[1] ALAM, S., FATIMA, A. & BUTT, M. S. 2007. Sustainable development in Pakistan in the context of energy consumption demand and environmental degradation. Journal of Asian Economics, 18, 825-837.
[2] BEGUM, R. A., SOHAG, K., ABDULLAH, S. M. S. & JAAFAR, M. 2015. CO2 emissions, energy consumption, economic and population growth in Malaysia. Renewable and Sustainable Energy Reviews, 41, 594-601.
[3] FOX, J. 1997. Applied regression analysis, linear models, and related methods, Sage Publications, Inc.
[4] FURUOKA, F. 2015. The CO2 emissions–development nexus revisited. Renewable and Sustainable Energy Reviews, 51, 1256-1275.
[5] HALICIOGLU, F. 2009. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy, 37, 1156-1164.
[6] HAMZACEBI, C. & KARAKURT, I. 2015. Forecasting the energy-related CO2 emissions of Turkey using a grey prediction model. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37, 1023-1031.
[7] HE, J. & RICHARD, P. 2010. Environmental Kuznets curve for CO2 in Canada. Ecological Economics, 69, 1083-1093.
[8] HOLTZ-EAKIN, D. & SELDEN, T. M. 1995. Stoking the fires? CO2 emissions and economic growth. Journal of public economics, 57, 85-101.
[9] HOSSEINI, S. M., SAIFODDIN, A., SHIRMOHAMMADI, R. & ASLANI, A. 2019. Forecasting of CO2 emissions in Iran based on time series and regression analysis. Energy Reports, 5, 619-631.
[10] JALIL, A. & MAHMUD, S. F. 2009. Environment Kuznets curve for CO2 emissions: a cointegration analysis for China. Energy policy, 37, 5167-5172.
[11] KARGUPTA, H., GAMA, J. & FAN, W. The next generation of transportation systems, greenhouse emissions, and data mining. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, 2010. 1209-1212.
[12] KLECKA, W. R., IVERSEN, G. R. & KLECKA, W. R. 1980. Discriminant analysis, Sage.
[13] KNAPP, T. & MOOKERJEE, R. 1996. Population growth and global CO2 emissions: A secular perspective. Energy Policy, 24, 31-37.
[14] KUMAR, S. & MUHURI, P. K. 2019. A novel GDP prediction technique based on transfer learning using CO2 emission dataset. Applied Energy, 253, 113476.
[15] KUNDA, D. & PHIRI, H. 2017. An Approach for Predicting CO2 Emissions using Data Mining Techniques. International Journal of Computer Applications, 172, 7-10.
[16] LI, X., SONG, Y., YAO, Z. & XIAO, R. 2018. Forecasting China’s CO2 Emissions for Energy Consumption Based on Cointegration Approach. Discrete Dynamics in Nature and Society, 2018.
[17] LIU, Z., WANG, F., TANG, Z. & TANG, J. 2020. Predictions and driving factors of production-based CO2 emissions in Beijing, China. Sustainable Cities and Society, 53, 101909.
[18] LOTFALIPOUR, M. R., FALAHI, M. A. & BASTAM, M. 2013. Prediction of CO2 emissions in Iran using Grey and ARIMA models. International Journal of Energy Economics and Policy, 3, 229-237.
[19] MAIMON, O. & ROKACH, L. 2005. Data mining and knowledge discovery handbook.
[20] MARJANOVIĆ, V., MILOVANČEVIĆ, M. & MLADENOVIĆ, I. 2016. Prediction of GDP growth rate based on carbon dioxide (CO2) emissions. Journal of CO2 Utilization, 16, 212-217.
[21] NYONI, T. & BONGA, W. G. 2019. Prediction of CO2 Emissions in India Using ARIMA Models. DRJ-Journal of Economics & Finance, 4, 01-10.
[22] TOL, R. S., PACALA, S. W. & SOCOLOW, R. 2006. Understanding long-term energy use and carbon dioxide emissions in the USA.
[23] WAGSTAFF, K., CARDIE, C., ROGERS, S. & SCHRÖDL, S. Constrained k-means clustering with background knowledge. Icml, 2001. 577-584.
[24] WEN, L. & CAO, Y. 2019. Influencing factors analysis and forecasting of residential energy-related CO2 emissions utilizing optimized support vector machine. Journal of Cleaner Production, 119492.
[25] YU, Y. & DU, Y. 2019. Impact of technological innovation on CO2 emissions and emissions trend prediction on ‘New Normal’economy in China. Atmospheric Pollution Research, 10, 152-161.
[26] ZHENG, X., LU, Y., YUAN, J., BANINLA, Y., ZHANG, S., STENSETH, N. C., HESSEN, D. O., TIAN, H., OBERSTEINER, M. & CHEN, D. 2020. Drivers of change in China’s energy-related CO2 emissions. Proceedings of the National Academy of Sciences, 117, 29-36.