
Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

DOI: 10.22059/jieng.2021.325262.1773

RESEARCH PAPER

A Comparison of Extended Dijkstra and ACO Algorithm for Shortest Path Problem

in Dynamic Networks with Delay Times

Amir Abbas Shojaiea,*, Seyed Esmail Seyedi Bariranb

a. School of Industrial Engineering, Islamic Azad University, South Tehran Branch,

Tehran, Iran
b. School of Industrial Engineering, Islamic Azad University, South Tehran Branch, Tehran,

Iran

Received: 08 June 2021, Revised: 21 June 2021, Accepted: 22 June 2021

© University of Tehran 2021

Abstract

Shortest path problem is a typical routing optimization problem that

is generally involved with a multi-criteria decision-making process.

Therefore, the main objective of this paper is to find the shortest path

in discrete-time dynamic networks based on bi-criteria of time and

reliability by considering the effect of delay times that varies

according to different departure time scenarios. Firstly, the well-

known single-criterion Dijkstra’s algorithm is extended to fit the

conditions of a bi-criteria problem. The solutions obtained from the

extended Dijkstra was then compared with a proposed ant colony

optimization (ACO) algorithm via a set of multi-objective

performance metrics including CPU time, error ratio, spacing and

diversity metrics. The analysis was made based on three network

scales ranged from small (20-100 nodes) to medium (500-1900

nodes) and large (2000-10000 nodes). The computational results

obtained from the analysis suggested that the extended Dijkstra’s

algorithm has a higher efficiency in medium and large scaled

networks. Furthermore, the comparison of the proposed ACO versus

Dijkstra’s algorithm proved the preference of ACO for networks with

larger-scaled (nodes over 5000), while for smaller and medium-scale

networks (nodes 20-2000), the extended Dijkstra’s algorithm has a

dominantly better performance in CPU time as compared to proposed

ACO.

Keywords:
Shortest Path Problem;

Bi-Criteria;

Ant Colony;

Dijkstra;

Delay Time;

Dynamic Network

Introduction

The shortest path problem is commonly referred to as one of the most typical network

optimization problems that have attracted the attention of many researchers during the previous

decade. This attractiveness is mainly due to its practical applications in routing,

communications, optical networks, telecommunications, transportation, project timing and

resources allocation [1]. In this regard, network flow problems are considered as either

* Corresponding author: (A.A. Shojaie)

Email: Amir@ashojaie.com

2 Shojaie and Seyedi Bariran

static/dynamic or optical/non-optical. In a static network flows problem, time dimension that is

a very important component in modeling real cases is usually neglected and the passing time

on each arc is assumed as zero. In addition, it is supposed that the values are constant and

independent of time. These occur in most optimization cases of real systems such as traffic

control, fluid transfer networks, telecommunication networks, and energy transfer networks,

systems of refining and distributing of oil, etc. that result in defining the dynamic flow network

[2, 3]. Unlike static networks, the status of each node fully dependes on the time in dynamic

networks. Therefore, for setting the problem, the state of all nodes should be examined and all

optimum paths are selected [4, 5]. In addition to the above classifications, the meta-heuristics

algorithms proposed in this study can be alternatively implemented in various optical and non-

optical networks applications such as traffic grooming, optical and non-optical routing, wireless

optical networks, wavelength conversion, and many other emerging fields such as IOT based

optical networks. The shortest path problem can be formulated in non-optical networks as

Boolean satisfiability (SAT) problem and further be extended in finding wavelength

assignments in optical networks as well [6]. The shortest path planning in optical networks can

also be considered as an integer linear programming problem (ILP) that was studied by some

Indian researchers using a simplified artificial neural network architecture [7]. Wavelength

conversion in shorted path optical networks is another interesting field combing shortest path

to optical networks and is frequently addressed in several studies such as [8-10]. shortest path

problem techniques can also be effectively applied to many transportation related applications

such as traffic grooming as was used in [11, 12]. In terms of optical network design

perspectives, it is also important to note that the classical shortest path problems as well as the

proposed meta-heuristics have several practical applications. Therefore, it is possible to

formulate these algorithms to enhance the performance of both optical and non-optical

networks, accordingly.

For the purpose of this study, the focus will be on a type of discrete-time dynamic network

in which the departure time is different due to the existence of delay times between the passing

times of each two nodes. Therefore, the main objective of this paper is to propose two bi-criteria

meta-heuristic algorithms, based on the well-known Dijkstra's algorithm and ACO method for

finding those Pareto-optimal solutions that simultaneously secure two purposes of minimizing

the time and maximizing the reliability of each path by considering the effect of delay time

between the nodes.

The structure of this paper is organized as follows. Section 2 defines the problem and

clarifies the specifications of the given network. Section 3 is to provide a comprehensive

literature review on Dijkstra and ACO algorithms as relevant to multi-criteria routing

optimization problems. In Section 4, the proposed heuristics algorithms are presented based for

solving bi-criteria network problems with delay time in node. The implementation procedure

and the computational results of 41 random instances (9 small-sized instances, 17 medium-

sized and 15 large-sized instances) are discussed in Section 5. In the end, the work concludes

with the comparison of the proposed methods based on given performance metrics and

directions for future research.

Problem definition

In shortest path problems, the main challenge is to start from a source node and then pass

through a series of middle nodes to reach the sink node while optimizing one or more criteria

at decision points. The criteria related to these types of networks can be either

deterministic/stochastic or discrete/continuous. In dynamic networks, some parameters may

change as time goes on and therefore affecting the final solutions resulted from decision-making

alternatives. The delay time existing between two nodes along the path is one of the most

Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

 3

frequently occurred variable conditions that is studied in this paper. Furthermore, for solving

this type of discrete-time dynamic network, in addition to finding the non-dominated (also

called efficient) paths, the primary objective is to obtain the total delay times in each path and

in different start times so that it is possible to compute the delay time in subsequent nodes.

The network configured for this problem is denoted as 𝐺(𝑁, 𝐴) in which "𝑁" and "𝐴" are

the total nodes and total directed arcs among these nodes, respectively. Referring to the

graphical illustration shown in Fig. 1, it is assumed to move from source node 𝑠 to sink node 𝑡.

The symbol "𝑇" is also considered as the total delay time and therefore any path having a delay

time more than 𝑇 is omitted. In addition, "𝐶𝑖𝑗" stands for travel cost from node 𝑖 to 𝑗 and "𝑅𝑖𝑗"

stands for reliability. The goal in this network is to find all non-dominated paths with minimum

cost and maximum reliability from source (𝑠) to sink (𝑡).

Definition 1: A walk in a network 𝐺 = (𝑁, 𝐴) is a continuous route for getting from one

node to another by passing through a sequence of arcs. A path is then a walk without any

repetition of nodes. In addition, a direct path is a path if the arcs are directed within the given

path. In other words, a directed path has no backward arcs. Let 𝒫 be the set of all directed paths

from node 1 𝑡𝑜 𝑁 in the network 𝐺. For any directed path 𝑝 = (𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑥𝑘+1) 𝜖 𝒫 , the

reliability and cost of a path are defined as in Eqs. 1 and 2 as follows:

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑝) = ∐ {𝑅𝑥𝑖,𝑥𝑖+1
}(𝑥𝑖,𝑥𝑖+1)𝜖𝑝 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝 𝜖 𝒫, (1)

𝐶𝑜𝑠𝑡 (𝑝) = ∑ 𝐶𝑥𝑖,𝑥𝑖+1
 𝜖 𝑝 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝 𝜖 𝒫,𝑘

𝑖=1 (2)

Wherein,

𝑅𝑥𝑖,𝑥𝑖+1
𝑎𝑛𝑑 𝐶𝑥𝑖,𝑥𝑖+1

, are the reliabilities and costs assigned to each arc (𝑥𝑖, 𝑥𝑖+1)𝜖 𝑝 ,

respectively.

Definition 2: Let 𝑃 be the set of all paths from node 1 to node 𝑁 in a network and let

𝑓1(𝑝) = 𝑐𝑜𝑠𝑡 (𝑝), 𝑓2(𝑝) = 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑝), ∀ 𝑝 𝜖 𝑃, a path 𝑝1 𝜖 𝑃 is said to dominate another

path 𝑝2 𝜖 𝑃, and we consider 𝑝1 > 𝑝2, if both the following conditions are met:

1. Path 𝑝1 is no worse than path 𝑝2 in all objectives (cost and reliability).

2. Path 𝑝1 is meaningfully better than path 𝑝2 in at least one objective (cost or reliability)

as given in relation 3 below:

3. 𝑝1 ≥ 𝑝2 𝑖𝑓𝑓 {
𝑓1(𝑝1) < 𝑓2(𝑝2)

𝑓2(𝑝1) > 𝑓2(𝑝2)

 (3)

If any of the above conditions are violated, path 𝑝1 does not dominate path 𝑝2.

Among a set of all paths 𝑃, the set of particular paths known as non-dominated paths, 𝑃𝑁,

are those that are not dominated by any member of set 𝑃. In other words, for 𝑝 𝜖 𝑃𝑁 , if and only

if it is not possible to find a 𝑝′𝜖 𝑃 𝑎𝑛𝑑 𝑝′ ≠ 𝑝, such that cost or flow is improved without

obtaining a worse cost or flow, respectively.

In Table 1, information related to the network given in Fig. 1 is elaborated. The second and

third columns show cost and reliability between each two arcs respectively. The values are

given under columns L1 to L7 show the delay times between the nodes based on seven different

start times. Table 2 presents the correlation between four non-dominated paths along with the

cost, reliability, and total delay time for each path. Referring to Table 2, the cost and reliability

of the first path are 10 and 0.315, respectively. It is assumed that the total delay time in the

network depends on the moving start time. If one starts at time L1, the total delay time in this

4 Shojaie and Seyedi Bariran

path is equal to one, if a start at time L2, total delay is two, etc. Therefore, if the total delay time

for this example is set as five, then paths 1 and 2 remain unaccepted. In Figs. 2.1-2.4, optimum

paths for L7 (as the starting time) are shown by considering the delay between two nodes for

each path 1-4 respectively. In addition, the state of each node is shown for each time unit. For

instance, as shown in Fig. 2.1., in path 1, moving starts from node 𝑠 to node 1 with one delay

time unit, from node 1 to node 2 and from node 2 to node 5, without delay and from node 5 to

node 𝑡 with 1 delay unit.

Finding the shortest path for a network with scales shown in Figs. 2.1-2.4 is not very

challenging. However, in large-scaled multi-criteria networks with a lot of arcs and nodes,

finding the shortest path is much more difficult, time-consuming and the existing single-

criterion algorithms such as classical Dijkstra would be inefficient. Therefore, an enhanced

Dijkstra’s algorithm is proposed based on the original single-criterion Dijkstra presented by

Skriver and Andersen [16] for finding the optimum non-dominated path in large-scale networks

with populated nodes.

Fig 1. Given Network G (N, A) showing the cost and reliability of each arc

Table 1. Specifications of given network G (N, A)

Arc Cost Reliability L1 L2 L3 L4 L5 L6 L7

s – 1 3 0.8 0 0 1 2 1 1 1

s – 2 7 0.9 0 1 2 3 2 1 0

s – 3 6 0.85 1 1 1 1 2 1 0

1- 2 2 0.7 1 1 1 1 1 1 0

1- 4 8 0.95 1 1 2 2 1 1 1

2- 4 4 0.85 1 0 1 1 2 1 0

2 – 5 3 0.75 0 0 1 1 1 0 0

2 – t 7 0.9 1 1 1 2 2 2 2

3 – 5 5 0.8 0 0 1 1 1 1 1

4 – t 2 0.65 0 0 1 2 1 1 0

5 – t 2 0.75 0 1 1 2 2 1 1

Table 2. Non-dominated Paths of given network G (N, A)

Non-

dominated

Paths

Cost Reliability

Total Delay Time

L1 L2 L3 L4 L5 L6 L7

s

1

1

2

3

4

3

5

t

3, 0.8

7, 0.9

8, 0.95

2, 0.7
4, 0.85

7, 0.9

2, 0.65

2, 0.75

5, 0.8

6, 0.85
3, 0.75

Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

 5

s -1 – 2 – 5

– t
10 0.315 1 2 4 6 5 3 2

s – 2 – 5 – t 12 0.506 0 2 4 6 5 2 1

s – 3 – 5 – t 13 0.51 1 2 3 4 4 3 2

s – 2 – t 14 0.81 1 2 3 5 4 3 2

Fig 2.1. Non-dominated paths in start time L7 for path 1

Path 1: S 0→ 11 → 21 → 51 → t2

Path 2: S0→ 20 → 50 → t1

Path 3: S0→ 30 → 51 → t2

Path 4: S0→ 20→ t2

s 1 2 3 4 5 t

s 1 2 3 4 5 t

s 1 2 3 4 5 t

s 1 2 3 4 5 t

s 1 2 3 4 5 t

T

0

T

1

T

2

T

3

Path 1: S 0→ 11 → 21 → 51 → t2

Path 2: S0→ 20 → 50 → t1

Path 3: S0→ 30 → 51 → t2

Path 4: S0→ 20→ t2

s 1 2 3 4 5 t

s 1 2 3 4 5 t

s 1 2 3 4 5 t

s 1 2 3 4 5 t

s 1 2 3 4 5 t

T

0

T

1

T

2

T

3

6 Shojaie and Seyedi Bariran

Fig 2.2. Non-dominated paths in start time L7 for path 2

Fig 2.3. Non-dominated paths in start time L7 for path 3

Fig 2.4. Non-dominated paths in start time L7 for path 4

Literature review

Dijkstra and labeling algorithms

Path 1: S 0→ 11 → 21 → 51 → t2

Path 2: S0→ 20 → 50 → t1

Path 3: S0→ 30 → 51 → t2

Path 4: S0→ 20→ t2

s 1 2 3 4 5 t

s 1 2 3 4 5 t

s 1 2 3 4 5 t

s 1 2 3 4 5 t

s 1 2 3 4 5 t

T

0

T

1

T

2

T

3

Path 1: S 0→ 11 → 21 → 51 → t2

Path 2: S0→ 20 → 50 → t1

Path 3: S0→ 30 → 51 → t2

Path 4: S0→ 20→ t2

s 1 2 3 4 5 t

s 1 2 3 4 5 t

s 1 2 3 4 5 t

s 1 2 3 4 5 t

s 1 2 3 4 5 t

T

0

T

1

T

2

T

3

Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

 7

Some of the simple classical algorithms focusing on single-objective shortest path problem

were presented by Ford [13], Bellman [14] and Ford and Fulkerson [3] were classified as

“labeling and label correcting algorithm” and therefore can be modified and used for “multi-

objective shortest path problem”. For instance, Brumbaugh-Smith et al., [15] presented a label

correcting algorithm for bi-objective shortest path problem. In their algorithm, the cost of

effective paths from the source to the current node is kept the same for each criterion. As a

result, a collection of answers in the sink label, show all non-dominated paths. Skriver et al.,

[16], improved the previous algorithm by labeling middle nodes and finding minimum cost

from middle nodes to sink. This new algorithm improved the performance time significantly

[16].

Martinz et al., [1] presented a labeling algorithm for multi-objective shortest path problem

(MOSP). In Martin’s successive reiterations algorithm, a node that contains the smallest

lexicographical vector among all nodes in a temporary collection would be selected for moving

from a temporary collection to a permanent one. Since this algorithm selects the smallest

lexicographical from other vectors in successive reiterations, the efficiency of the algorithm

decreases when there are several effective paths from one node to the other.

However, some other researchers including Warburton, Hassin, Lorenz, Ergun et al., [17-

19] tried to solve the MOSP problem in polynomial algorithms by using dynamic programming

and approximate algorithms. Hao et al., [20] presented a polynomial model for MOSP that

contained two algorithms. Firstly, they found all the paths for which the costs were less than an

acceptable limit for each objective independently. Later, they completed their work by finding

the algorithm of the K-path and finally selected the best path among the joint paths by multi-

objective lattice-order decision-making algorithm.

In another collaborative work, Chen et al., [21] studied the time-dependent reliable shortest

path problem (TD-RSPP). They surveyed two variants of TD-RSPP. The first problem was to

obtain the earliest arrival time as relevant to the reliable shortest path for a given departure time

as the “forward” TD-RSPP. The second problem was to obtain the latest departure time as

relevant to the reliable shortest path for a given preferred arrival time as the “backward” TD-

RSPP. They proposed two efficient solution algorithms to solve both forward and backward

TD-RSPP problems.

In other research, Kwon and Lee [22] studied a robust shortest path problem. They proposed

a path enumeration approach using the K-shortest paths search algorithm. They also applied

their approach in hazardous materials transportation. In a similar work, Chen and Tang [23]

surveyed the problem of finding the K-th shortest path for a time-schedule network. They

assumed that each node in the network has a list of given departure times. They developed a

new algorithm that builds a map structure at each node in the network. They found out that K-

th shortest path without the first K-1 path. Then they applied their algorithm for finding multiple

shortest paths in the same network.

As relevant to dynamic networks, Cheung [24] suggested a routing policy that includes a

dynamic shortest path in a network with independent, positive and discrete random are costs.

His approach follows the classical label-correcting approach to work out the expected path cost.

Then he developed stochastic versions of some well-known label-correcting methods. They

found out that fast methods for deterministic networks could become very slow for stochastic

networks.

In a further research, Murthy and Her surveyed [25] the problem of determining a path

between two nodes in a network that minimizes the maximum of r path length values associated

with it. They proposed a label-correcting procedure for this problem and extended two pruning

techniques that distinguish and eliminate many paths that were not part of the optimal path.

Tufekci [26] developed decomposition algorithms for finding the shortest path between a

8 Shojaie and Seyedi Bariran

source node and a sink node of an arbitrary distance network and compared his algorithm with

Shier’s algorithm [15] and showed that his algorithm is a polynomial of O (n2).

In a related research conducted by Xuan et al. [42], the performance of two different dynamic

programming approaches including Dijkstra’s algorithm and Bellman’s dynamic programming

approach was checked for shortest path problem of transportation road network in different

backgrounds. This study can be effectively used to solve the shortest path problem for different

needs. The application of Bellman’s approach shows that it is computationally Costly due to a

lot of duplicate calculations. In comparison, Dijkstra’s algorithm can successfully make better

the computational output of the backward dynamic programming approach. Pursuant to

whether the shortest path from the node to the original node has been found, Dijkstra’s

algorithm signed the node with permanent and temporal labels. In each step, it simultaneously

updates both the permanent and temporal labels to avoid the duplicated calculations in the

backward dynamic programming approach. The paper also presented an algorithm using

dynamic programming theory to solve the K shortest path problem. The K shortest path

algorithm was particularly helpful to find the possible paths for travelers in the real-world. The

computational efficiency of the three approaches in large network was prospected.

An extensive review of shortest path problem solving algorithms was presented by Kumawat

et al. [43]. The paper provided a detailed overview of Shortest Path Algorithms (SPA) besides

problem solving algorithms. The problem of the shortest path was represented as a graph and

solved by utilizing different algorithms based on the application. The main goal of SPA was

analyzed as shortening the inclusive cost and distance. The application of artificial intelligence

was also described in the shortest path algorithms. The time complexity of the different

algorithms presented in the various literature was discussed and suggested some future research

perspectives. This examination also proved that the performance varies between various

algorithms which are used to resolve detailed variations of SPP.

Dynamic multi-objective shortest path problem (MOSP) problem

One of the most comprehensive and pioneer studies in terms of dynamic network flows was

conducted by Aronson in 1989 [4]. Referring to his paper, most of the researchers, when faced

with a dynamic network flow problem, do not make up methods for exploiting the multi-period

structure, but use existing methods and codes, mostly because their interest is the model. If a

problem is small and solved infrequently, and an available network code exists, then it may be

enough in terms of code development or acquisition cost and computer time. However, if the

problem is large and frequently solved, then the execution of a specialized efficient starting

procedure and dynamic algorithm should be considered.

The classic shortest path problem considers just one objective function or criterion that is

mostly focused on minimizing the total costs or weights of the path, and therefore Dijkstra

algorithm or the label-setting algorithm can be applied for solving such problems with positive

value [27]. On the other hand, many shortest path problems consist of more than one criterion

or objective function. Batta and Chiu [28], Current and Min [29], Current and Marsh [30] are

among a few top researchers that studied the applications and characteristics of such problems.

In addition, the shortest path problems in real-world problems can be categorized into different

types such as static, dynamic or multi-criteria with discrete or continuous, and deterministic or

stochastic parameters. In this regard, several research works investigate multi-criteria shortest

path problems in static networks.

Ghoseiri et al., [30] proposed an algorithm based on multi-objective ant colony optimization

(ACO) to solve the bi-objective shortest path problem. They analyzed the efficiency of the

algorithm and checked the quality of solutions by comparing the results of two sets of small

and large sized networks with those of label correcting solutions. To compare the Pareto optimal

Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

 9

frontiers produced by the suggested ACO algorithm and the label-correcting algorithm, some

performance measures were employed to measure distance, uniformity distribution, and

extension of the Pareto frontiers. The results on the set of instance problems showed that the

proposed ACO algorithm produced good quality non-dominated solutions and time saving in

the computation of large-scale bi-objective shortest path problems.

In a novel collaborative research, Liu et al., [31] proposed a simulated annealing algorithm

to figure out the multi-criteria shortest path problem as well as the multi-criteria constrained

shortest path problem. Their algorithm provided an entirely new searching mechanism in the

sense of a “search from a path set to another path set” instead of a ‘search-from-a-point’

searching mechanism. Their algorithm can be employed for nonlinear objectives. Focusing on

the same area, He and Song [32] addressed the optimal path-finding problem in a stochastic

time-dependent network where all link travel times were temporally and spatially co-related. In

another work, Yu et al., [33] defined the concept of the shortest path based on a scale-free

dynamic and stochastic network model. They proposed a temporal ant colony optimization

(TACO) algorithm for searching the shortest paths in the network.

In another related work, Bezerra et al., [34] proposed an ACO algorithm, called GRACE,

for the Multi-objective Shortest Path Problem. Their approach was compared to the well-known

evolutionary algorithm NSGA-II. Furthermore, GRACE was also compared to another ACO

algorithm proposed previously for the MSP. The results obtained from a computational

experiment with eighteen instances and triple objectives for each instance showed that the

proposed approach was capable of producing high quality non-dominated solutions. Another

related work refers to Abbasi et al., [35] who offered a two-phased exact algorithm and a Cross-

Entropy (CE) algorithm based on bi-criteria to find the maximum flow along with the shortest

path in a dynamic network where the costs change as time functions. The computational results

for 53 random instances showed that for large size problems, CPU time has exponential growth

as compared with the full numeration algorithm.

Guerriero and Pugliese considered a problem that includes cost and time as two main

parameters associated with each. They proposed a multi-dimensional labeling algorithm to

solve this problem and conducted several computational experiments to evaluate the proposed

method. Claudio et al., [13] developed an evolutionary algorithm based on Monte Carlo

simulation to solve multi-objective optimization problems. Their objectives were focused on

simultaneous maximization of shortest path length and minimization of interdiction strategy

cost. In addition, they considered the transformation of the first objective into the minimization

of the reliability of the most reliable path in interdiction paths.

Reinhardt and Pisinger [36] presented a general framework for dominance tests for MOSP

problems involving a number of non-additive criteria such as the probability of reaching the

destination, combined distance and probability function, maximum of commissions, number of

zones visited, maximum zone distance from departure, zone distance and time and modulo k

penalties. In another work, Nasrabadi and Hashemi [37] presented an algorithm to figure out

the dynamic flow problem in a discrete-time model in which transit times, transit costs, transit

capacities, storage costs and storage capacities were considered as variable parameters that vary

with time.

In 2020, Ekmen [41] performed a well theoretical and comprehensive research by analyzing

ad comparing four of the most frequently used methods in the evaluation of the shortest path

problem including Dijkstra, Bellman-Ford, Johnson's and Floyd-Warshall Algorithm. It was

discussed which algorithm is better and more effective in finding the shortest path. The

comparison of four different algorithms for positive weighted, non-directional and fully

connected graphs on the same graph drawing application is remarkable because there is no

study on this subject with the same specifications. According to the results of the study, it was

understood that the algorithm that will be used should be selected in line with type of graph and

10 Shojaie and Seyedi Bariran

problem. It is proved that the Dijkstra algorithm absolutely must be used for fully connected,

positive weighted and non-directional graphs.

Another novel research was conducted by Hughes et al. [44] focusing on multiple shortest

path problems with path de-confliction. Their research was focused on formulating and

examining the Multiple Shortest Path Problem with Path De-confliction (MSPP-PD) to balance

agent routing efficiency with group vulnerability. Within the general model formulation,

multiple agents were routed between respective source and terminus nodes while minimizing

both the total distance travelled and a measure of path conflict, where path conflict occurs for

any instance of more than one agent traversing an arc and/or node. Within this modeling

structure, the paper presented a set of alternative, conceptually-motivated penalty metrics to

inhibit path conflict between agents. Subsequent empirical testing over a set of synthetic

instances demonstrated the effect of different penalty function metrics on both optimal solutions

and the computational effort required to identify them. Finally, the utility of the MSPP-PD

model variants both individually and collectively was highly recommended in real-time case

studies.

Two proposed algorithms

Extended bi-criteria Dijkstra's algorithm

The classical bi-objective Dijkstra's algorithm that was conceived by computer scientist Edsger

Dijkstra in 1956 and published in 1959 is a graph search algorithm that solves the single-source

shortest path problem for a graph with a non-negative edge, producing a shortest path tree [3].

This algorithm is commonly used in routing problems or as a sub-routine in other graph

algorithms [27]. Due to the following reasons, the performance and functions of a bi-criteria

Dijkstra’s algorithm is not comparable to its single-objective model and therefore needs to be

independently formulated. Some of the main conceptual differences between the two above-

mentioned algorithms follow:

 Single-objective Dijkstra algorithm has only one solution, while bi-objective algorithm

may have several answers (non-dominated solutions).

 In single-objective Dijkstra, between every two nodes with a temporary label, one node

with minimum index (minimum cost) is selected and is constantly labeled, while in bi-

objective Dijkstra, the minimum cost could not be selected due to the existence of non-

dominated answers.

 In a bi-objective algorithm, a temporary and a constant label should be kept in exchange

for each non-dominated answers.

Therefore, in networks with a large number of nodes, arcs and non-dominated solutions, the

performance of single-criterion Dijkstra’s algorithm intensely decreases, while its running time

dramatically increases. This is considered as a major drawback of the single-criterion Dijkstra

algorithm to be utilized in large-scale networks. This long running time is mainly to the fact

that in each step the non-dominated solutions should be calculated several times up to the

number of the entering arcs. However, the working process of the proposed bi-objective

algorithm (extended Dijkstra) is the same as the single-objective model. The only difference is

that for generating the proposed bi-objective algorithm, the process is started by entering nodes

rather than focusing on the departing (exiting) nodes.

In each step of the single-objective Dijkstra's algorithm, the selection procedure for each

subsequent node is based on the minimum temporary labels of the existing nodes and this

process is repeated for all the nodes. However, in extended Dijkstra that is formulated based on

the entering nodes, this process is conducted once for each node and therefore yields

considerable improvement on decreasing the CPU running time for large-scale networks.

http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Edge_%28graph_theory%29
http://en.wikipedia.org/wiki/Shortest_path_tree
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Subroutine

Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

 11

Moreover, in classical bi-objective Dijkstra's algorithm, non-dominated answers should be

calculated several times for each node rather than selecting minimum labels. While for extended

Dijkstra’s algorithm, non-dominated answers are calculated once for each node. The pseudo-

code for extended Dijkstra’s algorithm is given in Table 3.

Table 3. Pseudo code of the extended Dijkstra's algorithm 1

1: Input: A graph G= (V, E), a set of non–negative edge weights

{𝐶𝑖𝑗 : (i, j) ∈E , 𝑅𝑖𝑗 : (i, j) ∈ E }, an origin s ∈ V , a destination t ∈ V.

2: Output: shortest paths from s to t.

3: Initialization:

 M: Two-dimensional Matrix [Cost, Reliability], 𝑁𝑗 =1

4: For each child j of i do

 𝑀𝑗[𝑁𝑗 , 1] = 𝑀𝑖[𝑁𝑗 , 1] + 𝐶𝑖𝑗

 𝑀𝑗[𝑁𝑗 , 2] = 𝑀𝑖[𝑁𝑗 , 2] + 𝑅𝑖𝑗

 𝑁𝑗 = 𝑁𝑗 + 1

end for

5: find and save non-dominated paths (optimal paths) for j

6: if j=t then

terminate

else

go to step 4

end if

For networks in which between every two nodes there is a delay time, the moving start time

is very important and needs to be carefully selected to avoid unwanted delays. Different starting

(departure time) plays a key role in determining the number of the optimum path as well as the

total delay time to get to the destination point. Table 4 shows a network with 15 nodes and 28

arcs that have been examined at seven different start times. For each optimum path in this

network, the values for cost and reliability are calculated based on different start times (L1 to

L7) in respective columns.

By considering a permissible level for the delay in this network (10-time units for this case),

the number of possible optimum paths become various. In Table 4, each optimum path is

indicated by referring to the number of nodes and the relevant delay time in the parenthesis.

Three network sizes (small, medium and large) are utilized for comparing the performance of

the two algorithms, i.e., the classical bi-objective Dijkstra (based on exiting nodes) and the

extended Dijkstra’s algorithm (based on entering nodes).

The performance results of the two algorithms (classical vs. extended) are compared in Table

5 and then graphically presented in Fig. 3. Based on the results, for small networks, the two

algorithms yielded almost the same performance in CPU time, while for medium and large-

scale networks (especially those having 4000 nodes and 150000 arcs), the extended algorithm

has a dominantly better performance as compared to the classical bi-objective Dijkstra.

Therefore, the extended Dijkstra’s algorithms have been proved to have a better performance

as compared to the classical bi-objective algorithms.

12 Shojaie and Seyedi Bariran

Complexity Analysis of Dijkstra Algorithm

Let G (V, E) be a directed graph in which each vertex has a nonnegative weight. The cost of

a path between two vertices in G is the sum of the weights of the vertices on that path. It has

been shown that for such graphs, the time complexity of Dijkstra's algorithm (E.W. Dijkstra,

1959) implemented with a binary heap, is calculated as O (|E|+|V| log |V|).

The complexity of Dijkstra’s algorithm is as follows. It takes two (|V|) times to construct the

initial priority queue of |V| vertices. Each of the subsequent priority queue operations takes time

two (log q) where q is the current size of the queue. Each vertex u is deleted from the queue

exactly once after it has obtained its least cost path from the source vertex. After u is deleted

from the queue, each neighbor v of vertex u is tested to see if the path from the source to v

through u has a lower cost than the current path from the source to v. If a lower cost path is

obtained through u, then the path cost for v is decreased and the vertex priority changed in the

queue. Therefore, the test for improving a path is performed two (|E|) times with a worst-case

time of two (log |V|) to update the vertex priority for each test.

Consequently, the algorithm runs in time 2(|E| log |V|). We know that for vertex-based cost

functions, the test for improving the cost of the path succeed only once per vertex when the

neighbor with the least cost path from the source is deleted from the queue. Let c*(v) denote

the cost of the least cost path from the source vertex s to vertex v using f. Let u be the immediate

predecessor on the least cost path from s to v using f. Then, c*(v) = f (v) + c*(u). By the

definition of least cost paths, c*(u) ≤ c*(u¢) for all u¢ and refer to Q3 and Q3 adjacent to v.

Since vertices are deleted in path cost order without loss of generality, u is deleted before u¢.

Although u¢ might be deleted before v, the path cost of a vertex v will never decrease after the

first time when its least path cost neighbor u is deleted from the queue. In other words, when a

vertex obtains a finite path cost, it obtains its least path cost. Of the two (|E|) tests for a lower

path cost, only two (|V|) tests require an update of vertex priority in the queue. Therefore, the

complexity of Dijkstra’s algorithm for vertex-based cost functions is two (|E| + |V| log |V|)

using a binary heap implementation for the priority queue.

Table 4. Non-dominated Paths

Star

t

time

#Non-

dominat

ed

Paths

Dijkstra's CPU

Times(s)
Cost

Reli

abilit

y

Total

of

Delay

time

Optimum Paths

Classi

cal

Extend

ed

L1 7 0.04 0.12

1648
0.58

1
1

1(0)-3(0)-5(0)-7(0)-8(0)-9(0)-11(1)-

12(1)-14(1)-15(1)

1839
0.60

7
0

1(0)-3(0)-5(0)-7(0)-8(0)-10(0)-12(0)-

14(0)-15(0)

1913
0.62

1
1

1(0)-3(0)-5(0)-7(0)-8(0)-9(0)-11(1)-

13(1)-15(1)

2430
0.63

2
1

1(0)-3(0)-4(0)-6(0)-8(0)-9(0)-11(1)-

13(1)-15(1)

2461
0.65

1
0

1(0)-2(0)-4(0)-6(0)-8(0)-10(0)-12(0)-

14(0)-15(0)

2535
0.66

7
1

1(0)-2(0)-4(0)-6(0)-8(0)-9(0)-11(1)-

13(1)-15(1)

2914
0.67

4
0

1(0)-2(0)-4(0)-6(0)-8(0)-9(0)-10(0)-

12(0)-14(0)-15(0)

L2 6 0.04 0.12 1648
0.58

1
5

1(0)-3(0)-5(0)-7(0)-8(2)-9(2)-11(2)-

12(2)-14(3)-15(5)

Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

 13

Star

t

time

#Non-

dominat

ed

Paths

Dijkstra's CPU

Times(s)
Cost

Reli

abilit

y

Total

of

Delay

time

Optimum Paths

Classi

cal

Extend

ed

1839
0.60

7
6

1(0)-3(0)-5(0)-7(0)-8(2)-10(2)-12(3)-

14(4)-15(6)

1913
0.62

1
3

1(0)-3(0)-5(0)-7(0)-8(2)-9(2)-11(2)-

13(3)-15(3)

2430
0.63

2
2

1(0)-3(0)-4(1)-6(1)-8(1)-9(1)-11(1)-

13(2)-15(2)

2535
0.66

7
2

1(0)-2(1)-4(1)-6(1)-8(1)-9(1)-11(1)-

13(2)-15(2)

2914
0.67

4
5

1(0)-2(1)-4(1)-6(1)-8(1)-9(1)-10(1)-

12(2)-14(3)-15(5)

L3 5 0.04 0.12

1648
0.58

1
10

1(0)-3(1)-5(3)-7(5)-8(5)-9(7)-11(7)-

12(9)-14(10)-15(10)

1839
0.60

7
10

1(0)-3(1)-5(3)-7(5)-8(5)-10(7)-12(9)-

14(10)-15(10)

1913
0.62

1
8

1(0)-3(1)-5(3)-7(5)-8(5)-9(7)-11(7)-

13(7)-15(8)

2461
0.65

1
9

1(0)-2(2)-4(2)-6(4)-8(4)-10(6)-12(8)-

14(9)-15(9)

2535
0.66

7
7

1(0)-2(2)-4(2)-6(4)-8(4)-9(6)-11(6)-

13(6)-15(7)

L4 4 0.04 0.12

1648
0.58

1
8

1(0)-3(0)-5(1)-7(2)-8(2)-9(4)-11(5)-

12(6)-14(8)-15(8)

1839
0.60

7
4

1(0)-3(0)-5(1)-7(2)-8(2)-10(2)-12(2)-

14(4)-15(4)

2461
0.65

1
7

1(0)-2(2)-4(2)-6(3)-8(5)-10(5)-12(5)-

14(7)-15(7)

2914
0.67

4
9

1(0)-2(2)-4(2)-6(3)-8(5)-9(7)-10(7)-

12(7)-14(9)-15(9)

L5 6 0.04 0.12

1648
0.58

1
6

1(0)-3(0)-5(0)-7(0)-8(2)-9(3)-11(4)-

12(4)-14(4)-15(6)

1839
0.60

7
7

1(0)-3(0)-5(0)-7(0)-8(2)-10(3)-12(5)-

14(5)-15(7)

2430
0.63

2
4

1(0)-3(0)-4(0)-6(1)-8(1)-9(2)-11(3)-

13(4)-15(4)

2461
0.65

1
6

1(0)-2(0)-4(0)-6(1)-8(1)-10(2)-12(4)-

14(4)-15(6)

2535
0.66

7
4

1(0)-2(0)-4(0)-6(1)-8(1)-9(2)-11(3)-

13(4)-15(4)

2914
0.67

4
8

1(0)-2(0)-4(0)-6(1)-8(1)-9(2)-10(4)-

12(6)-14(6)-15(8)

L6 6 0.04 0.12

1648
0.58

1
8

1(0)-3(2)-5(2)-7(3)-8(3)-9(5)-11(5)-

12(6)-14(8)-15(8)

1839
0.60

7
6

1(0)-3(2)-5(2)-7(3)-8(3)-10(3)-12(4)-

14(6)-15(6)

1913
0.62

1
6

1(0)-3(2)-5(2)-7(3)-8(3)-9(5)-11(5)-

13(5)-15(6)

14 Shojaie and Seyedi Bariran

Star

t

time

#Non-

dominat

ed

Paths

Dijkstra's CPU

Times(s)
Cost

Reli

abilit

y

Total

of

Delay

time

Optimum Paths

Classi

cal

Extend

ed

2430
0.63

2
6

1(0)-3(2)-4(2)-6(3)-8(3)-9(5)-11(5)-

13(5)-15(6)

2461
0.65

1
6

1(0)-2(1)-4(2)-6(3)-8(3)-10(3)-12(4)-

14(6)-15(6)

2535
0.66

7
6

1(0)-2(1)-4(2)-6(3)-8(3)-9(5)-11(5)-

13(5)-15(6)

L7 7 0.04 0.12

1648
0.58

1
4

1(0)-3(0)-5(1)-7(1)-8(1)-9(1)-11(2)-

12(4)-14(4)-15(4)

1839
0.60

7
3

1(0)-3(0)-5(1)-7(1)-8(1)-10(2)-12(3)-

14(3)-15(3)

1913
0.62

1
4

1(0)-3(0)-5(1)-7(1)-8(1)-9(1)-11(2)-

13(4)-15(4)

2430
0.63

2
5

1(0)-3(0)-4(1)-6(1)-8(2)-9(2)-11(3)-

13(5)-15(5)

2461
0.65

1
5

1(0)-2(0)-4(2)-6(2)-8(3)-10(4)-12(5)-

14(5)-15(5)

2535
0.66

7
6

1(0)-2(0)-4(2)-6(2)-8(3)-9(3)-11(4)-

13(6)-15(6)

2914
0.67

4
5

1(0)-2(0)-4(2)-6(2)-8(3)-9(3)-10(4)-

12(5)-14(5)-15(5)

Table 5. Comparison of CPU Time for classical bi-objective Dijkstra vs. extended Dijkstra

#Problem # Node #Arc

Maximum

allowable delay

time

#Non-dominated

solutions

CPU time(s)

Classical

Bi-

objective

Dijkstra

Extended

Bi-

objective

Dijkstra

1 25 70 10 6 0.22 0.04

2 50 207 10 15 0.18 0.07

3 100 617 10 26 1.42 0.2

4 250 2005 10 29 19.14 1.12

5 500 4434 10 48 229 2.7

6 750 7641 10 43 1056 7.28

7 1000 11925 10 39 3047 10.29

8 1500 24017 10 42 8038 19

9 2000 38500 10 85 14029 132

10 2250 48195 10 97 19120 167

11 2500 58881 10 104 26291 225

12 2750 70612 10 115 >30000 341

13 3000 83335 15 109 >30000 302

14 3500 112432 15 110 >30000 481

15 3750 128784 15 94 >30000 501

16 4000 146212 20 105 >30000 545

17 4250 164141 20 121 >30000 684

18 4500 183533 20 111 >30000 829

Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

 15

19 4750 204190 20 98 >30000 1016

20 5000 226075 20 121 >30000 1368

Fig 3. The CPU time of the extended Dijkstra (Proposed) versus the classical bi-objective

Dijkstra (Label)

Proposed Ant Colony algorithm

Ant colony optimization (ACO) was presented for setting the travelling salesman problem

(TSP) by Dorigo et al., in 1991 as the pioneer in the field. This optimization method has been

derived from various ants’ behaviors while they were looking for the shortest path among

possible paths for finding food resources [38]. Any optimization problem that seeks to find the

shortest path is based on the ACO application and may be used for the following purposes [39]:

 Routing inside and between towns

 Routing between substations of power distribution networks with high voltage

 Routing of computer networks

As it was mentioned earlier in the literature review, in recent years many researchers have

designed algorithms based on ACO. Since this algorithm has a good speed in creating possible

solutions, it has been used as an alternative of exact methods to set the bi-objective problems.

In this regard, the bi-objective ant colony optimization can be divided into three categories [39,

40]:

1- Algorithms that apply several colonies for each objective

2- Algorithms that apply several matrixes; the traces of pheromone for each objective

3- Algorithms that apply several creative parameters for each objective

In this paper, the proposed ant colony algorithm is considered to set the problem of the

shortest combinational bi-objective path and belongs to the first and third ACO categories

explained above. The proposed ACO algorithm is fully presented in this section.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000
2
5

5
0

1
0

0

2
5

0

5
0

0

7
5

0

1
0

0
0

1
5

0
0

2
0

0
0

2
2

5
0

2
5

0
0

2
7

5
0

3
0

0
0

3
2

5
0

3
5

0
0

3
7

5
0

4
0

0
0

4
2

5
0

4
5

0
0

4
7

5
0

5
0

0
0

C
P

U
 t

im
e

(s
)

Number of Nodes

Labeling Proposed

16 Shojaie and Seyedi Bariran

In this problem, the reliability (𝑅) criterion and cost (𝐶) criterion are profit and loss type

objectives, respectively. Since the bounds of these two criteria are not similar, Eq. 4 is applied

for equalizing their scales and to convert reliability criterion to cost criterion (
1

𝐶
) bounds.

𝑅′ =
𝑅 − 𝑀𝑖𝑛𝑅

𝑀𝑎𝑥𝑅 − 𝑀𝑖𝑛𝑅
∗

𝑀𝑎𝑥𝐶 − 𝑀𝑖𝑛𝐶

𝑀𝑎𝑥𝐶 ∗ 𝑀𝑖𝑛𝐶
+

1

𝑀𝑎𝑥𝐶
 (4)

Wherein,

𝑹′: Equivalent reliability based on cost criterion bounds

𝑹 ∶ Reliability amount for each arc

𝑴𝒊𝒏𝑹 : The minimum amount considered for reliability criterion.

𝑴𝒂𝒙𝑹: The maximum amount considered for reliability criterion.

𝑴𝒊𝒏𝑪 : the minimum amount considered for cost.

𝑴𝒂𝒙𝑪 : the maximum amount considered for cost in this problem.

To start we put an ant at the start of the first node. Then, the ant must select a node out of

the selectable nodes. Since the ant has no knowledge of the paths, it should randomly select a

path. However, instead of a random selection, the ant can be helped to select better paths by

referring to our knowledge about networks. In this problem, a better path is marked as the one

that has a lower cost (𝐶) and higher reliability (𝑅) and so the greater 𝑅 𝐶 ⁄ rate indicates a better

Path to be selected. Therefore, the artificial ants could be helped to select these paths with more

probability.

Eq. 5 indicates the probability of selecting the node 𝒋 for the ant located at node 𝒊 from

existing paths considering the network criteria that is called motion attractiveness (
ij

=
𝑅𝑖𝑗

𝐶𝑖𝑗
) .

In this case the ant is able to select almost cleverly instead of a completely random selection.

𝑃𝑖𝑗
𝑥 = {

𝑅𝑖𝑗

𝐶𝑖𝑗

∑
𝑅𝑖𝑙
𝐶𝑖𝑙

𝑖𝜖𝑁𝑖

 𝑖𝑓 𝑗 𝜖 𝑁𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

According to Eq. 6, after moving from node 𝑖 to node 𝑗, each ant leaves some pheromone on

this path so that the next ant could be helped by the present pheromone amount on the path and

will be able to select the right path based on motion attractiveness.

Wherein 𝑖𝑗 stands for the amount (intensity) of existing pheromone on the arc (𝑖, 𝑗) and

 stands for a constant amount between zero and one

On the other hand, Eq. 7 shows the possibility of selecting the node 𝑗 for the ant located at

node 𝑖 of existing paths, considering the amount of present pheromone on the path. By natural

steps of the algorithm considering the paltry amount of pheromone, the possibilities of selecting

the paths are equal.

𝑖𝑗
 𝑛𝑒𝑤 = 𝑖𝑗

 𝑜𝑙𝑑 +  . 𝑖𝑗
 𝑜𝑙𝑑 (6)

𝑃𝑖𝑗
𝑦

= {

𝑖𝑗

∑ 𝑖𝑗𝑖𝜖𝑁𝑖

 𝑖𝑓 𝑗 𝜖 𝑁𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

When an ant arrives at the final node, some of the remained pheromone on the path will be

evaporated according to Eq. 8, where  stands for evaporation rate of a constant amount

between zero and one.

Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

 17

𝑖𝑗
 𝑛𝑒𝑤 =  . 𝑖𝑗

 𝑜𝑙𝑑 (8)

Considering the motion attractiveness and the effect of pheromone, by combining Eqs. 5and

7, the ants could be helped to select better paths with more possibility. Eq. 9 below is the final

one to select the next node by ants.

𝑃𝑖𝑗
𝑘 = {

(𝑖𝑗)


(𝑖𝑗)


∑ (𝑖𝑙)(𝑖𝑙)


𝑖𝜖𝑁𝑖
𝑘

 𝑖𝑓 𝑗 𝜖 𝑁𝑖
𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9)

Wherein,

𝑃𝑖𝑗
𝑘 : possibility of selecting the node 𝑗 at the node 𝑖 by ant - 𝑘th


ij

 : attractiveness motion from node i to node j

 : is a constant amount for weighting motion attractiveness. The greater this amount is the more

the effect of motion attractiveness and randomness become.

 : is a constant amount that causes to intensify the pheromone concentration. The greater this

amount is, the more the importance of pheromone concentration and the less the effects of

random behavior becomes.

𝑖𝑗 : the amount (intensity) of pheromone on the path (𝑖, 𝑗)

𝑁𝑖
𝑘: the total selectable arcs for the ant-𝑘th located at the node 𝑖.
According to Eq. 10, after a colony of ants arrives at the final node, the optimum non-

dominated paths will be updated by pheromone spilling. Wherein  indicates the rate of general

pheromone spilling and is a constant number determined by considering the rest of the problem

criteria. For a better path, the amount of pheromone spilling will be more. This act is reiterated

until all considered colonies would find optimum paths. The pseudo-code of the proposed bi-

criteria ant colony algorithm is given in Table 6.

𝑖𝑗
 𝑛𝑒𝑤 = 𝑖𝑗

 𝑜𝑙𝑑 +  . 𝑖𝑗
 𝑜𝑙𝑑 +  .

𝑅𝑖𝑗

𝐶𝑖𝑗
 (10)

Table 6. Pseudo-code of proposed bi-criteria Ant colony algorithm

Input: A graph G= (V, A), a set of non–negative edge weights

 {𝑐𝑖𝑗, 𝑅𝑖𝑗: (𝑖, 𝑗)𝜖𝐴 } ,

An origin 𝑠𝜖𝑉, a destination 𝑡𝜖𝑉.

Output: shortest paths from s to t.

Initialization:

N:Node, Iteration, Ant, α, β, ρ,φ

For i=1 to Iteration

 For j=1 to Ant

 Node=1

 While Node<N

 Calculate Heuristic Function

 Select Next Node

 Local Update Pheromone

 End While

 Crate Path by Ant j

18 Shojaie and Seyedi Bariran

 Calculate Evaporation Rate

 End for j

 Select and save Non-Dominate Paths in Iteration i

 Global Update pheromone

End for i

Select Non-Dominate Paths in all Iteration

Computational results and discussion

The algorithms were created in the MATLAB code on a Microsoft Windows 7.0 Professional

with 2.3GB RAM and 3GB swap running Digital Intel Core i5 Duo CPU. As shown in Fig. 4,

a flowchart for the steps involved in the algorithm is presented. In order to check for the

efficiency and validity of the algorithms, some experiments were conducted. Three sets of

small, medium and large-sized problems were generated randomly using the suggested

algorithm and then results were compared to solutions produced by the proposed multi-

objective algorithm based on classical bi-objective Dijkstra.

A set of nine small-sized acyclic network problems, ranging from 20 to 100 nodes with

positive integer values ranging from 0.90 to 1.0 and from 100 to 500 were randomly generated

with uniform distribution for reliability and cost, respectively. Later, the generated problems

were solved and the results were compared to the solutions produced by the proposed multi-

objective algorithm based on Dijkstra's algorithm. Table 7 shows specifications of the small-

sized instance that ranges from 20 to 100 and summarizes the comparison results based on

parameter values including #ants (number of ants in the colony) and #iterations (number of

algorithm iterations) that is set to 100. Other ant colony parameters including α, Β, ρ, φ and Δ

are also equal to 0.5, 0.9, 0.1, 0.98, and 25, accordingly.

In addition to small-scale networks mentioned above, the efficiency of the algorithms was

examined by a set of 32 medium-scale and large-scale acyclic networks ranging from 500 to

10000 nodes that were randomly generated. Tables 8 and 9 show the necessary specifications

of the instances and summarize the comparison results for medium and large scale instances,

respectively. For medium-scale instance problems, 15 acyclic networks ranging from 500-1900

were considered and for large-sized networks that took very long CPU time (all the non-

dominated solutions generated from multi-objective Dijkstra’s algorithm requires very long

process), 17 instances ranging from 2000-10000 nodes were randomly generated and solved as

illustrated in Table 9. All parameters values including #ants (number of ants in the colony) and

#iterations (number of algorithm iterations) were the same as the ACO model. Other ant colony

parameters including α, Β, ρ, φ and Δ were also equal to 0.5, 0.9, 0.1, 0.98 and 25, accordingly.

Table 7. Specifications of the small sized instance problems

Problem
#Node # Arc

#Non-Dominated

Solution
 CPU Time (s)

Extended

Dijkstra

Proposed

ACO

Extended

Dijkstra

Proposed

ACO

1 20 71 7 7 0.01 5.83

2 30 157 16 13 0.02 6.67

3 40 267 12 10 0.02 7.04

4 50 396 15 10 0.04 7.60

5 60 544 12 8 0.05 7.82

6 70 677 13 9 0.07 8.20

Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

 19

7 80 837 18 10 0.08 8.36

8 90 984 18 10 0.12 8.75

9 100 1,171 17 8 0.13 9.13

Table 8. Summary of results for the experimental analysis on medium-scaled instance

problems

#Problem #Node # Arc

#Non-Dominated

Solution
CPU Time (s)

Extended

Dijkstra

Proposed

ACO

Extended

Dijkstra

Proposed

ACO

1 500 6,781 46 34 18 42

2 600 8,688 44 32 24 45

3 700 10,645 44 32 32 49

4 800 12,493 42 29 37 53

5 900 14,429 48 33 29 56

6 1000 16,294 43 29 47 61

7 1100 18,272 41 29 56 65

8 1200 20,255 43 32 60 68

9 1300 22,199 38 27 65 72

10 1400 24,144 41 29 68 75

11 1500 26,081 40 27 72 79

12 1600 27,992 48 36 85 83

13 1700 30,065 44 32 87 86

14 1800 31,832 45 32 82 90

15 1900 33,875 43 30 98 93

20 Shojaie and Seyedi Bariran

Fig 4. Flowchart of the bi-criteria proposed ACO algorithm

Tables 8 and 9 presents the performance of the bi-criteria ACO algorithm for medium and

large-sized problems. However, there are parameters in the ACO algorithm that needs to be

elaborated more on how to set them in the ACO algorithm. The number of iterations (colonies)

in all runs is equal to 100. The weighting parameters 𝛼, 𝛽 and the updating parameters 𝜑 𝑎𝑛𝑑 𝜌

were experimentally set. In the first run of the algorithm, the parameters had respective values

of 0.55, 0.95, 0.99 and 0.97 that were changed in the second and third run so that better quality

solutions were obtained.

Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

 21

Table 9. Summary of results for the experimental analysis on large-scaled instance problems

#Problem #Node # Arc

 Ant Colony Algorithm Parameters
#Non-Dominated

Solution
CPU Time (s)

 #Iteration #Ant α β ρ φ Δ
Extended

Dijkstra

Proposed

ACO

Extended

Dijkstra

Proposed

ACO

1 2000 35,862 100 100 0.5 0.9 0.1 0.98 25 41 23 90 81

2 2500 47,181 100 100 0.5 0.9 0.1 0.98 25 46 26 135 98

3 3000 60,833 100 100 0.5 0.9 0.1 0.98 25 47 27 177 116

4 3500 76,650 100 100 0.5 0.9 0.1 0.98 25 32 20 197 141

5 4000 94,752 100 100 0.5 0.9 0.1 0.98 25 52 31 270 174

6 4500 114,792 100 100 0.5 0.9 0.1 0.98 25 32 18 282 207

7 5000 137,607 100 100 0.5 0.9 0.1 0.98 25 46 30 356 226

8 5500 162,929 100 100 0.5 0.9 0.1 0.98 25 44 27 433 252

9 6000 190,553 100 100 0.5 0.9 0.1 0.98 25 43 24 480 289

10 6500 219,978 100 100 0.5 0.9 0.1 0.98 25 57 34 589 328

11 7000 252,191 100 100 0.5 0.9 0.1 0.98 25 44 26 661 371

12 7500 286,768 100 100 0.5 0.9 0.1 0.98 25 67 39 907 423

13 8000 323,563 100 100 0.5 0.9 0.1 0.98 25 44 24 939 476

14 8500 362,764 100 100 0.5 0.9 0.1 0.98 25 57 32 1241 549

15 9000 403,588 100 100 0.5 0.9 0.1 0.98 25 51 30 1303 605

16 9500 447,426 100 100 0.5 0.9 0.1 0.98 25 61 36 1352 642

Since ACO is a stochastic algorithm, ten runs for each set of parameters were made and the

set of parameters that yielded the best solutions were 𝛼 = 0.5, β = 0.9, ρ = 0.1, φ = 0.98, Δ = 25.

To study the variability, each problem is repeated 10 times. In Tables 8 and 9, #Nodes and

#Arcs denote the number of nodes and arcs in the network, respectively. The number of ants

and iterations are considered constant. In addition, the CPU denotes the average CPU time in

seconds.

Fig. 5 shows the CPU time of the proposed ACO algorithm versus extended Dijkstra’s

algorithm. As it is shown, the ACO algorithm is much more suitable for solving large-scaled

problems in terms of the required CPU time that proves a 100% preference of the proposed

ACO as compared to extended Dijkstra’s algorithm. For example, at 6000 nodes, the extended

Dijkstra’s algorithm takes about 480s, while the proposed ACO algorithm requires the same

running time for 8000 nodes.

22 Shojaie and Seyedi Bariran

Fig 5. The CPU time of the Proposed ACO algorithm versus Extended Dijkstra algorithm

Furthermore, the comparison of three performance metrics including error ratio (%), spacing

metric (ϒ) and diversity metric (Delta) is given in Tables 10 and 11 for small-scale and medium

to large-scale networks, respectively. From the results, it can be inferred that for small and

medium-sized networks, the metric for error ratio presents a satisfactory discriminating

performance for most of the instances, while for large-scale networks, the value for error ratio

increases as the number of nodes goes up from 2500-5000. And so, the preliminary evaluation

doubts the preference of error ratio as a well determining parameter for large-scaled networks.

Furthermore, the average value for spacing metric implies that the extended Dijkstra has a better

performance as compared to the proposed ACO algorithm for almost all network sizes and

therefore this metric can be recommended as a determining metric for studies for future studies

as well. On the other hand, for the diversity metric (Δ), it can be concluded that using either of

the algorithms, the diversity metric has generated almost the same results for small-scaled

networks, while for medium and large scaled networks, the extended Dijkstra has generated

more desirable values as compared to the proposed ACO that means a better quality solution.

Therefore, there is no guaranty that for all sets of parameters, the ACO algorithm will end with

a dominant solution. Therefore, the overall insight is that as far as the currents performance

metrics are involved, there seems to be a meaningful correlation (negative and or positive)

between the size of the network and the performance of the proposed algorithms that can be

taken into consideration for future researches.

Table 10. Summary of performance metrics for small-scaled networks

#Nodes

Non-dominated

Solutions

Error ratio

(%)

Diversity Metric(Δ) Spacing Metric(ϒ)

Extended

Dijkstra

Proposed

ACO
Proposed

ACO

Extended

Dijkstra

Proposed

ACO

Extended

Dijkstra

20 7 7 0 0.68 0.69 0.13 0.13

0

200

400

600

800

1000

1200

1400

1600

1800

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

1
0
0
0
0

C
P

U
 t

im
e

(s
)

Number of Nodes

Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

 23

30 16 13 19 0.47 0.48 0.06 0.06

40 12 10 17 0.29 0.36 0.04 0.06

50 15 10 33 0.58 0.61 0.08 0.07

60 12 8 33 0.81 0.84 0.23 0.17

70 13 9 31 0.63 0.47 0.12 0.05

80 18 10 44 0.55 0.71 0.10 0.08

90 18 10 44 0.61 0.56 0.11 0.06

100 17 8 53 0.52 0.60 0.10 0.06

Table 11. Summary of performance metrics for medium and large scaled networks

#Node

s

#Instan

ce

Non-dominated

Solutions

Error ratio

(%)

Diversity

Metric(Δ)

Spacing

Metric(ϒ)

Extended

Dijkstra
Propos

ed

ACO

Propos

ed

ACO

Extend

ed

Dijkstr

a

Propos

ed

ACO

Extend

ed

Dijkstr

a

500

1 21 13 38 0.79 0.50 0.12 0.04

2 32 19 41 0.89 0.60 0.12 0.05

3 37 19 49 0.67 0.71 0.08 0.05

4 26 19 27 0.60 0.48 0.06 0.05

2500

1 38 22 42 0.89 0.71 0.10 0.05

2 31 19 39 0.72 0.68 0.09 0.06

3 38 23 39 0.73 0.74 0.08 0.05

4 38 22 42 0.62 0.58 0.06 0.03

5000

1 51 25 51 0.76 0.76 0.07 0.05

2 54 28 48 0.78 0.72 0.07 0.04

3 46 21 54 0.80 0.65 0.10 0.04

4 46 20 57 0.71 0.62 0.11 0.04

Conclusion

This paper was mainly focused on solving the shortest path problem in discrete-time dynamic

networks based on bi-criteria of time and reliability by considering the effect of delay times.

Two objectives were determined for the bi-criteria network with delay time in each of the nodes.

The first criterion maximizes the reliability of paths and the second deals with obtaining all the

feasible shortest paths. The extended Dijkstra’s algorithm was presented to solve the problem

and the results were compared to classical bi-criteria Dijkstra's algorithm. The computational

results showed that for problems of three sizes, the required CPU time of classical bi-objective

Dijkstra's algorithm grows intensively when the size of the problem increases, whereas, for the

extended algorithm, the running time was increased very smoothly. Later, the proposed ACO

algorithm was presented to obtain the non-dominated paths through which 32 generated random

instances were solved. To show the efficiency and validity of the proposed ACO algorithm, the

new algorithm based on Dijkstra's algorithm was extended to generate the non-dominated paths.

The computational results showed that for large-scale networks with a constant number of ants,

the CPU time of the ACO algorithm was smaller than extended Dijkstra's algorithm. While, for

small and medium-sized problems, the extended Dijkstra had a better performance than the

ACO algorithm, considering the running time. From the results in Table 9, it can be inferred

that the proposed ACO algorithm dominates the extended Dijkstra for large and too large-scaled

problems, while for small and medium-sized networks, the extended Dijkstra yields more

24 Shojaie and Seyedi Bariran

preferable results, at least for the CPU time. As part of future research, it is well recommended

to compare the results obtained from the proposed meta-heuristics with other shortest path

problems rather than Dijkstra. Furthermore, it is worth considering the effect of interdicted arcs

for prospective studies as well as running a sensitivity between the size of the network and the

performance of the proposed algorithms based on the current performance metrics. Finally, as

an upcoming priority, it is also possible to consider other combinations of parameters such as

total travel time and cost or time and reliability, etc. as target bi-objective and investigate the

effect of parameters change on the performance of the network.

References

[1] E. Q. V. Martins, "On a multicriteria shortest path problem," European Journal of

Operational Research, vol. 16, pp. 236-245, 1984.

[2] M. Skutella, "An introduction to network flows over time," in Research Trends in

Combinatorial Optimization, ed: Springer, 2009, pp. 451-482.

[3] L. Ford and D. R. Fulkerson, Flows in networks vol. 1962: Princeton Princeton

University Press, 1962.

[4] J. E. Aronson, "A survey of dynamic network flows," Annals of Operations Research,

vol. 20, pp. 1-66, 1989.

[5] B. Kotnyek, "An annotated overview of dynamic network flows," 2003.

[6] F. A. Aloul, B. Al-Rawi, and M. Aboelaze, "Routing in Optical and Non-Optical

Networks using Boolean Satisfiability," JCM, vol. 2, pp. 49-56, 2007.

[7] A. Dwivedi, R. Srivastava, P. Kalra, and Y. Singh, "Simplified neural network

architecture for shortest path planning in optical network," in TENCON 2008-2008

IEEE Region 10 Conference, 2008, pp. 1-4.

[8] T. Erlebach and S. Stefanakos, "Wavelength conversion in shortest-path all-optical

networks," Lecture notes in computer science, pp. 595-604, 2003.

[9] D. B. A. Teixeira, C. T. Batista, A. J. F. Cardoso, and J. d. S. Araújo, "A Genetic

Algorithm Approach for Static Routing and Wavelength Assignment in All-Optical

WDM Networks," in Portuguese Conference on Artificial Intelligence, 2017, pp. 421-

432.

[10] U. Bhanja and D. Mishra, "Quality of service aware fuzzy dynamic routing and

wavelength assignment technique in all optical networks," Photonic Network

Communications, pp. 1-15, 2017.

[11] E. Gajendran, M. Pradeep, and S. B. Prabhu, "Systematic Analysis of Congestion

Control in WDM Mesh Networks," Asian Journal of Applied Science and Technology

(AJAST), vol. 1, p. 1, 2017.

[12] A. K. Pradhan, S. Keshri, K. Das, and T. De, "A heuristic approach based on dynamic

multicast traffic grooming in WDM mesh networks," Journal of Optics, vol. 46, pp.

51-61, 2017.

[13] L. Ford Jr and D. R. Fulkerson, "Solving the transportation problem," Management

Science, vol. 3, pp. 24-32, 1956.

[14] R. Bellman, "On a routing problem," DTIC Document1956.

[15] J. Brumbaugh-Smith and D. Shier, "An empirical investigation of some bicriterion

shortest path algorithms," European Journal of Operational Research, vol. 43, pp.

216-224, 1989.

[16] A. J. Skriver and K. A. Andersen, "A label correcting approach for solving bicriterion

shortest-path problems," Computers & Operations Research, vol. 27, pp. 507-524,

2000.

Advances in Industrial Engineering, Winter 2021, 55(1): 1-26

 25

[17] A. Warburton, "Approximation of Pareto optima in multiple-objective, shortest-path

problems," Operations research, vol. 35, pp. 70-79, 1987.

[18] R. Hassin, "Approximation schemes for the restricted shortest path problem,"

Mathematics of Operations research, vol. 17, pp. 36-42, 1992.

[19] D. H. Lorenz and D. Raz, "A simple efficient approximation scheme for the restricted

shortest path problem," Operations Research Letters, vol. 28, pp. 213-219, 2001.

[20] G. Hao, D. Zhang, and X. Feng, "Model and algorithm for shortest path of multiple

objectives," Journal of Southwest Jiaotong University, vol. 42, pp. 641-646, 2007.

[21] B. Y. Chen, W. H. Lam, A. Sumalee, Q. Li, and M. L. Tam, "Reliable shortest path

problems in stochastic time-dependent networks," Journal of Intelligent

Transportation Systems, vol. 18, pp. 177-189, 2014.

[22] C. Kwon, T. Lee, and P. Berglund, "Robust shortest path problems with two uncertain

multiplicative cost coefficients," Naval Research Logistics (NRL), vol. 60, pp. 375-

394, 2013.

[23] Y. L. Chen and K. Tang, "Finding the Kth shortest path in a time‐schedule network,"

Naval Research Logistics (NRL), vol. 52, pp. 93-102, 2005.

[24] R. K. Cheung, "Iterative methods for dynamic stochastic shortest path problems,"

Naval Research Logistics (NRL), vol. 45, pp. 769-789, 1998.

[25] I. Murthy and S. S. Her, "Solving min‐max shortest‐path problems on a network,"

Naval Research Logistics (NRL), vol. 39, pp. 669-683, 1992.

[26] S. Tufekci, "Decomposition algorithms for finding the shortest path between a source

node and a sink node of a network," Naval Research Logistics Quarterly, vol. 30, pp.

387-396, 1983.

[27] R. K. Ahuja, "Network flows," TECHNISCHE HOCHSCHULE DARMSTADT,

1993.

[28] R. Batta and S. S. Chiu, "Optimal obnoxious paths on a network: transportation of

hazardous materials," Operations Research, vol. 36, pp. 84-92, 1988.

[29] J. R. Current, "Multiobjective design of transportation networks," 1981.

[30] J. Current and M. Marsh, "Multiobjective transportation network design and routing

problems: Taxonomy and annotation," European Journal of Operational Research,

vol. 65, pp. 4-19, 1993.

[31] L. Liu, H. Mu, H. Luo, and X. Li, "A simulated annealing for multi-criteria network

path problems," Computers & Operations Research, vol. 39, pp. 3119-3135, 2012.

[32] H. Huang and S. Gao, "Optimal paths in dynamic networks with dependent random

link travel times," Transportation Research Part B: Methodological, vol. 46, pp. 579-

598, 2012.

[33] Y. M. Nie and X. Wu, "Shortest path problem considering on-time arrival

probability," Transportation Research Part B: Methodological, vol. 43, pp. 597-613,

2009.

[34] L. C. Bezerra, E. F. Goldbarg, L. S. Buriol, and M. C. Goldbarg, "Grace: A

generational randomized ACO for the multi-objective shortest path problem," in

Evolutionary Multi-Criterion Optimization, 2011, pp. 535-549.

[35] S. Abbasi and S. Ebrahimnejad, "The cross-entropy method for solving bi-criteria

network flow problems in discrete-time dynamic networks," Optimization Methods

and Software, pp. 1-19, 2014.

[36] L. B. Reinhardt and D. Pisinger, "Multi-objective and multi-constrained non-additive

shortest path problems," Computers & Operations Research, vol. 38, pp. 605-616,

2011.

[37] E. Nasrabadi and S. M. Hashemi, "Minimum cost time-varying network flow

problems," Optimization Methods & Software, vol. 25, pp. 429-447, 2010.

26 Shojaie and Seyedi Bariran

[38] D. Maniezzo, M. Dorigo, V. Maniezzo, and A. Colorni, "Ant System: An

Autocatalytic Optimizing Process," 1991.

[39] M. Dorigo and M. Birattari, "Ant colony optimization," in Encyclopedia of machine

learning, ed: Springer, 2010, pp. 36-39.

[40] M. Dorigo, M. Birattari, and T. Stützle, "Ant colony optimization," Computational

Intelligence Magazine, IEEE, vol. 1, pp. 28-39, 2006.

[41] Ekmen, Elçin Duygu. "A Study on Performance Evaluation of Optimization

Algorithms in the Shortest Path Problem." PhD diss., Ankara Yıldırım Beyazıt

Üniversitesi Fen Bilimleri Enstitüsü, 2020.

[42] Li, Xuan, Xiaofei Ye, and Lili Lu. "Dynamic Programming Approaches for Solving

Shortest Path Problem in Transportation: Comparison and Application." In Green,

Smart and Connected Transportation Systems, pp. 141-160. Springer, Singapore,

2020.

[43] Kumawat, Sunita, Chanchal Dudeja, and Pawan Kumar. "An Extensive Review of

Shortest Path Problem Solving Algorithms." In 2021 5th International Conference on

Intelligent Computing and Control Systems (ICICCS), pp. 176-184. IEEE, 2021.

[44] Hughes, Michael S., Brian J. Lunday, Jeffrey D. Weir, and Kenneth M. Hopkinson.

"The multiple shortest path problem with path de-confliction." European Journal of

Operational Research 292, pp.818-829, no. 3 (2021).

This article is an open-access article distributed under the terms and

conditions of the Creative Commons Attribution (CC-BY) license.

https://creativecommons.org/licenses/by/4.0/

