[1] H. Markowitz, (1952). Portfolio selection*, J. Finance 7, 77–91.
[2] Xidonas, P., Mavrotas, G., and Psarras, J. (2010). A multiple criteria decision-making approach for the selection of stocks. Journal of the Operational Research Society, 61(8), 1273-1287.
[3] Raei, R., and Jahromi, M. (2012). Portfolio optimization using a hybrid of fuzzy ANP, VIKOR and TOPSIS. Management Science Letters, 2(7), 2473-2484.
[4] Bouri, A., Martel, J. M., and Chabchoub, H. (2002). A multi‐criterion approach for selecting attractive portfolio. Journal of Multi‐Criteria Decision Analysis, 11(4‐5), 269-277.
[5] Ehrgott, M., Waters, C., Kasimbeyli, R., and Ustun, O. (2009). Multiobjective programming and multiattribute utility functions in portfolio optimization. INFOR: Information Systems and Operational Research, 47(1), 31-42.
[6] Tamiz, M., and Azmi, R. A. (2019). Goal programming with extended factors for portfolio selection. International Transactions in Operational Research, 26(6), 2324-2336.
[7] Ehrgott, M., Klamroth, K., and Schwehm, C. (2004). An MCDM approach to portfolio optimization. European Journal of Operational Research, 155(3), 752-770.
[8] Morton, A. J., and Pliska, S. R. (1995). Optimal portfolio management with fixed transaction costs. Mathematical Finance, 5(4), 337-356.
[9] Fei, W. (2007). Optimal consumption and portfolio choice with ambiguity and anticipation. Information Sciences, 177(23), 5178-5190.
[10] Buckley, I., Saunders, D., and Seco, L. (2008). Portfolio optimization when asset returns have the Gaussian mixture distribution. European Journal of Operational Research, 185(3), 1434-1461.
[11] Bodnar, T., Parolya, N., and Schmid, W. (2015). On the exact solution of the multi-period portfolio choice problem for an exponential utility under return predictability. European Journal of Operational Research, 246(2), 528-542.
[12] Ma, G., Siu, C. C., and Zhu, S. P. (2019). Dynamic portfolio choice with return predictability and transaction costs. European Journal of Operational Research, 278(3), 976-988.
[13] Yu, B. W. T., Pang, W. K., Troutt, M. D., and Hou, S. H. (2009). Objective comparisons of the optimal portfolios corresponding to different utility functions. European Journal of operational research, 199(2), 604-610.
[14] Rather, A. M., Sastry, V. N., and Agarwal, A. (2017). Stock market prediction and Portfolio selection models: a survey. Opsearch, 54(3), 558-579.
[15] Markowitz, H., Todd, P., Xu, G., and Yamane, Y. (1993). Computation of mean-semivariance efficient sets by the critical line algorithm. Annals of Operations Research, 45(1), 307-317.
[16] Corazza, M., and Favaretto, D. (2007). On the existence of solutions to the quadratic mixed-integer mean–variance portfolio selection problem. European Journal of Operational Research, 176(3), 1947-1960.
[17] Freitas, F. D., De Souza, A. F., and de Almeida, A. R. (2009). Prediction-based portfolio optimization model using neural networks. Neurocomputing, 72(10-12), 2155-2170.
[18] Cesarone, F., Scozzari, A., and Tardella, F. (2013). A new method for mean-variance portfolio optimization with cardinality constraints. Annals of Operations Research, 205(1), 213-234.
[19] Li, T., Zhang, W., and Xu, W. (2015). A fuzzy portfolio selection model with background risk. Applied Mathematics and Computation, 256, 505-513.
[20] Sharpe, W. F. (1967). A linear programming algorithm for mutual fund portfolio selection. Management Science, 13(7), 499-510.
[21] Chopra, V. K., and Ziemba, W. T. (1993). The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice. The Journal of Portfolio Management, 19(2), 6-11.
[22] Huang, X. (2007). Two new models for portfolio selection with stochastic returns taking fuzzy information. European Journal of Operational Research, 180(1), 396-405.
[23] Rios, L. M., and Sahinidis, N. V. (2010). Portfolio optimization for wealth-dependent risk preferences. Annals of Operations Research, 177(1), 63-90.
[24] Zhang, X., Zhang, W. G., and Xu, W. J. (2011). An optimization model of the portfolio adjusting problem with fuzzy return and a SMO algorithm. Expert Systems with Applications, 38(4), 3069-3074.
[25] Sadjadi, S. J., Gharakhani, M., and Safari, E. (2012). Robust optimization framework for cardinality constrained portfolio problem. Applied Soft Computing, 12(1), 91-99.
[26] Liu, Y. J., and Zhang, W. G. (2015). A multi-period fuzzy portfolio optimization model with minimum transaction lots. European Journal of Operational Research, 242(3), 933-941.
[27] Leung, M. T., Daouk, H., and Chen, A. S. (2001). Using investment portfolio return to combine forecasts: a multiobjective approach. European Journal of Operational Research, 134(1), 84-102.
[28] Armananzas, R., and Lozano, J. A. (2005, September). A multiobjective approach to the portfolio optimization problem. In 2005 IEEE Congress on Evolutionary Computation (Vol. 2, pp. 1388-1395). IEEE.
[29] Chiam, S. C., Al Mamun, A., and Low, Y. L. (2007, September). A realistic approach to evolutionary multiobjective portfolio optimization. In 2007 IEEE Congress on Evolutionary Computation (pp. 204-211). IEEE.
[30] Ammar, E. E. (2008). On solutions of fuzzy random multiobjective quadratic programming with applications in portfolio problem. Information Sciences, 178(2), 468-484.
[31] Greco, S., Matarazzo, B., and Słowiński, R. (2013). Beyond Markowitz with multiple criteria decision aiding. Journal of Business Economics, 83(1), 29-60.
[32] Rather, A. M., Sastry, V. N., and Agarwal, A. (2014, September). Portfolio selection using maximum-entropy gain loss spread model: a GA based approach. In 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 400-406). IEEE.
[33] Zhao, S., Lu, Q., Han, L., Liu, Y., and Hu, F. (2015). A mean-CVaR-skewness portfolio optimization model based on asymmetric Laplace distribution. Annals of Operations Research, 226(1), 727-739.
[34] Akian, M., Sulem, A., and Taksar, M. I. (2001). Dynamic Optimization of Long‐Term Growth Rate for a Portfolio with Transaction Costs and Logarithmic Utility. Mathematical Finance, 11(2), 153-188.
[35] Ferland, R., and Watier, F. (2008). FBSDE approach to utility portfolio selection in a market with random parameters. Statistics and probability letters, 78(4), 426-434.
[36] Yu, B. W. T., Pang, W. K., Troutt, M. D., and Hou, S. H. (2009). Objective comparisons of the optimal portfolios corresponding to different utility functions. European Journal of operational research, 199(2), 604-610.
[37] Çanakoğlu, E., and Özekici, S. (2010). Portfolio selection in stochastic markets with HARA utility functions. European Journal of Operational Research, 201(2), 520-536.
[38] Ma, Q. H., Yao, H. X., and Li, S. Y. (2012). Logarithm Utility Maximization Portfolio Engineering with Bankruptcy Control: a Nonparametric Estimation Framework. Systems Engineering Procedia, 5, 150-155.
[39] Hurson, C., Mastorakis, K., and Siskos, Y. (2012). Application of a synergy of MACBETH and MAUT multicriteria methods to portfolio selection in Athens stock exchange. International Journal of Multicriteria Decision Making 7, 2(2), 113-127.
[40] Lopes, Y. G., and de Almeida, A. T. (2015). Assessment of synergies for selecting a project portfolio in the petroleum industry based on a multi-attribute utility function. Journal of Petroleum Science and Engineering, 126, 131-140.
[41] Touni, Z., Makui, A., and Mohammadi, E. (2019). A MCDM-based approach using UTA-STAR method to discover behavioral aspects in stock selection problem. International Journal of Industrial Engineering and Production Research, 30(1), 93-103.
[42] Gupta, P., Mehlawat, M. K., and Saxena, A. (2010). A hybrid approach to asset allocation with simultaneous consideration of suitability and optimality. Information Sciences, 180(11), 2264-2285.
[43] Barak, S., Abessi, M., and Modarres, M. (2013). Fuzzy turnover rate chance constraints portfolio model. European Journal of Operational Research, 228(1), 141-147.
[44] Li, J., and Xu, J. (2013). Multi-objective portfolio selection model with fuzzy random returns and a compromise approach-based genetic algorithm. Information Sciences, 220, 507-521.
[45] Acikalin, S., Aktas, R., and Unal, S. (2008). Relationships between stock markets and macroeconomic variables: an empirical analysis of the Istanbul Stock Exchange. Investment Management and Financial Innovations, 5(1), 8-16.
[46] Peiro, A. (2016). Stock prices and macroeconomic factors: Some European evidence. International Review of Economics and Finance, 41, 287-294.
[47] Owusu-Nantwi, V., and Kuwornu, J. K. (2011). Analyzing the effect of macroeconomic variables on stock market returns: Evidence from Ghana. Journal of Economics and International Finance, 3(11), 605-615.
[48] Tirea, M., and Negru, V. (2014, September). Intelligent stock market analysis system-a fundamental and macro-economical analysis approach. In 2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 519-526). IEEE.
[49] Lam, M. (2004). Neural network techniques for financial performance prediction: integrating fundamental and technical analysis. Decision support systems, 37(4), 567-581.
[50] Siskos, Y., and Yannacopoulos, D. (1985). UTASTAR: An ordinal regression method for building additive value functions. Investigaçao Operacional, 5(1), 39-53.
[51] Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied mathematics and computation, 213(2), 455-465.
[52] Greco, S., Figueira, J., and Ehrgott, M. (2016). Multiple criteria decision analysis. New York: Springer.
[53] Mendonça, G. H., Ferreira, F. G., Cardoso, R. T., and Martins, F. V. (2020). Multi-attribute decision making applied to financial portfolio optimization problem. Expert Systems with Applications, 158, 113527.
[54] Sukono, Sidi, P., Bon, A. T. B., and Supian, S. (2017, March). Modeling of Mean-VaR portfolio optimization by risk tolerance when the utility function is quadratic. In AIP Conference Proceedings (Vol. 1827, No. 1, p. 020035). AIP Publishing LLC.
[55] Raeiszadeh, S., Dehghan Dehnavi, M., Bahrololoum, M., Peymany Foroushany, M. (2020). Portfolio Selection Optimization Problem Under Systemic Risks. Advances in Industrial Engineering, 54(2), 121-140. doi: 10.22059/jieng.2021.321882.1759.
[56] Ebrahimi, S. (2016). Robust Estimation in Nonlinear Modeling of Volatility Transmission in Stock Market. Advances in Industrial Engineering, 50(2), 165-176. doi: 10.22059/jieng.2016.60722.
[57] Aria, S., Torabi, S., Nayeri, S. (2020). A Hybrid Fuzzy Decision-Making Approach to Select the Best online-taxis business. Advances in Industrial Engineering, 54(2), 99-120. doi: 10.22059/jieng.2021.320051.1754.