vol. 4, No. 11, P. 603.
    27. Crama, Y., Kats, V., Van De Klundert, J., and Levner, E., (2000). “Cyclic Scheduling in Robotic Flowshops”, Annals of Operations Research, Vol. 96, No. 1 and 4, PP. 97-124.
    28. Farughi, H., Dolatabadiaa, M., Moradi, V., Karbasi, V., and Mostafayi, S. (2017). “Minimizing the Number of Tool Switches in Flexible Manufacturing Cells Subject to Tools Reliability Using Genetic Algorithm”, Journal of Industrial and Systems Engineering, Vol. 10, No. 1, PP.
    29. Holland, J. H., (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press.
    30. Roy, R., (1990). A Primer on the Taguchi Method, Society of Manufacturing Engineers, Ann Arbor, Mich, USA.
  2. 31. اسمعیل نژاد ب . ( 2016) . "مسئلۀ تشکیل سلول احتمالی با رویکرد نظریۀ صاف و درنظرگارفتن قابلیات اطمیناان". نشریۀ مهندسی صنایع، دورۀ پنجاهم سال دوم، صص 279-293.

    32 . کهفی اردکانی، برزین پور ع و توکلی مقدم ر. ( 2012) . " توسعۀ الگوریتم بهینه سازی انبوه ذرات جهت حل مدل یکپارچۀ برنامه ریزی تولید و سیستم تولید سلولی پویا ". نشریۀ مهندسی صنایع، دورۀ چهل و ششم، شمارۀ 1، صص 77-89.

  3.