[1] Hyndman, R. J., and Athanasopoulos, G. “Forecasting : Principles and Practice”, (2019).
[2] Gonçalves, J. N. C.; Cortez, P.; Carvalho, M. S.; Frazão, N. M. “A multivariate approach for multi-step demand forecasting in assembly industries: Empirical evidence from an automotive supply chain”. Decision Support Systems, 113452, (2020).
[3] del Campo-Ávila, J.; Takilalte, A.; Bifet, A.; Mora-López, L. “Binding data mining and expert knowledge for one-day-ahead prediction of hourly global solar radiation”, Expert Systems with Applications, 114147, (2020)
[4] Van Nguyen, T.; Zhou, L.; Chong, A. Y. L.; Li, B.; Pu, X. “Predicting customer demand for remanufactured products: A data-mining approach”. European Journal of Operational Research, 281(3), pp.543–558, (2020).
[5] Chopra, S., and Meindl, P. “Supply chain management: Strategy, planning, and operation (6th ed.)”, Upper Saddle River, New Jersey: Pearson Education, Inc. (2016)
[6] Wheelwright, S.C. and Makridakis, S.G. “Forecasting methods for management(5th ed.)”. Wiley, (1989)
[7] Mentzer, JohnT. “Forecasting with adaptive extended exponential smoothing”, Journal of the Academy of Marketing Science, 16(3-4), pp.62-70, (1988).
[8] Pantazopoulos, Sotiris N., and Pappis, Costas P. “A new adaptive method for extrapolative forecasting algorithms”, European Journal of Operational Research, 94(1), pp.106-111, (1996).
[9] Roberts, S. D., and R. Reed. "The Development of a Self-Adaptive Forecasting Technique", AIIE Transactions I (No. 4), 314-322, (1969).
[10] Hyndman, R. J.; Koehler, A. B.; Snyder, R. D.; Grose, S. “A state space framework for automatic forecasting using exponential smoothing methods”. International Journal of Forecasting, 18, pp.439–454, (2002).
[11] Taylor, J. W. “Exponential smoothing with a damped multiplicative trend. International Journal of Forecasting”, 19, pp.273– 289, (2003).
[12] Muth, J. F. “Optimal properties of exponentially weighted forecasts”, Journal of the American Statistical Association, 55, pp.299– 306, (1960).
[13] Holt, C. C. “Forecasting seasonals and trends by exponentially weighted averages”, O.N.R. Memorandum 52/1957, Carnegie Institute of Technology. Reprinted with discussion in 2004. International Journal of Forecasting, 20, pp.5 – 13. (1957).
[14] Winters, P. R. “Forecasting sales by exponentially weighted moving averages”, Management Science 6, pp.324–342, (1960).
[15] Anne B.; Koehler Ralph D.; Snyder J.;Keith Ord, “Forecasting models and prediction intervals for the multiplicative Holt–Winters method”, International Journal of Forecasting, 17, pp. 269-286, (2001)
[16] Hamzaçebi, Coşkun. “Improving artificial neural networks’ performance in seasonal time series forecasting”, Information Sciences, 178(23), pp.4550-4559, (2008).
[17] G.E.P. Box, G.M. Jenkins, “Time Series Analysis Forecasting and Control”, Holden-Day, San Francisco, (1976).
[18] Zhang, G.; Peter, ; Qi, Min. “Neural network forecasting for seasonal and trend time series”, European Journal of Operational Research, 160(2), pp.501-514, (2005).
[19] Williams, T. M. “Adaptive Holt-Winters forecasting”, Journal of the Operational Research Society, 553-560, (1987).
[20] Zhang, G.; Patuwo, B. E.; Hu, M. Y. “Forecasting with artificial neural networks: The state of the art”, International journal of forecasting, 14(1), pp.35-62,(1998).
[21] Hornik, K.; Stinchcombe, M.; White, H. “Multilayer feedforward networks are universal approximators”. Neural networks, 2(5), pp.359-366,(1989).
[22] Funahashi, K.I. “On the approximate realization of continuous mappings by neural networks. Neural networks”, 2(3), pp.183-192, (1989).
[23] Da Costa Lewis, N. “Neural Networks for Time Series Forecasting with R”. (2017).
[24] Yu, Y.; Choi, T.-M.; Hui, C.-L. “An intelligent fast sales forecasing model for fashion products”, Experts systems with application, 38, pp. 7373-7379, (2011).
[25] Kumar, P.; Herbert, M.; Rao, S. “Demand forecasting Using Artificial Neural Network Based on Different Learning Methods: Comparative Analysis”, International journal for research in applied science and engineering technology, 2(4), pp. 364-374, (2014).
[26] Zhang, X. “Time series analysis and prediction by neural networks”, Optimization Methods and Software, 4(2), pp.151-170, (1998).
[27] Aggarwal, Charu C. “Data Mining: The Textbook”. Springer, (2015).
[28] Telikani A.; Gandomi A.; Shahbahrami A. “A survey of evolutionary computation for association rule mining”, Information Sciences, 524, pp.318-352, (2020).
[29] Agrawal, R., and Srikant, R. “Fast algorithms for mining association rules. 20th int. conf. very large data bases, VLDB , 1215, pp. 487-499, (1994).
[30] Han, J., Pei, J., & Yin, Y. “Mining frequent patterns without candidate generation”, ACM, 29(2), pp. 1-12, (2000).
[31] Zaki, M. J.; Parthasarathy, S.; Ogihara, M.; Li, W. “New Algorithms for Fast Discovery of Association Rules”. In KDD , 97, pp. 283-286, (1997).
[32] Savasere, A.; Omiecinski, E.; Navathe, S. “Mining for strong negative associations in a large database of customer transactions”, 14th International Conference on IEEE, pp. 494-502, (1998).
[33] Shocker, A. D.; Bayus, B. L.; Kim, N. “Product complements and substitutes in the real world: The relevance of other products”, Journal of Marketing, 68(1), pp.28-40, (2004).
[34] Scholz-Reiter, B.; Heger, J.; Meinecke, C.; Bergmann, J. “Integration of demand forecasts in ABC-XYZ analysis: Practical investigation at an industrial company”, International Journal of Productivity and Performance Management, 61(4),pp.445–451,(2012).