
Advances in Industrial Engineering,  Autumn 2020, 54(4): 365-379 

DOI: 10.22059/jieng.2021.325287.1775 

 

RESEARCH PAPER   

 

Comparing Multi-Objective Meta-Heuristics for Multi- 

Commodity Supply Chain Design Problem with Partial 

Coverage 

Mehdi Seifbarghy a,*, Meisam Soleimani b, Mohsen Jabbari c 
 

a. Department of Industrial Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran. 

b. Department of Industrial and Mechanic Engineering, Qazvin Branch, Islamic Azad University, 

Qazvin, Iran. 

c. Department of Social Science, Imam-Khomeini International University, Qazvin, Iran. 

Received: 08 June 2021, Revised: 03 July 2021, Accepted: 04 July 2021 

© University of Tehran 2020 

Abstract  

A three-echelon multi-commodity supply chain including manufacturers, 

distribution centers (DCs) and customers is considered. Customers may be partially 

or fully covered by the DCs which should be opened in some candidate locations. 

A two-objective model is developed to find the locations of DCs and the flows of 

commodities in the whole supply chain considering a pre-determined number of 

DCs. The first objective function minimizes the total operation costs including 

transportation, inventory holding, production and site opening costs while the 

second objective maximizes the customers’ partial coverages. Since the presented 

problem is NP-hard in nature, three metaheuristic algorithms of NSGA-II, NRGA 

and MOPSO are developed to find the Pareto-optimal solutions and are compared 

using some standard criteria for multi-objective algorithms. Numerical examples 

are designed to assess the performance of the model and the developed 

metaheuristic algorithms. Considering different criteria for comparing the 

algorithms, the superiority of some algorithms against others are reported.  
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Introduction 
 

Making decision about selecting facility sites is one of the critical problems in the strategic 

planning of either private or public companies. This problem is of great importance in the 

supply chain structure with multiple commodities. Current et al. [1] surveyed the location 

models in discrete networks. Multi-product facility location models were presented by 

Warszawski and Peer [2]. Syam [3] proposed two heuristic algorithms based on Lagrangian 

relaxation and simulated annealing for multiple commodities supply chain model with several 

producers. Church and ReVelle [4] introduced location problems with maximum coverage. The 

maximal covering location problem (MCLP) addresses the issue of locating a limited number 

of distribution centers (DCs) that are going to cover a number of demand zones. Schilling et al. 

[5] explored the application of coverage problems in facility locating. Galvao and ReVelle [6] 

introduced a methodology for solving MCLP using the Lagrangian relaxation method. 

Gendreau et al. [7] applied MCLP for locating emergency vehicles. ReVelle [8] proposed some 

methodologies for solving MCLP based on heuristic algorithms.  
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The given model in this paper is on partial coverage in a supply chain structure. MCLP with 

partial coverage was introduced by Karasakal et al. [9]. They surveyed the effect of partial 

coverage on the solutions of classic MCLP. Classical MCLP assumed full coverage of demand 

points by DCs. This full-coverage was assumed to be represented by the value of 1. In partial 

coverage, values between 0 and 1 can be assigned to the coverage. Fig. 1 shows the concept of 

partial covering besides the best solution generated by MCLP. 

 

 
Fig. 1. MCLP with partial coverage [9] 

 

Suppose there are two options to locate facilities and we are eager to have maximal coverage. 

The solid and dotted lines demonstrate minimum and maximum critical distances, respectively. 

Points of Y1 and Y2 can fully cover six and five demand points; thus, to have maximal coverage, 

Y1 is the best solution. If we consider partial covering as the goal of the problem, then Y2 is the 

better solution since it covers five demand points completely and seven demand points partially 

as well.  

On the difference between the applications of partial and full coverages in the real world, we 

can say that full coverage is usually used for very emergency situations; for example, the 

location of fire stations. In this case, there is a coverage radius; for example, 10 minutes which 

means that if a demand point (in this case, the point of fire) is within 10 minutes of a station, 

then, the station can send the fire trucks and the firefighting operation will be successful, 

otherwise, it will not help. In less emergency situations, such as locations of schools, restaurants 

and so on, partial coverage can be used. In this case, some of the demand points are fully 

covered. Some others are not covered since they are far from the selected locations while some 

demand points are partially covered.      

Mestre presented a method to solve partial covering problems using the Lagrangian 

relaxation method [10]. MCLP in supply chain structure can be one of the most attractive 

research areas in the field of supply chain and facility location. Melo et al. [11] presented a 

literature review for the combination of supply chain and facility location problems.  

Pereira et al. [12] gave a hybrid algorithm combining a metaheuristic and an exact method 

in order to solve the probabilistic maximal covering location–allocation problem. To tackle 

larger instances, a flexible adaptive large neighborhood search heuristic was proposed to obtain 

location solutions, whereas the allocation sub-problems are solved to optimality. Seifbarghy et 

al. [13] studied a three-echelon multiple commodity supply chain model with a maximal 

covering approach with two objectives of maximizing the coverage of customer demand and 

minimizing the associated transportation cost required for meeting the customer demand. 

Considering that the given model is an NP-Hard problem, they applied a customized version of 

the greedy heuristic and clearly indicated its robustness. 

Li et al. [14] studied the general structure in the humanitarian relief network and developed 

a maximal cooperative covering model with budget constraints. They maximized the coverage 
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of the people in disastrous regions with uncertainty. They studied the effect of items' availability 

in the given relief chain management and compared the performance of the proposed model 

under cooperative and non-cooperative conditions. Eidy and Torabi [15] proposed a bi-

objective mixed-integer nonlinear programming model in order to obtain the optimal number, 

locations and capacities of plants, DCs, and retailers, transportation modes and evaluate the 

coverage radius of retailers, in such a way as to minimize total transportation costs, maximize 

demand coverage, and achieve gradual coverage of facilities. Since the problem was NP-Hard, 

the NSGA-II algorithm was proposed to solve it. Vatsa and Jayaswal [16] examined the 

problem of assigning doctors to non-operational Primary Health Centers (PHCs) considering 

the maximum population which could be served by any PHC and the availability of doctor 

uncertainty. The problem was formulated as a robust capacitated multi-period MCLP with 

server uncertainty.  

Karasakal and Silav [17] proposed a bi-objective facility location model which considered 

both partial coverage and service to uncovered demands. They assumed that demand nodes 

within the predefined distance of opened facilities are fully covered, and after that distance, the 

coverage level decreases linearly. The objectives were maximization of full and partial 

coverage and the minimization of the maximum distance between uncovered demand nodes 

and their nearest facilities. Cordeau et al. [18] introduced a novel exact algorithm for two 

coverage problems including MCLP which required determining a subset of facilities that 

maximized the amount of customer demand covered subject to a budget constraint on the cost 

of the facilities and the partial set covering location problem (PSCLP), which minimized the 

cost of open facilities while forcing a certain amount of customer demand to be covered. They 

applied a decomposition approach to the two addressed problems based on the branch-and-

Benders-cut reformulation. El-Hosseini et al. [19] proposed a partial coverage and a power-

aware internet of things (IoT)-based fire detection model with various multi-functional sensors 

for smart cities. The sleep scheduling approach was utilized for saving the energy of sensors 

and the need for any extra number of nodes needed for continuously covering the targeted area.   

The aforementioned review showed that there was only one research (i.e. [13]) on the issue 

of partial coverage in the supply chain design. The addressed research studies this problem for 

the case of regular coverage. The current research in this paper extends and studies the partial 

coverage for a supply chain network design with two objectives of maximal coverage and 

minimal cost [13]; furthermore, the given model tries to find the optimum locations of DCs and 

the flows of materials from manufacturers to DCs and then to customers in a three-echelon 

supply chain. The research questions can be: 

1-What is the optimum location for each opened DC? 

2-What are the optimum value of flows from Manufacturers to DCs? 

3- What are the optimum value of flows from DCs to customers? 

This paper is organized as follows: problem description and formulation are presented in 

Section 2. In Section 3 we discussed the solution heuristics. Some numerical examples are given 

in Section 4. Conclusions, managerial insights and future research ideas are given in Section 5. 

 

Problem description and formulation 
 

We consider a three-level supply chain including a number of manufacturers, a number of 

potential locations for opening some DCs and finally a number of customers. An arbitrary 

number of products can be produced by each manufacturer. The products in the manufacturers 

are given to DCs and then from DCs to customers. The location of DCs should be determined 

due to the limited number of DCs which can be opened and the opening costs; furthermore, the 

location of DCs should be found with regard to the critical distance of customers’ demand 

coverage by DCs so that the maximum number of demand points should be covered by DCs.  
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For this reason, this problem is formulated as a bi-objective model. One of the objectives is cost 

minimization while the other one is coverage maximization. 

After opening DCs, customers who are being covered, due to their demands for each product 

and capacity of DCs and transportation costs, should be assigned to DCs; for this reason, the 

addressed cost objective includes the operational costs of the model composed of transportation, 

production and inventory holding costs. On the other hand, the DCs should be assigned to the 

manufacturers considering the transportation costs and production capacity of manufacturers 

for each product. Note that some of the customers’ demands may be fully covered while others 

may be partially covered. In other words, as well as defining two values of maximal distance 

of partial covering (T) and maximal distance of full coverage (S), we define the parameter (𝐺𝑖𝑗) 

as in Eq. 1 as a function of distance between DC 𝑗  and customer 𝑖 (Dij) [9]. 
𝐺𝑖𝑗

= {

1                 𝑖𝑓                                                     𝐷𝑖𝑗 ≤ 𝑆

𝑓(𝐷𝑖𝑗)       𝑖𝑓         𝑆 < 𝐷𝑖𝑗 ≤ 𝑇  , (0 < 𝑓(𝐷𝑖𝑗) < 1)

0                 𝑖𝑓                                                      𝐷𝑖𝑗 > 𝑇

                       
   (1) 

 

 
          

 

Parameter (𝐺𝑖𝑗) represents the coverage level that DC 𝑗 gives to customer𝑖; it is a value 

between 0 and 1. The formula for 𝑓(𝐷𝑖𝑗) can be as in Eq. 2 [9]. 

 

𝑓(𝐷𝑖𝑗) =
𝑇−𝐷𝑖𝑗

𝑇−𝑆
                                                                                                     (2) 

 

Assumptions 

 

- The DCs are assumed to be unlimited in capacity. 

- Production capacities of products at each factory are independent. 

- Direct product transport from factory to the customer is not authorized. 

- All products are allowed to be produced by all factories. 

- All customers can receive products of each factory from all DCs. 

- Each customer is only covered by one DC. 

 

Notation 

 

The indices are defined as follows: 
i: Index of customers (i=1,2,…,M) 

j: Index of potential locations for DCs (j=1,2,…,N) 

m: Index of manufacturers (m=1,2,…,P). 

k: Index of products (k=1,2,…,Q). 

 

The parameters are defined as follows: 

𝐶𝑚𝑗
𝑘 : Costs of producing one unit of product k in manufacturer m and sending it to DC j  

𝐷𝑗𝑖
𝑘: Costs of holding one unit of product k in DC j and sending it to customer i. 

𝑆𝑚
𝑘 : Total capacity of manufacturer m for product k 

𝐻𝑖
𝑘: Demand of customer i for product k 

𝑓𝑗: Cost of establishing a DC in potential point j 

A: Maximum Number of DCs to be opened 

R1: A very large positive number less than 1 

𝐺𝑖𝑗: covering level provided by DC j for customer i 
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The Decision variables of the model are defined as follows: 

𝑈𝑚𝑗
𝑘 : The amount of product k which is produced in manufacturer m and will be sent to DC j. 

𝑇𝑗𝑖
𝑘: The amount of the demand of customer i for product k which is supplied by DC j. 

yj= {
1         if a DC locates at potential point j
0         Otherwise                                            

 

xij= {
1        if customer i is covered whether partially or completely by DC j
0        Otherwise                                                                                                       

 

 

The mathematical model 

 

The mathematical model of the problem can be stated as: 
 

𝑀𝑎𝑥𝑍1 = ∑ ∑ ∑ 𝐺𝑖𝑗
𝑁
𝑗=1

𝑀
𝑖=1

𝑄
𝑘=1 𝑥𝑖𝑗𝐻𝑖

𝑘                                                                             (3) 

𝑀𝑖𝑛𝑍2 = ∑ 𝑓𝑗
𝑁
𝑗=1 𝑦𝑗 + ∑ ∑ ∑ 𝐶𝑚𝑗

𝑘𝑄
𝑘=1

𝑁
𝑗=1

𝑃
𝑚=1 𝑈𝑚𝑗

𝑘 + ∑ ∑ ∑ 𝐷𝑗𝑖
𝑘𝑄

𝑘=1
𝑀
𝑖=1

𝑁
𝑗=1 𝑇𝑗𝑖

𝑘                     (4) 

S.T 

∑ 𝑦𝑗
𝑁
𝑗=1 = 𝐴                                                                                                                     (5) 

𝑥𝑖𝑗 ≤ 𝑦𝑗𝐺𝑖𝑗 + 𝑅1     ∀ 𝑖 = 1,2, … , 𝑀    , ∀𝑗 = 1,2, … , 𝑁                                                (6) 

∑ 𝑥𝑖𝑗
𝑁
𝑗=1 ≤ 1                ∀ 𝑖 = 1,2, … , 𝑀                                                                       (7) 

∑ 𝑈𝑚𝑗
𝑘𝑁

𝑗=1 ≤ 𝑆𝑚
𝑘            ∀ 𝑚 = 1,2, … , 𝑃    , ∀𝑘 = 1,2, … , 𝑄                                                (8) 

𝑇𝑗𝑖
𝑘 ≥ 𝐻𝑖

𝑘𝑥𝑖𝑗𝐺𝑖𝑗           ∀ 𝑖 = 1,2, … , 𝑀    , ∀𝑗 = 1,2, … , 𝑁, ∀𝑘 = 1,2, … , 𝑄                   \   (9) 

∑ 𝑈𝑚𝑗
𝑘𝑃

𝑚=1 ≥ ∑ 𝑇𝑗𝑖
𝑘𝑀

𝑖=1     ∀𝑗 = 1,2, … , 𝑁    , ∀𝑘 = 1,2, … , 𝑄                                                    (10) 

𝑈𝑚𝑗
𝑘 , 𝑇𝑗𝑖

𝑘 ≥ 0                ∀𝑖, 𝑗, 𝑚, 𝑘                                                                                              (11) 

𝑥𝑖𝑗 , 𝑦𝑗𝜖{0,1}                 ∀𝑖 = 1,2, … , 𝑀    , ∀𝑗 = 1,2, … , 𝑁                                              (12) 

 

The first objective function maximizes customers’ coverage by DCs while the second 

objective function minimizes operational costs including opening DCs, production, holding and 

transporting. Constraint (5) indicates the number of opened DCs should be equal to a 

predetermined value. Constraint (6) makes sure that each customer is covered by one of the 

DCs which has the qualification for coverage. Each customer can be covered by only one DC; 

this condition is given in Constraint (7). Constraint (8) gives the production capacity restriction 

of the manufacturers. Constraint (9) assures that the coverage amount of each customer is not 

higher than the flow arrived at the customer. Constraint (10) ensures that the output flow to 

each DC of each product is not higher than its corresponding input flow. Constraints (11) and 

(12) give the status of the decision variables. 

 

Solution heuristics 
 

Since the model is a bi-objective one, we have developed three different heuristics which are 

described in this section. In general, genetic algorithm (GA) has shown its performance as a 

very powerful algorithm for most facility location problems. We can extend this result for even 

bi-objective problems. There are a number of researches using the Non-dominated Sorting 

Genetic Algorithm (NSGA) and its variations for tackling with bi-objective problems. Since 

GA and NSGA are population-based heuristics, we have selected particle swarm optimization 

(PSO) and its bi-objective version for comparing with NSGA. The Multi-Objective Particle 
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Swarm Optimization (MOPSO) which is the multi-objective version of PSO, is a population-

based heuristic like NSGA and can be a good rival for NSGA or its variations. 

 

Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

 

NSGA-II is one of the efficient and popular multi-objective evolutionary algorithms which was 

introduced by Deb et al. [20]. The basic information to start NSGA-II is as follows:  

- Initializing population size (nPop) which indicates the number of chromosomes to be 

kept at each stage. 

- The probability of crossover operator (Pc) that is the number of parents who participate 

in the mating pool divided by the total number of parents. 

- The probability of mutation operator (Pm) that is the probability of participation of a gen 

of solution in the mutation process 

- Number of iteration (nIt) 

The chromosome structure is defined as follow dependent on the variables  

The structure of variable 𝑋 = [𝑥𝑖𝑗] is represented by an M×N matrix. The elements of such 

a matrix are binary values equal to 0 or 1. The structure of variable 𝑌 = [𝑦𝑗] is represented by 

a 1×N binary matrix. In this matrix, elements are binary values equal to 0 or 1. 

The structure of variable 𝑈 = [𝑈𝑚𝑗
𝑘 ] is represented by a P×N matrix for each product. This 

structure can be extended to all products; the result will be a P×(Q.N) matrix. The value of each 

element indicates the quantity of product k produced and sent from manufacturer m to DC j. 

Fig. 2 shows the addressed matrix. 

 

[

𝑈11𝑘 ⋯ 𝑈1𝑛𝑘

⋮ ⋱ ⋮
𝑈𝑝1𝑘 ⋯ 𝑈𝑝𝑛𝑘

] 

Fig. 2. Representation of 𝑈𝑚𝑗
𝑘  for each product 

 

The structure of variable 𝑇 = 𝑇𝑗𝑖
𝑘 is represented by an N×M matrix for each product. This 

structure can be extended to all products; the result will be a N× (Q.M) matrix. The value of 

each element indicates the quantity of product k sent from DC j to customer i, of course if this 

customer is covered by that DC. Fig. 3 shows the addressed matrix. 

 

[
𝑇11𝑘 ⋯ 𝑇1𝑚𝑘

⋮ ⋱ ⋮
𝑇𝑛1𝑘 ⋯ 𝑇𝑛𝑚𝑘

] 

Fig. 3. Representation of 𝑇𝑗𝑖
𝑘 for each product 

 

In all, we can compress all the matrices in a N×(Q.M+Q.P+M+1) Matrix. Let’s give an 

example of solution representation for a two manufacturers, three potential DCs, five customers 

and only one product; i.e. N=3, P=2, M=5, Q=1. As is clear from Fig. 4, the first and second 

DCs are opened. The first and second manufacturers give the product to DC 1 while the second 

DS is only receives the product from manufacturer 1.  

 

[
4 0 8 0 2 7 7 1 0 1 0 1 1
0 6 0 3 0 9 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0

] 

Fig. 4. Solution representation for the given example 
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It should be noticed that the population of parents to apply crossover and mutation operators 

is selected by binary tournament operator. We used uniform crossover and mutation in the 

proposed algorithm. Finally, the algorithm will stop after reaching a number of predefined 

iteration. 

 

Non-dominate Ranked Genetic Algorithm (NRGA) 

 

Researchers are always seeking for introducing better operators for multi-objective 

evolutionary algorithms to improve their efficiency. Among those operators, the focus is on the 

selection operator. Improving this operator result in better convergence of the algorithm. Al-

Jadaan et al. [21] applied NRGA for solving multi-objective optimization problems. They 

developed the algorithm by combining ranked based roulette wheel selection operator and 

Pareto-based population ranking algorithm. The structure of the chromosome, crossover and 

mutation operators is the same as that of considered for NSGA-II. Fig. 5 shows the flowchart 

of NRGA and NSGA-II. 

 

Initialization

Chromosome Evaluation

Calculating FNDS & CD 

of the individual

Front domination

Stop criterion is 

met 

Algorithm 

Determination 

NO

Roulette Wheel selection

NRGA

Crossover & mutation

Chromosome Evaluation

Elitism

FNDS & CD

Sort population & choose N 

individual

Binary tournament 

selection

Pareto Optimal 

Front
YES

NSGA-II

 
Fig. 5. Simultaneous Flowchart of NRGA and NSGA-II 

 

Multi Objective Particle Swarm Optimization (MOPSO) 
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One of the best multi-objective evolutionary optimization algorithms is the MOPSO algorithm 

which was introduced by Coello Coello et al. [22]. In this method, individual memory is 

allocated to each particle to save the best position achieved in the searching process. Each 

particle corresponds to a point in the solution space. Particle movement is done in two 

directions: (1) move toward the best position captured so far by itself and (2) move toward the 

best position captured so far. In other words, the position changing of each particle is affected 

by itself and its neighbor experience. Fig. 6 indicates the flowchart of MOPSO. 

 

Initialize Position, 

Velocity, and archive

Update Velocity

Update Position

Evaluate Particles

Find Global best then 

insert in archive

Update the memory 

of each particle

archive

 
Fig. 6. Flowchart of MOPSO [23] 

 

The major parameters of the MOPSO algorithm are as follow: 

W: is an inertia weight that is applied to assure convergence in particle movement. 

C1, C2: are individual and social parameters, respectively which determine how close the 

particle is to the best solution a particle has achieved so far (pbest) and the global best solution 

of all particles (gbest) (it is assumed that C1+ C2 ≤ 4). 

Furthermore, nPop is considered as the size of initializing population; nIt as the number of 

iterations and nRep as the size of the repository population. 

 

Numerical Analysis 
 

Initially, we give descriptions of parameters tuning for the given algorithms and then design 

some numerical examples to assess the performance of the model.  

 

Parameters tuning 

 

In NSGA-II and NRGA, there are four parameters to be tuned. We consider three levels for 

them. In MOPSO, six parameters are tuned considering three levels. We have done the tuning 

using the Taguchi method. The parameters and different levels are given as in Table 1. 

The Taguchi experiment tables to determine optimum input parameters of the algorithms are 

as Tables 2 and 3. We have considered mean ideal distance (MID) criterion to compare the 

result [24]. 

 

 



Advances in Industrial Engineering, Autumn 2020, 54(4): 365-379 

 373 

 

 

 

 
Table 1. NSGA-II, NRGA and MOPSO parameters levels 

High Medium Low Parameters Heuristics 

0.9 0.7 0.5 Pc 

NSGA-II 
0.4 0.2 0.01 Pm 

300 200 100 nIt 

200 150 100 nPop 

0.9 0.7 0.5 Pc 

NRGA 
0.4 0.2 0.01 Pm 

300 200 100 nIt 

200 150 100 nPop 

0.9 0.65 0.4 W 

MOPSO 

2 1.5 1 C1 

2.5 2 1.5 C2 

300 200 100 nIt 

200 150 100 nPop 

50 40 30 nRep 

  

Table 2. The computation results of MID criterion when implementing NSGA-II and NRGA algorithms 

MID Measure NSGA-II & NRGA Parameters 
Run No. 

NRGA NSGA-II nPop nIt Pm Pc 

19565 19570 100 100 0.01 0.5 1 

19478 19410 150 200 0.2 0.5 2 

19503 19410 200 300 0.4 0.5 3 

19374 19385 200 200 0.01 0.7 4 

19616 19819 100 300 0.2 0.7 5 

19400 19483 150 100 0.4 0.7 6 

19695 19684 150 300 0.01 0.9 7 

19337 19423 200 100 0.2 0.9 8 

19611 19934 100 200 0.4 0.9 9 

 

Table 3. The computation results of MID criterion when in implementing MOPSO algorithm 

MID Measure MOPSO  Parameters 
Run No. 

MOPSO nRep nPop nIt C2 C1 W 
20503 30 100 100 1.5 1 0.4 1 

20081 40 150 100 1.5 1 0.4 2 

20199 50 200 100 1.5 1 0.4 3 

20162 30 100 200 2 1.5 0.4 4 

19874 40 150 200 2 1.5 0.4 5 

19756 50 200 200 2 1.5 0.4 6 

20531 30 100 300 2.5 2 0.4 7 

20249 40 150 300 2.5 2 0.4 8 

19966 50 200 300 2.5 2 0.4 9 

19592 40 100 300 1.5 1.5 0.65 10 

19518 50 150 300 1.5 1.5 0.65 11 

20226 30 200 300 1.5 1.5 0.65 12 

20029 40 100 100 2 2 0.65 13 

19872 50 150 100 2 2 0.65 14 

20291 30 200 100 2 2 0.65 15 

19936 40 100 200 2.5 1 0.65 16 

19676 50 150 200 2.5 1 0.65 17 

20686 30 200 200 2.5 1 0.65 18 

19577 50 100 200 1.5 2 0.9 19 

20201 30 150 200 1.5 2 0.9 20 

19669 40 200 200 1.5 2 0.9 21 

19645 50 100 300 2 1 0.9 22 
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20292 30 150 300 2 1 0.9 23 

20396 40 200 300 2 1 0.9 24 

19893 50 100 100 2.5 1.5 0.9 25 

20715 30 150 100 2.5 1.5 0.9 26 

20051 40 200 100 2.5 1.5 0.9 27 

The parameters obtained from the Taguchi method for each algorithm are shown as in Figs. 

7-9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Fig. 7. Result of parameter tuning for NSGA-II                         Fig. 8. Result of parameter tuning for NRGA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Result of parameter tuning for MOPSO 

 

The final values of the parameters of the algorithms are given as in Tables 4 and 5. 

 
Table 4. The values of parameters for NSGA-II and NRGA 

nPop nIt Pm Pc Parameters 

200 100 0.01 0.5 NSGA-II 
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n
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200150100
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200 100 0.2 0.7 NRGA 

 

Table 5. The values of parameters for MOPSO 

nRep nPop nIt C2 C1 W Parameters 

50 100 200 1.5 1.5 0.65 MOPSO 

Numerical examples 

 

In this section, 15 numerical examples are designed to study the performances of the proposed 

heuristics. Some criteria are used to evaluate the results as follow: 

- Diversity: This criterion indicates how many of the solutions in the obtained Pareto-

optimal set are distributed in the solution space. The larger value is the better one. 

- Spacing: This criterion indicates the degree of uniform distribution of the solutions in 

the solution space. The smaller value is the better one. 

- Number of Pareto-optimal Solutions (NOS): This criterion indicates the number of non-

dominated solutions in the obtained Pareto-optimal set. The larger value is the better 

one. 

- Mean ideal distance (MID): This criterion measures the proximity degree to the real 

Pareto-optimal set. The smaller value is the better one. 

- CPU Time: This criterion shows the computational time of the algorithm. The smaller 

value is the better one 

All the values for different criteria are given for each numerical example. Tables 6-8 give 

the results. Note that all algorithms are coded in Matlab version7.11.0 (R2010b) software. All 

the computational results were performed on a Pentium 4 notebook with Core i7 CPU 2.2 GHz 

and 8 GB RAM. 
 

Table 6. Result and performance of NSGA-II for different criteria 

Time MID NOS Spacing Diversity A Q M N P No. 

535.86 20070 200 127.4 14024 6 2 30 12 3 1 

542.12 25538 200 130 14187 8 2 30 12 3 2 

597.79 30831 200 489.3 51523 8 4 50 12 3 3 

645.08 53245 200 2912.2 218580 10 4 60 15 3 4 

639.65 78454 200 1045 260720 15 4 80 20 4 5 

755.93 82169 200 1221.3 188740 15 4 100 20 4 6 

762.63 131570 143 3406.9 332690 15 4 120 25 4 7 

747.68 105950 200 4635.4 265580 20 4 120 25 4 8 

1127.25 159970 200 4031 386320 25 5 150 35 4 9 

1241.41 152200 180 1780.2 268910 25 5 250 50 5 10 

1263.34 160930 118 1928.4 258660 30 5 250 50 5 11 

1271.67 135980 142 1647.4 209600 30 5 300 60 5 12 

1272.7 156860 155 8788.1 280180 35 5 300 60 5 13 

1779 155260 115 1100.8 178960 40 5 500 80 5 14 

1802.87 169910 83 1293.6 81663 50 5 500 80 5 15 

14985 1618937 2536 34537 3010337      SUM 

 

Table 7. Result and performance of NRGA for different criteria 

Time MID NOS Spacing Diversity A Q M N P No. 

376.39 20108 200 145.4 12987 6 2 30 12 3 1 

394.86 25228 200 106.7 11748 8 2 30 12 3 2 

416.28 32216 200 473.1 61179 8 4 50 12 3 3 

425.67 35308 200 1204.9 179660 10 4 60 15 3 4 

424.22 70603 200 1021 256740 15 4 80 20 4 5 

508.28 79740 200 1192.5 257420 15 4 100 20 4 6 

528.28 123270 153 1469.9 203160 15 4 120 25 4 7 

518.55 96484 200 1364.2 221850 20 4 120 25 4 8 

729.75 117760 200 4012.9 378790 25 5 150 35 4 9 

819.8 159550 117 6112.3 313140 25 5 250 50 5 10 
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836.3 134410 200 1921.3 254560 30 5 250 50 5 11 

851.4 130960 163 1589.7 224720 30 5 300 60 5 12 

869.7 123510 167 5978.2 218600 35 5 300 60 5 13 

1209.75 179000 153 1285.4 174280 40 5 500 80 5 14 

1227.88 150980 200 540.99 65686 50 5 500 80 5 15 

10137.1 1479127 2753 28418.5 2834520      SUM 

Table 8. Result and performance of MOPSO for different criteria 

Time MID NOS Spacing Diversity A Q M N P No. 

98.71 20914 42 345.7 11830 6 2 30 12 3 1 

116.13 26661 50 515.1 15269 8 2 30 12 3 2 

206.16 34632 50 529.1 52079 8 4 50 12 3 3 

279.04 83785 50 5048.3 179580 10 4 60 15 3 4 

423.06 94693 49 2310.7 156400 15 4 80 20 4 5 

497.47 101300 49 8305.6 223490 15 4 100 20 4 6 

476.29 108030 38 5076 204280 15 4 120 25 4 7 

512.22 115920 50 4149.2 214260 20 4 120 25 4 8 

712.95 161070 36 15156 322340 25 5 150 35 4 9 

802.43 177810 36 14690 335720 25 5 250 50 5 10 

836.3 170630 50 9615 365960 30 5 250 50 5 11 

853.4 162140 43 5095.7 219020 30 5 300 60 5 12 

860.7 159660 25 22013 217320 35 5 300 60 5 13 

1109.75 166420 14 16558 165650 40 5 500 80 5 14 

1127.88 180950 9 18174 94034 50 5 500 80 5 15 

8912.49 1764615 591 127581.4 2777232      SUM 

 

As is clear from Tables 6-8, the following results can be found:  

- Regarding NOS, NRGA outperforms NSGA-II. 

- Regarding Diversity, NSGA-II outperforms NRGA and MOPSO. 

- Regarding Spacing and MID, NRGA outperforms NSGA-II and MOPSO  

- Regarding CPU Time, MOPSO outperforms the two others. 

The comparisons of all criteria are depicted as in Figs. 10.a to 10.e. 
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         Fig. 10.a. Comparison of Diversity                                      Fig. 10.b. Comparison of Spacing  

         Fig. 10.c. Comparison of MID                                         Fig. 10.d. Comparison of NOS 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.e. Comparison of CPU time 

 

To compare the performance of the given heuristics, we applied the analysis of variances 

(ANOVA) technique for different criteria of diversity, spacing, NOS, MID, and CPU time. For 

each criterion, if P-Value is less than 0.05, it means that there is a significant difference between 

the heuristics performances; otherwise, there are no significant differences between the 

performances. The ANOVA results are given in Table 9. 

 
Table 9. ANOVA results for NSGA-II, NRGA and MOPSO 

Test Result P-value Response Variable 

Null hypothesis is not rejected 0.922 Diversity 



378  Seifbarghy et al. 

Null hypothesis is rejected 0.000 Spacing 

Null hypothesis is not rejected 0.952 NOS 

Null hypothesis is not rejected 0.637 MID 

Null hypothesis is rejected 0.008 CPU Time 

 

As is clear from Table 9, there are only significant differences among the heuristics for 

Spacing and CPU Time criteria. 

 

Conclusions, managerial insights and future research ideas 
 

We developed a bi-objective model for a three-echelon multi-commodity supply chain 

including manufacturers, distribution centers (DCs) and customers which might be partially or 

fully covered by the DCs. The DCs were selected from among a number of candidate points. 

Furthermore, the flow of commodities in the whole supply chain considering a limited number 

of DCs was determined by minimizing the total operational costs and maximizing the 

customers’ coverage. Since the presented problem was NP-hard in nature, three metaheuristic 

algorithms i.e. NSGA-II, NRGA and MOPSO were applied to find the Pareto-optimal solutions. 

Numerical examples were designed to assess the performance of the model and the developed 

metaheuristic algorithms. Five different criteria were measured in order to compare the 

performances of the algorithms. There were only significant differences among the heuristics 

for Spacing and CPU Time criteria. 

From a managerial point of view, this research shows the efficiency and application of partial 

coverage instead of full coverage which can be costly for some situations in supply chain 

network design. A supply chain manager should have in mind that it is not mandatory to fully 

cover customers’ demands with higher costs. Furthermore, the managers can learn that in 

making coverage decisions, they should also have a look at the associated costs with such 

decisions. For this purpose, the given model suggests two objectives of maximal coverage and 

minimal cost.   

As further research ideas, we can consider the DCs to be capacitated in order to make the 

problem closer to real-world conditions. The locations of the manufacturers can be determined 

by the model. The presented model in this research can be combined with the inventory control 

and routing problems in DCs and from DCs to customers. Furthermore, developing faster 

heuristic solutions based on Lagrangian relaxation or Benders’ decomposition algorithm can be 

suggested. 
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