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Abstract  

Identification of the structure of dependence among different elements of a 

financial system has long been a hot topic to researchers due to its impact on the 

financial asset risk assessment. Currently, the capital market is one of the key 

financial systems in Iran’s economy, making the understanding and identification 

of its intra-system associations a major concern to investors and investment 

managers who seek to forecast future conditions. Accordingly, the present research 

investigates and models the dependence structure of different market indices of the 

Tehran Stock Exchange (TSE), as a representative of the country’s financial 

system, and the indices referring to the active industries in the TSE, as a component 

of the financial system. We herein investigated a total of 10 market indices and 31 

other indices referring to the most significant active industries in the TSE. The 

mentioned industries were clustered based on three distinctive scenarios. 

Considering the number of components and the abnormal structure of their 

distributions and also taking into account the importance of marginal distributions 

in the assessment of the system component dependence structure model, we found 

the copula functions as a useful tool for expressing the dependence between 

different variables. In this research, the dependence structure of the market and 

industry indices of the TSE was investigated using two subroutines of the vine-

copula functions, namely C-Vine and R-Vine. The results were then studied using 

Vuong’s test. The outcomes indicated that the C-Vine functions can generate very 

good fits to the dependence structures among various industry indices. Moreover, 

the best fits could be explained using the t-student family of the copula functions. 

Based on the results of the present study, it is possible to evaluate the relationships 

between industry indicators and the impact of different market industries from 

changes in the whole market and make optimal decisions in choosing the portfolio 

composition. 
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Introduction  
 

The understanding and modeling of the dependence of the return on different financial assets 

play a key role in the allocation of the assets and configuration of investment strategies. 
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Financial risk management is particularly affected by the mutual dependence of the financial 

assets and markets, making it necessary for the investors to model and quantify the dependence 

structure and intensity [1]. Financial fluctuations can be transferred between different assets in 

the same market or even different markets. In this way, the nature of the dependence between 

financial returns and financial market conditions and its impact on investment is a hot topic in 

financial management. Accordingly, comprehension of the associations among financial assets 

contributes largely to the decision-making about the investment in such assets. Therefore, 

identification of the dependence structure between assets and financial markets has long been 

a field of interest to researchers. Since the 2007 – 2008 financial crisis, many efforts have been 

made to configure the mutual impacts of the elements of a financial system on one another. The 

relevant research has been classified under the field of the systemic risk studies and is focused 

on the probability of the events that lead to action-reaction schemes in the entire financial 

system and hence incur losses to the practitioners across the system. Quantification of system 

variations has been among the most important challenges faced by financial theories in the 

recent past – a challenge that requires an understanding of the dependence structure between 

different elements of the financial system [2]. 

In all financial markets around the world, the stock market index serves as a good indicator 

of the performance of the stock exchange, making it highly regarded by practitioners. This is 

because such indices represent a collective measure of the trends followed by the prices of all 

or a particular segment of the listed companies and hence enable the assessment of the direction 

and intensity of the price movements in the market. Prediction of this index provides some 

information on the future trend and overall state of the market. On the other hand, investment 

in the stock exchange represents an important sector of the economy. Thus, the subject matters 

of prediction and design of robust prediction models for developing countries like Iran are of 

paramount importance for realizing proper management of the stock exchange toward 

sustainable development. Such models further smooth the way for executive decision-makers 

of the stock exchange when making a decision under uncertain conditions [3]. 

The industries with activities in the capital market can exhibit high degrees of dependence 

on one another. Therefore, assessing the risk of one industry without considering its 

dependencies on other relevant industries may not lead to proper results [4]. On this basis, the 

investigation of the dependency structure of the returns for different industries in a portfolio is 

highly useful. In the literature on the financial economy, joint distribution modeling is a major 

challenge against achieving the mentioned objective. Traditional investigations assumed that 

such dependency structure can be extracted from a linear association model. Although this 

approach has been implemented in numerous economic contexts, its results are reliable only 

when the considered variables follow normal distribution [5]. 

A very popular measure of dependency between two variables is the linear correlation 

coefficient, which is based on the very fundamental assumption of the Gaussian normality of 

the distributions of the two variables. As has been indicated by Lanchin and Solnic (2001), 

Karman and Herra (2014), and some other researchers in the field of financial dependency 

modeling, the financial data do not follow a Gaussian (i.e., normal) distribution in many cases. 

Accordingly, using the correlation coefficient alone as a measure of the dependency between 

financial variables oftentimes leads to misleading results. In addition, the normal correlation 

coefficient measures the dependency between assets and/or financial markets in terms of 

intensity rather than providing information on their dependency structure (i.e., how the assets 

are associated with financial markets under different conditions [1]. 

In this respect, the search for multivariate and flexible distributions has made copula 

modeling a popular approach in many contexts (Berchman and Shepsmear, 2012). The copula 

function is a useful yet flexible tool for generating a multivariate distribution function that links 

a group of marginal distributions to one another to come up with a joint distribution (Nelson, 
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2005). This key secret behind the attractiveness of copulas is that they can model the behavior 

of marginal univariate distributions corresponding to each random variable independently from 

the dependency between the random variables [1]. 

Although the copula function has outperformed other indices in describing the dependency 

structure yet the studies published by Berchman and Shepsmear (2012), Dimen et al. (2013), 

and Gazado et al. (2014) showed that these functions cannot perform as successfully for larger 

numbers of variables. In many cases, multivariate data exhibit such complex patterns as 

asymmetry and dependency at margins. Accordingly, implementation of simple copula tends 

to impose some structural limitations in the model, questioning the reliability of the outcomes. 

Generalization of these models to hierarchical copula functions can end up with some 

improvements but at the same time increases the complexity of the dependence structure and 

brings about such limitations as the parametric constraints [6]. Considerable effort has been 

made to build flexible models, with the vine copulas acknowledged as one of the best instances 

of such efforts (Gazado et al., 2014). The vine copulas were first introduced by Joe (1996) and 

then expanded by Bedford and Kodak (2001, 2002) and then Korovebca and Cock (2006). The 

vine copulas enable proper identification of dependence structure between variable pairs as they 

are capable of capturing the symmetry/asymmetry, association intensity, and tail dependence 

[7]. 

As mentioned, the basic premise of classical financial models in identifying structures and 

estimating the dependency pattern of variables has been to have a normal distribution. Based 

on the above, in this study, contrary to the classical financial assumptions, Copula functions 

have been used to identify the structure of dependence. A distinctive feature of these functions 

is the non-consideration of assumptions regarding the distribution of survey data, which 

distinguishes it from classical financial models. The present study seeks to examine the 

relationship between dependence between market indicators and industries active in the Tehran 

Stock Exchange and identify patterns of dependence. 

Based on what was mentioned so far, the present research aims at investigating the 

dependency between market indices and active industries in the Tehran Stock Exchange (TSE) 

to identify the dependency models. For this purpose, considering the relatively large number of 

the industry indices, we began by clustering the entire pool of industries under several scenarios. 

Next, the dependence structure of industry indices and market indices was carried out using 

two subroutines of vine copulas, namely C-Vine and R-Vine. The modeling results indicate the 

effects of different industries and indices on one another and clearly expressed the dependency 

structure in the financial system of the capital market. The current study was further aimed at 

selecting the best copula function for explaining the dependence structure of indices. 

Application of these functions to account for the tail dependence between different industries 

and the financial market of the country is of paramount importance in investment portfolio 

management. In other words, the objectives of this study include identifying the best statistical 

distribution in the financial data under study, fitting the dependency structure between 

distributions based on Copula functions, and finally recognizing and mapping the dependency 

pattern between individual industry indices and the relationship between market indices and 

indices. Is an industry. 

The present contribution is composed of sections on introduction, theoretical foundations 

and research background, methodology, analysis of the results and experimental findings, and 

finally, a discussion on the results and conclusions. 
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Theoretical foundations and research background 
 

Theoretical foundations 

 

Copula functions and Sklar’s theorem 

According to Kurowicka et al. (2012), the credit of presenting the copula models as an 

efficient and popular tool in financial science goes to Joe (1997) and Nelssen (2006). In the 

field of mathematics and statistics, the term copula was coined by Sklar (1959) as he presented 

his theorem called Sklar’s theorem [8]. 

As a fundamental theorem in copula modeling, Sklar’s theorem (1959) shows how a 

multivariate distribution of a dataset can be decomposed into copulas and marginal distributions 

of single data points. This theorem is of profound importance in statistical modeling of 

multivariate distributions functions and serves as a foundation for building pair copula 

functions. According to Sklar’s theorem, letting H be a two-dimensional distribution function 

with marginal distributions F and G, there is a copula function C for which 𝐻(𝑥, 𝑦) =
𝐶(𝐹(𝑥), 𝐺(𝑦)). Moreover, for each distribution function (e.g., F and G) and copula function C, 

the joint distribution function H has two marginal distribution functions F and G. Should the 

functions F and G be continuous, then function C is unique. 

 

𝐻(𝐹−1(𝑢), 𝐺−1(𝑣)) = 𝐶(𝑢, 𝑣) (1) 

 

In the above equation, F-1 is the inverse RCLL† of F. If the random variables X and Y are 

continuous with the above distribution functions, then the function C expresses the joint 

distribution function of the uniformly distributed random variables F(X) and G(Y) [9]. 

As expressed by Fischer (1997) in his encyclopedia of statistics, copulas became popular for 

two main reasons. First, they provide a dimensionless measure of dependence and association 

between random variables. And second, copulas serve as a starting point for producing a family 

of bivariate and multivariate distributions [8]. The usefulness of the copula functions as a tool 

for modeling cross-sectional dependence structures between random variables is sourced from 

the capability of these functions in distinguishing between marginal distributions and joint 

dependence between variables. Pair copulas can be defined as follows: letting X and Y be 

continuous random variables with distribution functions F(x) = P(X ≤ x) and G(y) = P(Y ≤ y), 

respectively, and the joint distribution function H(x, y) = P(X ≤ x, Y ≤ y), then for each pair (x, 

y) in the [−∞,∞]2 space, there is a corresponding point in the (𝐼 = [0,1])𝐼3 space with the 

coordinates(𝐹(𝑥), 𝐺(𝑦),𝐻(𝑥, 𝑦)). This mapping from the 𝐼2 space to the 𝐼 space is referred to 

as the copula. In other words, a copula is a function with 𝐼2 as its domain and 𝐼 as its range, by 

which the following equations hold true for all 𝑥 ∈ 𝐼. 
 

𝐶(0, 𝑥) = 𝐶(𝑥, 0) = 0  (2) 

𝐶(1, 𝑥) = 𝐶(𝑥, 1) = 𝑥 (3) 

 

Furthermore, considering the copula equations, the following relationship is always satisfied 

for all values of 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐼 provided 𝑎 ≤ 𝑏, 𝑐 ≤ 𝑑: 

 

𝑉𝑐([𝑎, 𝑏]) × [𝑐, 𝑑]) = 𝐶(𝑏, 𝑑) − 𝐶(𝑎, 𝑑) − 𝐶(𝑏, 𝑐) + 𝐶(𝑎, 𝑐) ≥ 0  (4) 

                                                 
† right continuous with left limits 
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In the above equation, the function 𝑉𝐶 represents the volume of the rectangle [𝑎, 𝑏] × [𝑐, 𝑑] 
under the function 𝐶  [10]. 

In a multivariate case, the copula functions can be defined as those which combine the 

information about the dependence structure between n > 2 random variables (i.e., 𝑥1, 𝑥2, … , 𝑥𝑛) 

[9]. 

 

Families of copula functions 

The most popular copula functions with applications in the modeling of dependence 

structure in financial systems are described in the following. 

 

Normal or Gaussian copula 

A multivariate normal copula function has a correlation matrix Σ for the parameters. Since 

the correlation coefficient has long been perceived as an important index in the financial arena, 

normal copulas have been widely applied in finance. Although they are most commonly used 

to simplify different procedures. A normal copula function is developed by combining a 

standard univariate normal copula function with a standard n-variable function, which is usually 

denoted by Φ and Φ, respectively. The following expression characterizes a normal copula 

function [11]: 

 

𝐶(𝑢1, . . . , 𝑢𝑛; ∑) = Φ(Φ−1(𝑢1), . . . , Φ
−1(𝑢𝑛))  (5) 

 

Expressing a copula function in deterministic form is usually difficult, and it rather can be 

expressed using integrals. This makes it easier to work with the copula densities rather than the 

copula functions. The density function of the previous equation is written as follows: 

 

𝑐(𝑢1, . . . , 𝑢𝑛; ∑) = |∑|−
1
2 𝑒𝑥𝑝 (−

1

2
𝜉′(∑−1 − 1)𝜉)  (6) 

 

in which (𝜉 = 𝜉1, . . . , 𝜉𝑛)′ and 𝜉𝑖 refers to 𝑢𝑖 quantiles of the standard normal variable 𝑋𝑖: 
 

𝑢𝑖 = 𝑃(𝑋𝑖 < 𝜉𝑖)  (7) 

𝑋𝑖 ∼ 𝑁(0,1)  (8) 

 

It is worth mentioning that a normal copula is a function of (𝑢1, . . . , 𝑢𝑛) rather than 

(𝜉1, . . . , 𝜉𝑛) because we have 𝜉 = (𝛷−1(𝑢1), . . . , 𝛷
−1(𝑢𝑛)). One may go through the following 

steps to obtain a joint distribution function when the copula is normal but the marginal 

distributions are either normal or abnormal [11]: 

 

1. For the marginal functions, we set   . 

2. We use inverse of the normal distribution function. 

3. We use the correlation matrix ∑ and the vector 𝜉 in Equation (--). 

 

When we have only two random variables, the normal copula function takes the following 

form: 

 

𝐶(𝑢1, 𝑢2; 𝜚) = Φ(Φ−1(𝑢1), Φ
−1(𝑢2))  (9) 
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where Φ is a bivariate normal function. Using the formula for the bivariate normal function, the 

above equation can be rewritten as follows: 

 

𝐶(𝑢1, 𝑢2; 𝜚) = ∫Φ−1(𝑢1)
0

∫Φ−1(𝑢2)
0

(2𝜋)−1 − 𝜚2)−
1
2 𝑒𝑥𝑝( −

[𝑥1
2 − 2𝜚𝑥1𝑥2 + 𝑥2

2]

2(1 − 𝜚2)
𝑑𝑥1𝑑𝑥2 (10) 

 

Density function of the normal copula is as follows: 

 

𝑐(𝑢1, 𝑢2; 𝜚) = (1 − 𝜚2)−
1
2 𝑒𝑥𝑝 (−

𝜚2𝜉1
2 − 2𝜉1𝜉2 + 𝜚2𝜉2

2

2(1 − 𝜚2)
)  (11) 

 

The fact that this equation has the correlation coefficient as its only parameter makes its 

estimation an easy task to do. The family of normal copulas has been categorized under 

symmetric copulas, implying that 𝑐(𝑢1, 𝑢2) = 𝑐(𝑢2, 𝑢1). Moreover, the normal copulas exhibit 

zero or near-zero dependence in the distribution tail except for the cases where the correlation 

coefficient is 1. This characteristic is not desired when the modeling of return on financial assets 

is concerned [11]. 

 

t-student copula 

Similar to normal copulas, the n-dimensional t-student copula function is derived from a 

multivariate distribution function. A t-student copula function can be expressed as follows  [11]: 

 

𝐶𝑣(𝑢1, . . . , 𝑢𝑛; ∑) = 𝑡𝑣(𝑡𝑣
−1(𝑢1), . . . , 𝑡𝑣

−1(𝑢𝑛))  (12) 

 

where 𝑡𝑣 and 𝑡𝑣
−1 are a multivariate t-student distribution function and a univariate t-student 

distribution function with 𝑣 degrees-of-freedom (DOFs), respectively. Similar to the normal 

copula, here we have ∑ as the correlation matrix. The t-student copula is also difficult to express 

in a deterministic form. This is usually done with the help of a multivariate t-student density 

function. A multivariate t-student density function is expressed as follows: 

 

𝑓(𝑋) = 𝑘|∑|−
1
2(1 + 𝑣−1𝑋′∑−1𝑋)−

(𝑣+𝑛)
2  

 
 (13) 

𝑘 = Γ(
𝑣

2
)−1Γ(

𝑣 + 𝑛

2
)(𝑣𝜋)−

𝑛
2  (14) 

 

Accordingly, one can obtain the following expression for an n-variate t-student copula 

function: 

 

𝐶𝑣(𝑢1, . . . , 𝑢𝑛; ∑) = ∫ 𝑡𝑣
−1(𝑢1)
0

. . . ∫ 𝑡𝑣
−1(𝑢𝑛)
0

𝑘|∑|−
1
2(1 + 𝑣−1𝑋′∑−1𝑋)−

(𝑣+𝑛)
2 𝑑𝑥1. . . 𝑑𝑥𝑛  (15) 

 

Taking derivative of the above equation, one can develop the corresponding t-student copula 

density function, as follows: 

 

𝐶𝑣(𝑢1, . . . , 𝑢𝑛; ∑) = 𝑘|∑|−
1
2(1 + 𝑣−1𝜉′∑−1𝜉)−

(𝑣+𝑛)
2 ∏𝑖=1

𝑛 (1 + 𝑣−1𝜉𝑖
2)

(𝑣+𝑛)
2  

 
 (16) 

𝜉 = (𝑡𝑣
−1(𝑢1), . . . , 𝑡𝑣

−1(𝑢𝑛)) 
 

 (17) 
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𝐾 = Γ(
𝑣

2
)𝑛−1Γ(

𝑣 + 1

2
)−𝑛Γ(

𝑣 + 𝑛

2
)  (18) 

 

 

With only two random variables, the t-student copula function and density function can be 

expressed as follows: 

 

𝐶(𝑢1, 𝑢2; 𝜚) = ∫𝛷−1(𝑢1)
0

∫𝛷−1(𝑢2)
0

(2𝜋)−1(1 − 𝜚2)−
1
2[1 + 𝑣−1(𝑥1

2

− 2𝜚𝑥1𝑥2    + 

𝑥2
2)]−

(𝑣+2)
2 𝑑𝑥1𝑑𝑥2 

 

 (19) 

𝑐(𝑢1, 𝑢2; 𝜚) = 𝐾(1 − 𝜚2)−
1
2[1 + 𝑣−1(1 − 𝜚2)−1(𝜉1

2 − 2𝜚𝜉1𝜉2 + 𝜉2
2)]−

(𝑣+2)
2 × 

[(1 + 𝑣−1𝜉1
2)(1 + 𝑣−1𝜉2

2)]−
(𝑣+1)
2  

 (20) 

 

Archimedean copulas  

Similar to the normal and t-student copulas, the ellipsoidal copulas are based on multivariate 

distribution functions. Another approach to developing a copula is the use of a generator 

function. In this research, the generator function is denoted by Ψ(𝑢). Using the generator 

function Ψ, the corresponding Archimedean copulas are defined as follows [12]: 

 

𝐶(𝑢1, … , 𝑢𝑛) = Ψ−1(Ψ(𝑢1) + ⋯+Ψ(𝑢𝑛))  (21) 

 

For which the density function is described as follows: 

 

𝐶(𝑢1, . . . , 𝑢𝑛) = Ψ(𝑛)
−1(Ψ(𝑢1)+. . . +Ψ(𝑢𝑛))∏𝑖=1

𝑛 Ψ′(𝑢𝑖)  (22) 

 

in which Ψ(𝑛)
−1 is the nth-order derivative of the inverse of the generator function. Since there are 

numerous generator functions, one can come up with different Archimedean copulas. Nelson 

(2006) alone has defined some 22 univariate Archimedean copulas in his book. 

In this subsection, we introduce the three most popular Archimedean copulas in the field of 

risk management. These three copulas include Clayton copula, Gumbel copula, and Frank 

copula. The Clayton and Gumbel copulas exhibit asymmetric dependence in their distribution 

tail – a fact that makes them significant to us. Clayton copula shows lower-tail dependence 

while Gumbel copula exhibits upper tail dependence [12]. 

In the following, characteristics of different families of copula functions are presented in brief 

[13]. 

 
Table 1. Family of ellipsoidal copula functions. 

# Copula function Domain of parameters Kendall's τ coefficient (2) Upper/lower tail dependence 

1 Gaussian 𝜌 ∈ (−1,1) 
2

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛( 𝜌) 0 

2 t-student 𝜌 ∈ (−1,1), 𝑣 > 2 
2

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛( 𝜌) 2𝑡𝑣+1 (−√𝑣 + 1√

1 − 𝜌

1 + 𝜌
) 
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Table 2. Family of univariate and bivariate Archimedean copula functions. 

# 
Copula 

function 
Generator function 

Domain of 

parameters 
Kendall's τ coefficient (2) 

Upper/lower 

tail 

dependence 

1 Clayton 
1

𝜃
(𝑡−𝜃 − 1) 𝜃 > 0 

𝜃

𝜃 + 2
 (2

−𝑡
𝜃 , 0) 

2 Gumbel (− 𝑙𝑜𝑔 𝑡)𝜃 𝜃 ≥ 1 1 −
1

𝜃
 (0,2 − 2

1
𝜃) 

3 Frank − 𝑙𝑜𝑔 [
𝑒−𝜃𝑡 − 1

𝑒−𝜃 − 1
] 𝜃 ∈ 𝑅{0} 1 −

4

𝜃
+ 4

𝐷1(𝜃)

𝜃
 (0,0) 

4 Joy − 𝑙𝑜𝑔[1 − (1 − 𝑡)𝜃] 𝜃 > 1 
1 +

4

𝜃2
∫ 𝑡 𝑙𝑜𝑔( 𝑡)(1
1

0

− 𝑡)
2(1−𝜃)

𝜃 ). 𝑑𝑡 

(0,2 − 2
1
𝜃) 

5 BB1 (𝑡−𝜃 − 1)𝛿 
𝜃 ≥ 0, 𝛿 
≥ 1 

1 −
2

𝛿(𝜃 + 2)
 (2

1
𝜃𝛿 , 2 − 2

1
𝛿) 

6 BB6 
(− 𝑙𝑜𝑔( 1 − (1
− 𝑡)𝜃)𝛿  

𝜃 ≥ 1, 𝛿 
≥ 1 

1 +
4

𝜃𝛿
∫ {− 𝑙𝑜𝑔( 1 − (1 − 𝑡)𝜃
1

0

)

× (1 − 𝑡)(1 − (1
− 𝑡)−𝜃)}. 𝑑𝑡 

(0,2 − 2
1
𝜃𝛿) 

7 BB7 (1 − (1 − 𝑡)𝜃)−𝛿 − 1 
𝜃 ≥ 1, 𝛿 
> 0 

1 +
4

𝜃𝛿
∫ (
1

0

− (1 − (1 − 𝑡)𝜃)𝛿+1

×
(1 − (1 − 𝑡)𝜃)−𝛿 − 1

(1 − 𝑡)𝜃−1
). 𝑑𝑡 

(2−
1
𝜀 , 2 − 2

1
𝜃) 

8 BB8 − 𝑙𝑜𝑔 [
1 − (1 − 𝛿𝑡)𝜃

1 − (1 − 𝛿)𝜃
] 

𝜃 ≥ 1, 𝛿 
∈ (0,1] 

1 +
4

𝜃𝛿
∫ (− 𝑙𝑜𝑔(

(1 − 𝛿𝑡)𝜃 − 1

(1 − 𝛿)𝜃 − 1
)

1

0

× (1 − 𝑡𝛿)(1
− (1
− 𝑡𝛿)−𝜃)). 𝑑𝑡 

(0,0) 

 

Table 3. Summary of the characteristics of selected bivariate copula functions. 

Copula 

function 

Positive 

dependence 

Negative 

dependence 

Distribution tail 

symmetry 

Lower tail 

dependence 

Upper tail 

dependence 

N ✓ ✓ ✓ - - 

t ✓ ✓ ✓ ✓ ✓ 

C ✓ - - ✓ - 

G ✓ - - - ✓ 

F ✓ ✓ ✓ - - 

J ✓ - - - ✓ 

RC - ✓ - - - 

RG - ✓ - - - 

RJ - ✓ - - ✓ 

BB1 ✓ - - ✓ ✓ 

BB6 ✓ - - ✓ ✓ 

BB7 ✓ - - ✓ ✓ 

BB8 ✓ - - ✓ ✓ 

 

Vine structures 

Besides the attention paid to the bivariate copula functions for modeling the relationship 

between financial and economic variables during the past decades, the hierarchically-structured 

pair copulas have also been regarded by the researchers of finance and economics recently. 

Moreover, the application of copula to time-series models have been developed in the recent 

past. The main challenge hindering the multivariate modeling by means of copula functions is 

the identification of appropriate copula functions for a specific multivariate modeling task. 
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Standard multivariate copulas (e.g., Gaussian, t-student, and Archimedean) suffer from the lack 

of flexibility for modeling the dependence structure between a large number of variables. 

Despite the superior performance of simple copulas over other dependence structure 

measurement methods, these copulas are still limited when large-dimension problems are 

encountered, where multivariate data exhibits a complex dependence structure in many cases. 

Standard multivariate copulas apply a structural constraint to the dependence structure. 

generalization of these models (e.g., hierarchical model) leads to some improvements but 

usually complicates their structure and generates some limitations like the parametric 

limitations [14]. As an alternative method for modeling multivariate dependence structures, the 

development of pair copulas in the form of vine structures was first introduced by Joe (1996). 

It was further expanded into more detail by Bedford and Cooke (2001, 2002) and later on by 

Kurowicka and Cooke (2006). The vines are flexible graphical structures that use a series of 

pair copulas to describe multivariate joint distributions. In a key innovative approach to 

modeling multivariate dependence structures, Aas et al. (2009) presented a sequence of par 

copulas called C-Vine and D-Vine structures. These two vine structures are members of a wider 

family of vine structures known as R-Vine structures [1]. The vine structures determine, in the 

form of theoretical graphical models, which variables at which positions must be used for 

building pair copulas in such a way to come up with the best representation of the dependence 

structure and joint variation of the considered set of variables. In other words, vines are tools 

for labeling the limitations in the configuration of random variables in large-scale distributions. 

A vine structure 𝑉 is composed of several interconnected trees 𝑇1, . . 𝑇𝑛−1, where the branches 

of the 𝑗𝑡ℎ tree initiate the next tree, i.e. (𝑗 + 1)𝑡ℎ tree. A regular vine (R-vine) structure is the 

one where, for n variables, 𝐸(𝑉) = 𝐸𝑈…𝑈𝐸𝑛−1 represents the set of branches of the 𝑉 such 

that (1) 𝑉 = {𝑇1, … , 𝑇𝑛−1} (a vine structure is a set of subsequent trees). 𝑇1 is a tree with nodes 

𝑁1 = {1,2, … , 𝑛} and branches 𝐸1. For 𝑖 = 2,… , 𝑛 − 1, 𝑇1 is a tree with nodes 𝑁𝑖 = 𝐸𝑖−1 

(except for the very first tree, branches of the previous tree serve as a node to the next tree). 

(closeness rule) For each {𝑎, 𝑏}𝜖𝐸𝑖 , … , 𝑛 − 1 we will have 𝐸𝑖#𝑎∆𝑏, where ∆ and # denote 

symmetric difference and cardinal number of the set, respectively. Each branch in the tree 𝑇𝑗 is 

a non-sorted pair of the nodes 𝑇𝑗 on the same tree or, say, a non-sorted pair of the branches on 

the tree 𝑇𝑗−1. The order of each node on each tree 𝑇𝑗 is equal to the number of branches 

connected to that node. An R-Vine structure is referred to as a conical vine (C-Vine) if it has a 

tree 𝑇𝑗 with a unique node of the order 𝑛 − 1. A vine structure for which all nodes comprising 

the trees exhibit an order of no higher than 2 is referred to as a drawable vine (D-Vine) [15]. 

An R-Vine structure over n random variables includes 
𝑛(𝑛−1)

2
 branches. In order to form the 

very first tree of the vine structure, we need to identify n – 1 unconditional bivariate copulas. 

Density of an R-Vine copula structure can be expressed by assigning appropriate bivariate 

copulas to the branches of the R-Vine structure [16]. 

From another point of view, a “vine copula” is a flexible graphical model for describing a 

multivariate copula structure using bivariate copulas called “pair-copula constructions (PCCs)”. 

A PCC decomposes a multivariate probability density to bivariate copulas. In this way, the vine 

copulas combine the advantages of multivariate copula modeling with the flexibility of 

bivariate copulas to come up with more efficient dependence modeling. The vine copulas enable 

proper modeling of the behavior of different variable pair structures. This implies that the 

dependence modeling takes into account the symmetry, dependence and tail dependence. This 

flexibility requires the selection of a good design model for realizing the potentials of the vine 

copulas in dependent models [17]. According to Aas et al. (2009), the following expression 

gives the joint multivariate density function for d random variables: 

 

𝑓(𝑥1,x2,...,x𝑑)=f𝑑(𝑥𝑑).f(𝑥d-1|𝑥𝑑).f(𝑥d-2|𝑥d-1,x𝑑)...f(𝑥1|𝑥2,...,x𝑑)  (23) 
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Considering a trivariate case 𝑋 = (𝑋1, 𝑋2, 𝑋3)
𝑇 ∼ 𝐹 with the marginal distribution functions 

𝐹3, 𝐹2, 𝐹1 and the densities f, the recursive mode gives: 

 

𝑓(𝑥1,x2,x3)=f1(𝑥1).f(𝑥2|𝑥1).f(𝑥3|𝑥1,x2)  (24) 

 

Application of the Sklar theorem gives: 

 

𝑓(𝑥1|𝑥2) =
𝑓(𝑥1,x2)

𝑓1(𝑥1)
=
𝑐12(𝐹1(𝑥1),F2(𝑥2)).f1(𝑥1).f2(𝑥2)

𝑓1(𝑥1)
=c12(𝐹1(𝑥1),F2(𝑥2)).f2(𝑥2)  (25) 

 

And 

𝑓(𝑥3|𝑥1, 𝑥2) =
𝑓(𝑥2, 𝑥3|𝑥1)

𝑓(𝑥2, 𝑥1)
=
𝑐231(𝐹(𝑥2|𝑥1), 𝐹(𝑥3|𝑥1)). 𝑓(𝑥2|𝑥1). 𝑓(𝑥3|𝑥1)

𝑓(𝑥2|𝑥1)
 

 

 (26) 

= 𝑐231(𝐹(𝑥2|𝑥1), 𝐹(𝑥3|𝑥1)). 𝑓(𝑥3|𝑥1) 
 

 (27) 

= 𝑐231(𝐹(𝑥2|𝑥1), 𝐹(𝑥3|𝑥1))𝑐13(𝐹1(𝑥1), 𝐹3(𝑥3)). 𝑓3(𝑥3)  (28) 

 

The above equation can be rewritten as follows: 

 

𝑓(𝑥1,x2,x3) = 𝑓1(𝑥1).f2(𝑥2).f3(𝑥3)⏠
M arg inal

× 𝑐12(𝐹1(𝑥1), (𝐹2(𝑥2), (𝐹3(𝑥3))⏠
Unconditional Pairs

× 𝑐23|1(𝐹(𝑥2|𝑥1),F(𝑥3|𝑥1))⏠
Conditional Pairs

 

 (29) 

 

Therefore, the 3D joint density of the above equation can be expressed by marginal density 

functions of bivariate copulas C12, C13, and C23|1 with the densities c12, c13, and c23|1, 

respectively, which are known as pair copulas. Since the decomposition in Eq. 29 is not a one-

by-one procedure, numerous recursive PCCs exist. In order to classify these PCCs, Bedford and 

Cooke (201, 2002) introduced some graphical models called “regular vine copula”. 

In general, three choices must be determined before an R-Vine copula can be implemented: 

(1) vine structure selection, (2) pair copula selection, and (3) parameterization of the selected 

pair copulas. 

Based on what was mentioned so far, it seems that the application of the vine copula 

approach to describe the structure of the dependency between different financial markets in Iran 

can end up with pretty reliable results. Accordingly, in this research, the dependence structure 

of Iranian financial markets is evaluated using the vine copula functions [17]. 

 

Research background 

 

In the following, a brief review of the literature elaborating on the application of copula 

functions in the finance is presented [18]. 

Sklar (1959) was the first to propose the application of the copula functions for measuring 

nonlinear dependency between variables. Following his research, the use of copula functions 

in the research works expanded, making it an important highly applied method for building 

multivariate joint distributions and describing the dependence structure between variables. In 

finance, Amirtex et al. (1999) were the first to highlight potential applications of the copula 

functions. These applications were later properly classified by Cherubini et al. (2004). Huta and 

Paralo (2005) used various copula models with GARCH marginal distributions to calculate the 
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value at risk (VaR), and further compared these models to conventional solutions for evaluating 

the VaR [1]. 

Jondi and Rekinger (2006) proposed the copula-GARCH model and used to obtain the 

dependence structure between stock exchange markets. Huang et al. (2009) utilized the 

conditional copula-GARCH models to estimate the portfolio VaR, and compared the copulas 

to other classical methods. The results showed that the t-copulas with GARCH as marginal 

distribution function could predict the VaR more efficiently than the other copula models and 

classic approaches considered in this research, not to mention their superior performance in 

describing the dependence structure of the portfolio of assets [18]. 

In their study, Wang et al. used the EVT-copula-GARCH model for optimizing a FOREX 

portfolio and concluded that the t-copula and Clayton copula tend to offer better description of 

the dependence structure between the assets in the portfolio. They further found that the t-

copula performs better when estimating the VaR. Later on, Wang et al. (2011) investigated the 

dependence between the Chinese stock market and other international stock markets around the 

world. In their study, they used the Gaussian, Clayton, Gumbel, and SJC copulas, where the 

marginal distribution was modeled using the GJR-GARCH(1,1) [19]. 

In the followings, a summary of the research on the vine functions is presented. 

Scogland et al. (2013) explained hybrid methods for using the copula functions for risk 

compilation. They showed that the hybrid copula functions for risk compilation enable one to 

compile the risk using the minimum data availability, although inadequate data availability 

prevents accurate determination of dependence structure and joint distribution of the risks [20]. 

Bridgman and Sezader (2013) presented a solid study where they elaborated on the 

application of vine-copula functions  to portfolio management. They used the C-Vine and R-

Vine copulas with the daily data over a period of 4 successive years (2006 – 2009) to model the 

dependence structure between the returns of 50 top listed companies in the European Union. 

They further forecasted the VaR of the return of these companies for two coming years (2010 

and 2010) and determined an optimum portfolio of stocks using the average variance method 

for the two years. Perichman and Sezado compared the results of VaR estimation of the return 

on asset and optimum stock portfolio determination among different methods, including C-Vine 

and R-Vine copulas, normal copula functions, t-student copula function, and the DCC-GARCH 

method. Results of this comparison showed that the R-Vine copula method tended to produce 

more accurate results, as compared to other methods [21]. 

Gojan and Joyad (2012) used pair copula models to compile market risks. They utilized the 

daily data during 1999 – 2009 to estimate the associated risks with the stock market, FOREX 

market, development, and interest rate – a set of risks that significantly contribute to the market 

risk. They then calculated the required economic capital to cover probable loss and expected 

loss/benefit due to the risk diversity. The economic capital requirement calculation was based 

on the Solvency II standard and the Swiss Solvency Test (SST) or calculation of VaR 99.5% 

and ES 99.5% [22].  

In a research performed by Sookcharon and Lisam (2017), application of vine-copula 

functions to estimate multiple-period risk coverage ratio for covering undesired risk of refinery 

companies was studied. For this purpose, they considered the current and future prices of the 

WTI crude oil, gasoil, and fuel oil during the 1986 – 2015 period. They believed that the main 

advantage of the vine-copula functions is their ability to express unique characteristics of 

petroleum products, such as skewness and fat-tail marginal distribution of each petroleum 

product as well as the diverse tail dependence between these products, which could be clearly 

explained by the vine-copula functions [23]. In another piece of research, McAleer, Powell and 

Singh (2017) utilized an R-Vine structure to study mutual dependencies across the large 

European finance market in the form of individual indices for each market and the combined 

index of EURO STOXX 50 and the Dow Jones Industrial Average. Results of this study showed 
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that the dependence between financial markets varies in a complex way [1]. Zhang et al. (2014) 

modeled the dependence structure between stock markets during 2006 – 2013. For this purpose, 

they applied D-Vine, R-Vine, and C-Vine approaches onto the data related to 10 international 

stocks indices. Then, the Monte Carlo simulation was practiced to estimate the VaR and CVaR 

values for equivalent portfolio of stocks based on the estimated dependence structure using the 

copula functions and vine-copula structures, with the accuracy of the estimations evaluated 

using different Christopherson statistics. Reburdo and Aguilini (2015) studied multivariate 

dependence structure between four precious metals (gold, silver, platinum, and palladium) to 

check for desired and undesired price overflows using the vine-copula constructions and 

calculate desired and undesired VaRs. According to the findings of these researchers, different 

metals exhibited different dependence structures, with each of them showing a particular tail 

and average dependencies. Based on the results of this research, some evidence indicating 

desired and undesired price overflows between the precious metals was observed, with different 

magnitudes and significance for different metals [24]. Riyadh Alvi and Muhammed Bin-

Ayesha (2016) followed a vine-copula approach to investigate the dynamic relationship 

between energy, stock prices, and FOREX rate. Using a mixed sample of 10-year return on 

crude oil. Dow Jones index, and trade-weighted US dollar index, these researchers achieved 

some evidence indicating a significant and symmetric association between these three assets. 

Moreover, splitting the entire study period to two segments, namely before and after the 

financial crisis, they figured out that these three assets do not follow a constant dependency 

structure throughout time and that the dependence structure has been affected by the 2007 – 

2009 financial crisis. Berkhman and Sezado (2013) combined the GARCH family of models to 

describe marginal distributions using R-Vine copulas and present a factor model for explaining 

the return on assets. Designated as R-Vine market segment (RVMS) model by the authors, this 

model was inspired by the CAPM model and offered particular advantages over the CAVA 

model presented by Hinen and Valdsogov (2009) [1]. Bin Sida (2017) used the symmetric 

copula functions of Joe and Clayton, which could identify right and left tail dependencies, as 

well as the C-Vine and R-Vine structures to model the Markov’s switching process. He then 

implemented his model on 12 government-issued bonds, including those issued by the US 

government and 11 European states. The results showed that the switching-regime copula 

models can outperform the fixed-regime copulas in reflecting the dynamicity of the data 

dependency [26]. In their research, Berkhman, Sezado, and Patrelini (2014) used the data of 33 

banks and 188 financial institutions in Italy during 2003 – 2011 (extracted from the database 

italiano perdite operative or DIPO) considering a family of pair copula functions and vine-

copula structures. Accordingly, they succeeded to model the dependence between 7 operative 

events and 8 operative lines while estimating the required capital for covering simultaneous 

occurrence of these events. Based on the findings of this research, the required capital for 

covering the operative risks faced by considered financial institutions was on average 38% 

lower than the baseline set by the Basel committee according to the Basel II. Nicolopolus, Joe 

and Lee (2010) showed that the vine-copulas constructed based on bivariate t-student copula 

functions offer a good fit to the data referring to multivariate return on financial assets. 

Nevertheless, it seems that the return dependencies are stronger for the left tail of the joint 

distribution of the assets, rather than its right tail. In this study, the presence of such an 

asymmetry was investigated by using the copulas reflecting the asymmetry of the left and right 

sides of the distribution. Lu, Alkok, and Brilsford (2013) used asymmetric and elliptic 

multivariate copula models to predict returns of portfolios of 3 to 12 assets [18]. In this research, 

assuming no short-selling constraint and a utility function that was characterized by minimizing 

the conditional VaR, the authors investigated the efficiency threshold obtained by different 

models and performed a pair-wise comparison of different methods to incorporate scalable 

asymmetric dependency into the return on asset using the Archimedean copula of Clayton in 
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in-sample and out-sample modes. Based on their findings, the asymmetry modeling of the 

marginal distributions and dependency modeling using the Archimedean copula of Clayton and 

C-Vine structure in a well-coordinated way tend to bring about the best possible results in terms 

of economic and statistic measures, as compared to the models where symmetric and elliptical 

dependency structures are mixed. 

A summary of the relevant literature in Iran is presented in the following. 

Keshavarz Hadad and Heirani (2014) published a study entitled “Estimation of Value at Risk 

in the Presence of Dependence Structure in Financial Returns: A Copula Based Approach” 

where they investigated the dependence structure between two price indices, namely those 

referring to chemical products and pharmaceutical companies listed on Tehran Stock Exchange 

(TSE) during 2004 – 2012. The results indicated an asymmetric dependence structure among 

the considered variables, with the findings further showing the accuracy and adequacy of the 

copula-based approach compared to conventional models for predicting the VaR [27]. 

In a study, Musavi et al. (2013) estimated the VaR of selected stocks using conditional 

GARCH-copula. Results of this research showed that the Gaussian copula model with normal 

marginal distribution and the Gaussian copula with t-student marginal distribution 

outperformed the historical simulation as well as variance-covariance methods for estimating 

the VaR [28]. In 2015, Barghi Osguei et al. investigated nonlinear effects of variations of actual 

exchange rate and crude prices on the price index of TSE following an approach based on the 

Markov – switching regimes. Results of this research showed that variations of the actual 

exchange rate and crude oil prices, as exogenous factors, impose a one-lag delayed yet 

significant positive effect on the stock prices. Considering two lags, however, the effects were 

found to be negative but still significant [18]. In a study, Pishbahar and Abedi (2017) calculated 

the VaR of a portfolio of food products using a copula-based approach. The results showed that 

the copula (i.e., copula functions) – based approach tended to produce more reliable results than 

alternative methods (historical simulation, multivariate normal distribution, and multivariate t-

distribution). On this basis, the maximum weekly expected loss on a portfolio of diaries was 

estimated at 2.10%. In another piece of research, Bordbar and Heydari (2017) considered the 

relationship between fluctuations in the oil price and return on stocks of Base Metals, petroleum 

products, and chemicals using vector autoregression (VAR) and multivariate generalized 

autoregressive conditional heteroskedasticity (MGARCH) models. They concluded that despite 

average dependence effects between the markets of oil, Base Metals, and petroleum products, 

such effects are absent when it comes to the market of chemical industries. Indeed, fluctuations 

in the world oil market were found to impose no effect on those in the markets of the chemical 

industries and Base Metals. However, a significant yet negative association was found between 

the oil market variations and return on the stocks of petroleum products [29]. 

 

Research methodology 
 

Data and research scope 

 

This research has been developed in the paradigm of quantitative research works, where 

decision-making is based on qualitative data. Since the nature of the research problem calls for 

no specific hypothesis, the present study is focused on a question regarding the structure and 

characteristics of the dependence among different elements of the financial system of TSE. The 

considered statistical population includes the indices measuring the market and active industries 

on the TSE, which are supposed to represent the behavior and variations of different elements 

of the financial system of the TSE. In this work, daily data on 31 active industries on the TSE 

and 10 market indices was retrieved from the “website of the TSE” for the period 2001 – 2020. 

The following tables present a list of the considered indices in this study. 
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Table 4. Contents of Market indices 

Market indices 

Free-Float Index Total Equal Weight Price Overall Index (TEDPIX) 

Main Board Index Top 50 Index Total Equal Weighed 

Secondary Index Total Price Index (TEPIX) 
TSE-50 Index (top 50 most active 

companies) 

Industry index   

 

Table 5. Contents of Industrial sector indices 

Industrial sector indices 

Agriculture And Crop 

Activities 
Electrical Equipment Investment 

Coal Mining Vehicle Banking 

Metallic Mineral Products Sugar Other Finance (leasing) 

Textile Multi-discipline Land Transportation & Storage 

Wood Products Foodstuff (excl. sugar) Telecommunication 

Paper Products 
Manufacture of 

Pharmaceuticals 
Building Construction & Mass Housing 

Oil Products Chemical Products Computer 

Rubber & Plastic Product Tiles and Ceramics Technical-Engineering 

Base Metals Cement 
Petroleum Production (excl. 

exploration) 

Metal Products Non-metal Mining Insurance and Pension 

Machineries   
* Noteworthily, some industrial sector indices were not considered in this study due to their short history of data reporting and 

negligible market caps. 

 

Considering the large number and wide diversity of the active industries on the TSE and in 

an attempt to come up with a more accurate investigation of the dependence structures, we 

began by clustering all industrial indices based on three scenarios, with the dependence 

modeling performed separately under different scenarios. The scenarios considered in this 

research included clustering based on the field of activity in the macro economy (resulting in 

the following clusters: oil and gas industries, mineral and metallurgical industries, industrial 

machinery and Land Transportation & Storage, food and pharmaceutical industries, 

technological industries, construction, and finance/investment-related industries), clustering 

based on foreign policies and JCPOA (in the following clusters: JCPOA-affected and import-

based industries, export-oriented industries that are affected by the world rates, domestic-

oriented inflation-affected industries, and finance/investment industries), and clustering based 

on the market caps of different industries. All calculations and modeling efforts in this research 

were made using the R software package.  

 

Research methodology 

 

As a first step, logarithmic or continuous return of the indices was evaluated using the following 

equation: 

 

𝑅𝑡 = 𝑙𝑛
𝑃𝑖(𝑡)

𝑃𝑖(𝑡 − 1)
  (30) 

 

Then, in order to evaluate the considered data statistically, descriptive statistics (i.e., mean, 

median, standard deviation (SD), trimmed mean (TM), median absolute deviation (MAD), 

minimum, maximum, range, skewness, kurtosis, and standard error (SE)) were investigated. 
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Given the requirement of U-form input data for using the copula functions, the next step was 

to apply the GARCH (1.1) model (calculated from the returns) to obtain residual values as input 

to the final model. 

Subsequently, in order to explore the dependence structures, market indices were separately 

investigated in a single cluster while the industrial sector indices were evaluated based on the 

results of clustering under different scenarios. In this stage, a graph of the dependence structure 

was drawn independently for each cluster, ending up with a dependence matrix. 

Following the study, a representative (i.e., central) index was selected in each cluster using 

the C-Vine functions. Then, drawing the C-Vine structure and fitting different families of 

copulas to the data, the best copula family for explaining the dependency of different elements 

of each cluster was identified, with the relevant parameters determined. For each cluster, all 

possible C-Vine structures up to the second level were drawn to come up with the results. 

At a next step, a new matrix containing representatives of different clusters was formed and 

the dependency of the representatives was calculated by the Kendall rank correlation coefficient 

(i.e., Kendall’s tau). 

Subsequently, R-Vine functions in combination with all families of pair copulas were used 

to draw the dependence structure for the new matrix, ending up with a model of association of 

different elements based on the best-fit copula function for each cluster. Noteworthily, in this 

stage, the R-Vine model was built based on the strongest-correlation associations between the 

elements. This iterative process was continued until the last stage where all elements in both 

groups of indices were included (Model 1). 

At the next step, dependence structure was investigated with the R-Vine model coupled with 

the Gaussian and t-student copulas following a procedure that was similar to the previous step 

(Models 2 and 3). 

In order to investigate the dependence structure in more detail, for all cluster-representing 

matrixes, dependence fitting was conducted based on all families of copula functions, including 

Gaussian and t-student copulas, but this time with C-Vine copulas in full mode, with the rest of 

the procedure resembling that of the previous steps (Models 4 to 6). 

Finally, an ultimate matrix was constructed to compare the 6 models. At a final step, Wang 

test was used to perform pairwise comparisons and identify the best model for explaining the 

dependence structure between the market and industry indices under the three considered 

scenarios separately.  

A summary of different steps of this research is demonstrated in the following figure: 

 

 

Analyzing the 
Results 

Extracting data 
series for market 
and industry indices  

Calculating the 
return for extracted 
data 

Calculating 
statistics for 
different data series 

Modeling the 
heteroskedasticity 
variance using 
GARCH(1.1) 

Investigating pair 
dependence by 
different copula 

families to select the 
best family 

Investigating per-
cluster pair 

dependence by C-
Vine functions 

Investigating pair 
dependence of 

representatives of 
different clusters 

using R-Vine model 

Investigating pair 
dependence of 

representatives of 
different clusters 

using C-Vine model 

 

Applying the Wang 
test to evaluate the 
results and finding 

the best fittness 
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Fig. 1. Different steps of the analysis performed in this study. 

 

Models used in this research 

 

GARCH(1.1) 

The GARCH(1.1) is the simplest generalized autoregressive conditional heteroskedasticity 

model. According to this model, the best predictor of the variance in the proceeding period has 

contributions from the weighted average of the long-run variance, current-period predicted 

variance, and new information of the current period, which is obtained as the square of the latest 

residual, as follows [29]: 

 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝛼𝑡−1

2 + 𝛽𝜎𝑡−1
2           u~N(0,𝜎2)  (31) 

𝛼∘ ≥ 0, 𝛼1, 𝛽 ≥ 0, 𝛼1 + 𝛽 < 1  (32) 

 

where 𝜎𝑡
2 is predicted variance for the period 𝑡, 𝑢𝑡−1

2  is the square of residual (error term) for 

the period 𝑡 − 1, 𝜎𝑡−1
2  is the predicted variance for the period 𝑡 − 1, and 𝛼0, 𝛼1, and 𝛽 are the 

model parameters and used to predict future periods (i.e., indicating average values). 

Information on the fluctuations during the previous period (measured as square of the latest 

residual) is known as ARCH, with the latest predicted variance called GARCH. The general 

model of GARCH is expressed as GARCH(q, p) where p and q refer to the ranks of the ARCH 

and GARCH, respectively. The following equation shows how these variables are related to 

one another: 

 

𝜎𝑡
2 = 𝛼0 +∑𝛼1𝑢𝑡−1

2

𝑝

𝑖=1

+∑𝛽𝑗𝜎𝑡−1
2

𝑔

𝑗=1

  (33) 

 

Vine copula functions 

In this research, we use two particular types of regular copulas called C-Vine and R-Vine  

[12]. In the C-Vine model, there is a key variable for the dependence structure, which is 

positioned at the center of the structure. This implies that all other models are directly associated 

with this variable. In general, three choices must be determined before an R-Vine copula can 

be implemented: (1) vine structure selection, (2) pair copula selection, and (3) parameterization 

of the selected pair copulas. 

 

Regular vine joints 

In this subsection, we elaborate on the theory of regular vine (R-Vine) copulas, how is an R-

Vine matrix developed, and how imply can such a matrix represent the density. A review of the 

studies published by Bedford and Cooke (2001, 2002), and Kurowicka and Cooke (2006), a 

vine is a graph with two nodes connected to one another through a unique link. 

The vine 𝑣 = (𝑇1, . . . , 𝑇𝑛−1) has n components if: 

 

1. 𝑇1 is a tree with the nodes 𝑁1 = {1, . . . . . . . . . . . , 𝑛} and edge 𝐸1. 

2. For 𝑖 = 2,… , 𝑛 − 1, 𝑇1 is a tree with the nodes 𝑁𝑖 = 𝐸𝑖−1 and edge 𝐸𝑖. 
3. For 𝑖 = 2,… , 𝑛 − 1 and {𝑎, 𝑏} ∈ 𝐸𝑖 where 𝑎 = {𝑎1, 𝑎2} and 𝑏 = {𝑏1, 𝑏2}, the 

condition (𝑎 ∩ 𝑏) = 1 must be satisfied. 

 

In other words, an n-component R-Vine copula is a nested set of 𝑛 − 1 trees in such a way 

that the edges of the 𝑗th tree are nodes to the (𝑗 + 1)th tree. The initial condition for 
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connectedness of two nodes on the (𝑗 + 1)th tree is that these two nodes share the same node 

on the 𝑗th tree. It is worth noting that the set of nodes on the first tree includes all members (i.e., 

1, … , 𝑛), while the set of edges is a set of 𝑛 − 1 pair of these members. On the second tree, the 

set of nodes includes the member pairs while the set of edges is formed by pairing the members. 

The complete union of an edge refers to a set of edges corresponding to all members. Letting 

the nodes 𝑎 and 𝑏 be connected to one another through an edge, the conditioned and 

conditioning sets for this edge exhibit symmetric and cross differences to the complete union 

of 𝑎 and 𝑏  [30]. 

The following diagram shows a sample R-Vine for seven variables. 

 

 
Fig. 2. sample R-Vine for seven variables 

 
Canonical vine joints 

As mentioned earlier, a C-Vine structure is a special case of an R-Vine structure. On the first 

tree of a C-Vine structure, the dependency is modeled for each pair based on a particular 

variable called the root node using bivariate copulas. Next, upon conditioning, the root node of 

the first tree, the dependency of copula pairs is modeled based on the second root node. In 

general, a root node is selected on each tree and all copula pairs are modeled based on this root 

node and conditioning of the previous root node. A C-Vine tree exhibits a star-like structure, as 

shown in the figure, with its density expressed as follows: 

 

𝑓(𝑥) =∏𝑓𝑘(𝑥𝑘) ×∏∏𝑐𝑖,𝑖+𝑗|𝑙:(𝑖−1)(𝐹(𝑥𝑖|𝑥1, . . . . . 𝑥𝑖−1), 𝐹(𝑥𝑖+𝑗|𝑥1, . . . . . 𝑥𝑖−1)|𝜃𝑖,𝑖+𝑗|𝑙:(𝑖−1))

𝑑−𝑖

𝑗=1

𝑑−1

𝑖=1

𝑑

𝑘=1

  (34) 

 

in which 𝑓𝑘 (𝑘 = 1,… , 𝑑) indicates the marginal densities and 𝑐𝑖,𝑖+𝑗|𝑙:(𝑖−1) denotes the density 

of bivariate copulas with the parameters 𝜃𝑖,𝑖+𝑗|𝑙:(𝑖−1) [4]. 
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Fig. 3. An example of a C-Vine corresponding to five variables. 

 

Kendall’s tau 

The Kendall rank correlation coefficient (i.e., Kendall’s tau) is a good alternative to linear 

correlation coefficient. The Kendall’s tau for the two variables 𝑋 and 𝑌 is defined as follows: 

𝜌𝜏(𝑋, 𝑌) = 4∫ ∫ 𝐶(𝑢, 𝑣)𝑑𝐶
1

0

1

0

(𝑢, 𝑣) − 1  (35) 

 

where 𝐶(𝑢, 𝑣) is the joint distribution of the two variables 𝑋 and 𝑌. For the Gaussian, t, and 

other implicit copulas, the relationship between the linear correlation coefficient and Kendall’s 

tau can be expressed as follows: 

 

𝑐𝑜𝑟(𝑋, 𝑌) = 𝑠𝑖𝑛 (
𝜋

2
𝜌𝜏)  (36) 

 

Vuong's closeness test (1989) 

This test is useful for comparing two non-interfering models. Similar to Clarke's test, this 

test is based on the likelihood ratio in relation to the “Kullback–Leibler index” and measures 

the divergence between two statistical models. Letting 𝑐1  and 𝑐2 be two density functions 

corresponding to competing bivariate copulas with estimated parameters of 𝐵1 and 𝐵2, one can 

perform the Vuong’s closeness test by calculating the standardized sum of the likelihood 

logarithm difference over all data points. Likelihood logarithm difference between the 

observations 𝑖 = 1, . . . , 𝑁 and  𝑗 = 1, 2, …, 𝑢𝑖,𝑗 is written as follows [14]: 

 

𝑚𝑖 = 𝑙𝑜𝑔 (𝑐1(𝑢𝑖,1, 𝑢𝑖,2|�̂�1)) − 𝑙𝑜𝑔 (𝑐2(𝑢𝑖,1, 𝑢𝑖,2|�̂�2))  (37) 

 

The point-by-point standardized sum of the likelihood logarithm difference, 𝑣, can be 

expressed as follows: 

 

𝑣 =

1
𝑛
∑ 𝑚𝑖
𝑁
𝑖=1

√∑ (𝑚𝑖 − �̄�)𝑁
𝑖=1

2  (38) 

 

Vuong showed that, asymptotically, 𝑣 exhibits a normal distribution. If 𝑣 > −𝛷−1 (1 −
𝛼

2
), 

then the copula model 1 is preferred over the copula model 2 at an error level of 𝛼. Conversely, 

if 𝑣 < −𝛷−1 (1 −
𝛼

2
), then the copula model 2 is preferred over the copula model 1. Finally, if 

|𝑣| ≤ −𝛷−1 (1 −
𝛼

2
), then no definite decision can be made between the two models and the 

null hypothesis (i.e., statistical equivalence of the models) cannot be rejected. 
 

Research results 
 

The following table shows the results in terms of descriptive statistics of the considered data 

for explaining the dependence structure between the market indices and active industry sector 

indices on the TSE. 
 

Table 6. Descriptive statistics of the considered data. 

Index Mean SD Median 
Trimmed 

mean 
MAD Minimum Maximum Range Skewness Kurtosis SE 

Free-Float Index -0.002 0.137 0.003 0.005 0.018 -3.104 0.075 3.179 -21.982 494.466 0.006 

Main Board Index -0.001 0.120 0.003 0.004 0.018 -2.702 0.075 2.777 -21.722 486.663 0.005 

Secondary Index -0.003 0.161 0.003 0.004 0.017 -3.649 0.075 3.725 -22.212 501.397 0.007 
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Industry index -0.001 0.128 0.003 0.004 0.018 -2.887 0.075 2.962 -21.855 490.651 0.006 

Total Equal Weight Price 0.002 0.046 0.004 0.005 0.018 -0.941 0.075 1.017 -15.913 320.699 0.002 

Top 50 Index -0.003 0.167 0.003 0.005 0.018 -3.806 0.075 3.881 -22.258 502.787 0.007 

Total Price Index (TEPIX) 0.001 0.079 0.003 0.004 0.018 -1.747 0.075 1.823 -20.337 445.612 0.003 

Overall Index (TEDPIX) -0.002 0.132 0.003 0.004 0.018 -2.991 0.075 3.066 -21.920 492.605 0.006 

Total Equal Weighed 0.002 0.061 0.004 0.005 0.017 -1.301 0.075 1.376 -18.686 397.793 0.003 

TSE-50 index (top 50 most active 
companies) 

0.004 0.023 0.003 0.005 0.018 -0.060 0.158 0.218 0.438 3.721 0.001 

Agriculture And Crop Activities 0.003 0.034 0.004 0.005 0.020 -0.574 0.075 0.650 -9.565 161.607 0.001 

Coal Mining 0.006 0.041 0.003 0.005 0.021 -0.060 0.767 0.827 12.521 233.471 0.002 

Metallic Mineral Products 0.001 0.084 0.003 0.004 0.018 -1.856 0.075 1.932 -20.557 452.064 0.004 

Textile 0.007 0.077 0.003 0.004 0.018 -0.060 1.712 1.772 20.196 441.644 0.003 

Wood Products -0.001 0.126 0.003 0.004 0.021 -2.833 0.225 3.058 -21.433 478.347 0.005 

Paper Products 0.002 0.047 0.003 0.004 0.021 -0.934 0.081 1.015 -14.737 289.143 0.002 

Oil Products -0.004 0.194 0.003 0.005 0.020 -4.426 0.075 4.501 -22.380 506.473 0.008 

Rubber & Plastic Product 0.002 0.062 0.003 0.005 0.019 -1.327 0.075 1.402 -18.712 398.569 0.003 

Base Metals -0.001 0.119 0.004 0.005 0.019 -2.675 0.075 2.750 -21.678 485.337 0.005 

Metal Products 0.002 0.059 0.004 0.005 0.019 -1.247 0.075 1.322 -18.235 384.993 0.003 

Machineries 0.002 0.057 0.003 0.005 0.018 -1.195 0.075 1.270 -18.018 378.869 0.002 

Electrical Equipment -0.004 0.186 0.003 0.004 0.018 -4.240 0.075 4.316 -22.355 505.719 0.008 

Vehicle 0.002 0.040 0.003 0.004 0.019 -0.766 0.075 0.841 -13.259 250.964 0.002 

Sugar 0.003 0.044 0.003 0.005 0.018 -0.880 0.075 0.955 -15.017 296.684 0.002 

Multi-discipline 0.003 0.038 0.003 0.004 0.018 -0.709 0.075 0.784 -12.613 234.752 0.002 

Foodstuff (excl. sugar) 0.005 0.029 0.003 0.005 0.018 -0.060 0.445 0.505 6.601 100.222 0.001 

Manufacture of Pharmaceuticals 0.003 0.029 0.004 0.005 0.018 -0.442 0.075 0.517 -6.868 103.162 0.001 

Chemical Products 0.004 0.024 0.003 0.004 0.018 -0.221 0.075 0.297 -1.662 14.436 0.001 

Tiles and Ceramics 0.006 0.046 0.004 0.005 0.019 -0.060 0.930 0.990 15.504 310.610 0.002 

Cement 0.008 0.099 0.004 0.005 0.019 -0.060 2.213 2.273 21.171 470.316 0.004 

Non-metal Mining 0.005 0.033 0.003 0.005 0.019 -0.060 0.573 0.633 9.601 164.370 0.001 

Investment 0.006 0.051 0.003 0.004 0.018 -0.060 1.076 1.136 17.057 352.604 0.002 

Banking 0.008 0.101 0.004 0.004 0.020 -0.060 2.277 2.337 21.242 472.417 0.004 

Other Finance (leasing) 0.006 0.061 0.003 0.004 0.019 -0.060 1.316 1.376 18.579 395.085 0.003 

Land Transportation & Storage 0.005 0.034 0.003 0.005 0.018 -0.060 0.606 0.666 10.242 178.973 0.001 

Telecommunication 0.007 0.083 0.002 0.004 0.017 -0.060 1.854 1.914 20.594 453.263 0.004 

Building Construction & Mass 
Housing 

0.009 0.104 0.003 0.005 0.019 -0.060 2.348 2.408 21.325 474.874 0.005 

Computer 0.003 0.037 0.002 0.004 0.017 -0.691 0.075 0.766 -12.379 228.987 0.002 

Technical-Engineering 0.008 0.095 0.003 0.004 0.020 -0.060 2.131 2.191 20.983 464.734 0.004 

Petroleum Production (excl. 

exploration) 
0.008 0.103 0.003 0.004 0.020 -0.060 2.321 2.382 21.241 472.367 0.005 

Insurance and Pension 0.005 0.029 0.004 0.005 0.019 -0.060 0.433 0.493 6.228 92.793 0.001 

As is evident in the above table, the distribution of the returns corresponding to most of the 

indices is skewed left with higher than normal kurtosis values. According to previous studies, 

it has been figured out that the distribution of financial data may not follow a normal distribution 

function. In this research, thanks to the copula functions, no assumption was made regarding 

the data distribution. 

Once finished with standardizing the residuals according to the GARCH(1.1) model, the 

standardized values were used as a foundation for estimating the vine-copula structures. Pair 

copula functions were developed between each pair of variables based on the AIC-to-BIC ratio, 

and the vine structure describing the joint distribution of time-series was obtained using the 

Kendall rank correlation coefficient. Based on this, one can identify the best-fit C-Vine 

structure. 

At the next step, a representative index was obtained for each cluster of the market and 

industrial sector indices under various scenarios using the C-Vine copula by fitting different 

families of the copula functions. A summary of the results of fitting for different clusters and 

different scenarios is reported in the following table: 
 

Table 7. Results of applying C-Vine function for determining per-cluster representative index. 

Results of applying C-Vine function 

for determining per-cluster 

representative index 

Representative 

index 
Loglik AIC BIC 

Market cluster TEDPIX 23,976.08 -47,802.16 -47,482.12 

Scenario 1 – industrial clusters 
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Results of applying C-Vine function 

for determining per-cluster 

representative index 

Representative 

index 
Loglik AIC BIC 

Cluster 1: Oil and gas Chemical products 1,430.49 -2,848.98 -2,823.38 

Cluster 2: Mining and metallurgy Mining 4,281.17 -8,540.34 -8,493.40 

Cluster 3: Industrial and transportation 

Land 

Transportation & 

Storage 
7,145.21 -14,232.41 -14,108.66 

Cluster 4: Food products and 

pharmaceuticals 

Food products 

(excl. sugar) 
12,231.77 -24,355.54 -24,125.11 

Cluster 5: Technology Computer 1,001.34 -1,998.68 -1,990.14 

Cluster 6: Construction Cement 2,914.78 -5,819.56 -5,798.23 

Cluster 7: Finance and investment Investment 4738.43 -9,456.86 -9,414.19 

Scenario 2 - industrial clusters 

Cluster 1: Import-oriented and JCPOA-

affected 
Technical and 

engineering 
9,235.85 -18,369.70 -18,152.07 

Cluster 2: Export-oriented and world 

prices-affected 
Multi-discipline 5,638.97 -11,243.94 -11,171.40 

Cluster 3: IRR-based and domestic 

inflation-driven 

Land 

Transportation & 

Storage 
32,139.41 -63,824.82 -62,856.16 

Cluster 4: Finance and investment Investment 1,634.09 -3,266.17 -3,261.91 

Scenario 3 - industrial clusters 

Cluster 1: market cap above 400 TB 

IRR 
Multi-discipline 5,015.26 -10,012.51 -9,974.11 

Cluster 2: market cap below 400 TB 

IRR 
Investments 4,832.38 -9,626.75 -9,545.68 

Cluster 3: market cap below 100 TB 

IRR 

Food products 

(excl. sugar) 
1,595.90 3,179.80 -3,154.20 

Cluster 4: market cap below 60 TB IRR 

Land 

Transportation & 

Storage 
3,157.08 -6,292.15 -6,245.21 

Cluster 5: market cap below 30TB IRR 
Rubber & Plastic 

Product 
5,882.62 11,731.23 -11,658.69 

Cluster 6: market cap below 15 TB IRR Metal products 5,840.82 -11,647.64 -11,575.10 

Cluster 7: market cap below 5 TB IRR 
Oil production 

(excl. exploration) 
6,269.60 -12,501.19 -12,420.11 

Considering the above tables, it is evident that, in the cluster containing the market indices, 

the TEDPIX was expectedly identified as the representative of the index. That is, this index 

exhibits the strongest dependency with other market indices.  

Representative industrial sector indices were selected based on the values reported in the 

table. For example, under Scenario 1, where the clustering was conducted based on the field of 

activity of different industries, the chemical products index was identified as representative of 

the oil and gas sector. In the finance and investment sector, the investment industry was 

identified as representative with the strongest dependency on other indices in the same sector. 

The same procedure was applied to other sectors to identify the representatives. Considering 

the results reported in the above table and the identified indices representing the market and 

industrial sectors under the three scenarios, three final clusters were selected for evaluating the 

dependence structure between the industry and market indices. Different components of these 

three clusters are listed in the following table: 

 
Table 8. Representatives of industrial-sector indices. 

Description 

Representative 

of market 

cluster 
Representatives of industrial-sector indices 
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Final cluster 

under 

scenario 1 
TEDPIX 

Chemical products, Mining, Land Transportation & Storage, Food 

products (excl. sugar), Computer, Cement, Investment 

Final cluster 

under 

scenario 2 
TEDPIX 

Technical and engineering, Multi-discipline, Land Transportation & 

Storage, Investment 

Final cluster 

under 

scenario 3 
TEDPIX 

Multi-discipline, Investments, Food products (excl. sugar), Land 

Transportation & Storage   , Rubber & Plastic Product, Metal products, Oil 

production (excl. exploration) 

 

Following this study, dependence structure was investigated between different components 

of each cluster separately using the R-Vine and C-Vine functions. Moreover, for the sake of 

fitting and comparing the results from different copula functions when applying each of the 

mentioned vine-copula models, different families of copula functions were considered in three 

schemes, namely considering all copula function families, considering Gaussian copulas, and, 

finally, considering t-student copula functions. To sum up, the following cases were considered: 

Scenario 1 

1.1. Scenario 1, modeling based on R-Vine functions and all families of copula functions 

1.2. Scenario 1, modeling based on R-Vine functions and Gaussian copula functions 

1.3. Scenario 1, modeling based on R-Vine functions and t-student copula functions 

1.4. Scenario 1, modeling based on C-Vine functions and all families of copula functions 

1.5. Scenario 1, modeling based on C-Vine functions and Gaussian copula functions 

1.6. Scenario 1, modeling based on C-Vine functions and t-student copula functions 

Scenario 2 

2.1. Scenario 2, modeling based on R-Vine functions and all families of copula functions 

2.2. Scenario 2, modeling based on R-Vine functions and Gaussian copula functions 

2.3. Scenario 2, modeling based on R-Vine functions and t-student copula functions 

2.4. Scenario 2, modeling based on C-Vine functions and all families of copula functions 

2.5. Scenario 2, modeling based on C-Vine functions and Gaussian copula functions 

2.6. Scenario 2, modeling based on C-Vine functions and t-student copula functions 

Scenario 3 

3.1. Scenario 3, modeling based on R-Vine functions and all families of copula functions 

3.2. Scenario 3, modeling based on R-Vine functions and Gaussian copula functions 

3.3. Scenario 3, modeling based on R-Vine functions and t-student copula functions 

3.4. Scenario 3, modeling based on C-Vine functions and all families of copula functions 

3.5. Scenario 3, modeling based on C-Vine functions and Gaussian copula functions 

3.6. Scenario 3, modeling based on C-Vine functions and t-student copula functions 

 

The modeling procedure for Case 1.1 is described in the following. 

Firstly, the dependence of different components of a cluster is determined as Kendall’s tau. 

 
Table 9. Kendall rank correlation coefficient matrix for the Case 1.1 
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TEDPIX 1 0.945 0.872 0.924 0.886 0.915 0.892 0.861 

Metallic Mineral Products 0.945 1 0.866 0.903 0.877 0.907 0.896 0.86 

Food products (excl. sugar) 0.872 0.866 1 0.887 0.859 0.888 0.892 0.855 

Chemical 0.924 0.903 0.887 1 0.849 0.898 0.893 0.871 

Cement 0.886 0.877 0.859 0.849 1 0.872 0.87 0.808 
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Investment 0.915 0.907 0.888 0.898 0.872 1 0.912 0.878 

Land Transportation & Storage 0.892 0.896 0.892 0.893 0.87 0.912 1 0.848 

Computer 0.861 0.86 0.855 0.871 0.808 0.878 0.848 1 

 

Next, based on the R-Vine structure and considering all copula function families, the best 

function for expressing different dependencies among the components of the considered cluster 

was obtained, as reported in the following table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 10. the best function for expressing different dependencies among the components. 
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Moreover, R-Vine structure of the trees described in the above table is as follows: 

 

 
 

tree edge family cop par par2 tau utd ltd

1,5 2 t 1 2 0.94 0.94 0.94

1,2 16 SJ 21.64 0 0.91 - 0.97

1,4 16 SJ 27.47 0 0.93 - 0.97

6,1 2 t 1 2 0.95 0.95 0.95

7,3 2 t 1 2 0.97 0.97 0.97

6,7 6 J 24.64 0 0.92 0.97 -

8,6 2 t 0.98 2 0.88 0.88 0.88

4,5;1 2 t 0 16.97 0 0 0

4,2;1 2 t 0.17 15.09 0.11 0 0

6,4;1 2 t 0.3 16.31 0.19 0.01 0.01

8,1;6 2 t -0.33 3.46 -0.21 0.04 0.04

6,3;7 2 t 0.07 5.12 0.04 0.06 0.06

8,7;6 2 t -0.46 5.1 -0.31 0.01 0.01

2,5;4,1 2 t -0.27 4.51 -0.17 0.02 0.02

6,2;4,1 2 t 0.54 3.31 0.36 0.31 0.31

8,4;6,1 1 N 0.02 0 0.01 - -

7,1;8,6 2 t -0.39 4.91 -0.26 0.01 0.01

8,3;6,7 2 t 0.42 2.57 0.27 0.3 0.3

6,5;2,4,1 2 t -0.09 3 -0.06 0.09 0.09

8,2;6,4,1 2 t 0.03 7.55 0.02 0.02 0.02

7,4;8,6,1 2 t 0.01 21.69 0 0 0

3,1;7,8,6 2 t -0.63 4.09 -0.43 0.01 0.01

8,5;6,2,4,1 2 t -0.91 2.04 -0.74 0 0

7,2;8,6,4,1 2 t 0.14 11.76 0.09 0.01 0.01

3,4;7,8,6,1 2 t 0.03 27.91 0.02 0 0

7,5;8,6,2,4,1 2 t 0.28 8.83 0.18 0.04 0.04

3,2;7,8,6,4,1 2 t -0.41 6.15 -0.27 0 0

7 3,5;7,8,6,2,4,1 2 t 0.13 9.74 0.08 0.02 0.02

1

2

3

4

5

6
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Fig. 4. R-Vine structure of the trees 
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Fig. 5. the dependence structure 

 

The best approach for identifying the dependence structure in an extreme sequence is offered 

by the copula functions, which can well reflect nonlinear and tail dependencies. Accordingly, 

we selected the best copula corresponding to the maximum likelihood for each pair of variables. 

Once finished with investigating the type of dependence between each pair of the considered 

series, the results were analyzed. A summary of the results of dependence structure modeling 

between the indices in Case 1.1 (Scenario 1) is reported in the below table. 

 
Table 11. Results of the six models used for modeling the structure dependence under Scenario 1. 

Model loglik par AIC BIC 

R-vine-all 10,520.0 52.0 -20,935.9 -20,714.0 

R-vine-normal 4,605.0 28.0 -9,153.9 -9,034.4 

R-vine-tStudent 11,319.4 56.0 -22,526.8 -22,287.8 

C-vine-all 10,824.0 52.0 -21,542.0 -21,315.8 

C-vine-normal 4,483.0 28.0 -8,910.0 -8,790.5 

C-vine-tStudent 11,523.1 56.0 -22,934.2 -22,695.3 

 

Based on these results, it is evident that the best likelihood was obtained when C-Vine 

functions were coupled with t-student copulas. Accordingly, on the first tree (i.e., first level) 

the Land Transportation & Storage industry showed the highest correlation to the TEDPIX, 

with the corresponding index producing the best performance by fitting by the t-student copula 

functions. At the second level, the highest correlation was seen between the Land 

Transportation & Storage and computer industries, provided the TEDPIX is varying. This 

implies that both industries are affected by domestic variations in prices. At the second level, 

the highest correlation was seen for the food and computer industries, provided the TEDPIX 

and Land Transportation & Storage indexes are varying. At the fourth level, if the TEDPIX, 

Land Transportation & Storage, and computer indices are varying, the highest changes were 

seen in the food and computer industries. At the fifth level, the results show that a change in 

the TEDPIX, Land Transportation & Storage, computer, and food industries imposes the largest 
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impact on the Metallic Mineral Products and investment industries. At the sixth level, it was 

observed that any change in the TEDPIX, Land Transportation & Storage, computer, food 

products, and Metallic Mineral Products indices imposes the largest effects on the indices of 

chemical and investment industries. At the seventh level, finally, the strongest dependencies 

were observed between the cement and investment industries, should any change occur to other 

indices. Based on the above-presented results, it is clear that the dependence structure modeling 

by the vine-copula functions could well extract and express conditional and pair relationships 

of different industries to one another in the considered cluster. 

Final results of the six cases for modeling the dependence structure under Scenarios 2 and 3 are 

given in the following tables. 

 
Table 12. Results of the six cases for modeling the dependence structure under Scenarios 2. 

 loglik par AIC BIC 

R-vine-all 6,028 18 -12,021 -11,944 

R-vine-normal 2,611 10 -5,202 -5,159 

R-vine-tStudent 6,405 20 -12,771 -12,685 

C-vine-all 6,008 19 -11,978 -11,896 

C-vine-normal 2,438 10 -4,856 -4,814 

C-vine-tStudent 6,406 20 -12,771 -12,686 

 

Table 13. Results of the six cases for modeling the dependence structure under Scenarios 3. 

 loglik par AIC BIC 

R-vine-all 11,629 52 -23,153 -22,931 

R-vine-normal 4,666 28 -9,275 -9,156 

R-vine-tStudent 12,078 56 -24,044 -23,805 

C-vine-all 11,844 51 -23,585 -23,367 

C-vine-normal 4,499 28 -8,941 -8,822 

C-vine-tStudent 12,377 56 -24,642 -24,403 

 

As shown in these tables, the application of the C-Vine model coupled with t-student copula 

functions led to better fitness values to the dependence structure of the market and industry 

indices in the relevant clusters. Under Scenario 2, where the clustering was based on foreign 

policies and the JCPOA, the Land Transportation & Storage industry exhibited the highest 

correlation to the TEDPIX. At the next level and provided a change in the TEDPIX and Land 

Transportation & Storage index occurs, the largest variations occur in the multi-discipline 

industries index. Focusing on the third tree, changes in the TEDPIX, Land Transportation & 

Storage, and multi-disciplinary indices were found to be most correlated to the technical and 

engineering index. 

Under Scenario 3, where the clustering was performed on the basis of market caps for 

different industries, the highest correlation to the TEDPIX was exhibited by the Land 

Transportation & Storage index followed by the multi-disciplinary, technical and engineering, 

and investment industries, respectively, should the indices of the previous tree have varied.  

Knowing that different cases were investigated under each scenario, the results of different 

models were subjected to the Vuong’s test (1989) to compare the outcomes. As mentioned 

earlier, results of modeling under each scenario were finally compared by means of Vuong’s 

tests, as reported in the following. 
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Table 14. Pairwise comparison of the six modeling cases under Scenario 1. 

Model stat p.value stat-aic p-value stat-bic p-value 

rv all vs normal 2.23 0.03 2.22 0.03 2.20 0.03 

rv all vs t -0.37 0.71 -0.37 0.71 -0.37 0.71 

rv normal vs t -12.52 0.00 -12.46 0.00 -12.35 0.00 

cv all vs normal 2.26 0.02 2.25 0.02 2.23 0.03 

cv all vs t -0.33 0.74 -0.33 0.74 -0.32 0.75 

cv normal vs t -10.24 0.00 -10.20 0.00 -10.11 0.00 

cv all vs rv all 1.96 0.05 1.96 0.05 1.94 0.05 

 

Table 15. Pairwise comparison of the six modeling cases under Scenario 2. 

Model stat p.value stat-aic p-value stat-bic p-value 

rv all vs normal 1.93 0.05 1.92 0.05 1.91 0.06 

rv all vs t -0.26 0.79 -0.26 0.79 -0.26 0.80 

rv normal vs t -10.48 0.00 -10.46 0.00 -10.40 0.00 

cv all vs normal 2.93 0.00 2.92 0.00 2.90 0.00 

cv all vs t -0.56 0.57 -0.56 0.57 -0.56 0.58 

cv normal vs t -7.59 0.00 -7.57 0.00 -7.53 0.00 

cv all vs rv all -0.03 0.98 -0.03 0.98 -0.03 0.97 

 

Table 16. Pairwise comparison of the six modeling cases under Scenario 3. 

Model stat p.value stat-aic p-value stat-bic p-value 

rv all vs normal 2.20 0.03 2.19 0.03 2.18 0.03 

rv all vs t -0.16 0.87 -0.16 0.87 -0.16 0.88 

rv normal vs t -19.77 0.00 -19.70 0.00 -19.54 0.00 

cv all vs normal 2.21 0.03 2.20 0.03 2.19 0.03 

cv all vs t -0.19 0.85 -0.19 0.85 -0.18 0.85 

cv normal vs t -14.74 0.00 -14.69 0.00 -14.58 0.00 

cv all vs rv all 1.49 0.14 1.50 0.13 1.51 0.13 

 

For example, the above tables indicate that, under Scenario 1, modeling the dependence 

structure using the R-Vine coupled with all families of copula functions led to no significant 

difference to the results when the R-Vine was coupled with the Gaussian copulas. This was 

while a significant difference was observed when the t-student copulas were used rather than 

all families of copulas, so that the null hypothesis could not be rejected. The same finding was 

seen with the C-Vine models as well. 

 

Discussion and conclusion 
 

With the growth and development of financial markets, the number of factors affecting the 

market trends has increased abruptly, so that variations in any segment of the financial system 

can potentially affect other parts of the system. On the other hand, the portfolio managers are 

always trying to understand various fluctuations in the market and draw a clearer image of the 

changes in the value of their portfolio considering the mentioned factors. For this purpose, they 

tend to consider nonlinear dependence structures to better comprehend the evolution of assets 

in the capital market. As far as dependence structure modeling is concerned, the vine-copula 

functions are superior to many other families of the copula functions including the Gaussian 

copula, Archimedean copula functions, and hierarchical Archimedean copula function (HAC). 

In a vine-copula function, the dependence structure is modeled by performing pairwise 

comparisons with a wide family of bivariate copulas. In this research, considering the large 

nature of the statistical population (including 10 market indices and 31 indices measuring active 

industries in the TSE) and structural differences for each index, we began by clustering different 

indices based on the most common criteria under three different scenarios. Then, by evaluating 
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the structure of dependence between the market indices and those industries that represented 

the relevant clusters, an attempt was made to couple all families of copula functions with the 

C-Vine and R-Vine models to identify direct and indirect dependencies of these indices and 

graph them properly. 

For this purpose, once finished with calculating daily returns of the considered indices, the 

GARCH(1.1) model was applied to obtain standardized values of residuals before using the C-

Vine function to identify the representative index of each cluster. Under Scenario 1, the 

representative indices included those measuring the chemical products, metal minerals, Land 

Transportation & Storage, food products, computer, cement, and investment industries. Under 

Scenario 2, the representative indices were those related to the technical and engineering, multi-

disciplinary, Land Transportation & Storage, and investment industries. And under Scenario 3, 

the representative indices were those corresponding to multi-disciplinary, investment, food 

products, Land Transportation & Storage, Rubber & Plastic Product, metal products, and oil 

production (excl. exploration). Subsequently, for all of the representative indices based on the 

R-Vine and C-Vine models, dependence structures were modeled using the entire family of 

copula functions, Gaussian copulas, and t-student copulas. The results indicated that, under 

either of the three scenarios, more accurate results were obtained when the C-Vine model rather 

than the R-Vine model was used. Focusing on the families of copula functions, the results 

showed that the best fitness values were obtained by the t-student functions. Finally, results of 

all cases of dependence structure modeling under the three scenarios were subjected to pairwise 

comparisons using Vuong’s test. The results showed significant similarity between the cases 

where all copula families were considered and those where t-student copulas were engaged, 

while the results were significantly different to those of Gaussian models. This proves that the 

distribution of financial data may not follow a normal distribution. 

Finally, it is worth mentioning that the present research showed that, considering the formula 

for calculating the TEDPIX on TSE, one can properly extract pair dependence structures 

between different variables and indices of different industries by clustering them based on the 

investor’s requirements, thereby improving the composition of the investor’s portfolio. 
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