[1] Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). “Latent space approaches to social network analysis”, Journal of the American Statistical association, 97(460), 1090–1098.
[2] Rastelli, R., Friel, N., and Raftery, A. E. (2016). “Properties of latent variable network models”, Network Science, 4(4), 407–432.
[3] Lee, C. and Wilkinson, D. J. (2019). “A review of stochastic block models and extensions for graph clustering”, Applied Network Science, 4(1), 1–50.
[4] Robins, G., Pattison, P., Kalish, Y., and Lusher, D. (2007). “An introduction to exponential random graph (p*) models for social networks”, Social networks, 29(2), 173–191.
[5] McPherson, M., Smith-Lovin, L., and Cook, J. M. (2001). “Birds of a feather: Homophily in social networks”, Annual review of sociology, 27(1), 415–444.
[6] Snijders, T. A. (2011). “Statistical models for social networks”, Annual review of sociology, 37.
[7] Woodall, W. H., Zhao, M. J., Paynabar, K., Sparks, R., and Wilson, J. D. (2017). “An overview and perspective on social network monitoring”, IISE Transactions, 49(3),354–365.
[8] L Allison Jones-Farmer, William H Woodall, Stefan H Steiner, and Charles W Champ (2014). “An overview of phase i analysis for process improvement and monitoring “. Journal of Quality Technology, 46(3):265–280.
[9] Fotuhi, H., Amiri, A., and Maleki, M. R. (2018). “Phase ı monitoring of social networks based on poisson regression profiles”, Quality and Reliability Engineering International, 34(4), 572–588.
[10] Mazrae Farahani, E. and Baradaran Kazemzadeh, R. (2019). “Phase i monitoring of social network with baseline periods using poisson regression”, Communications in Statistics-Theory and Methods, 48(2), 311–331.
[11] Ebrahimi, S., Reisi Gahrooei, M., Manakad, S., and Paynabar, K. (2020). “Monitoring sparse and attributed networks with online hurdle models”, IISE Transactions, 1–31.
[12] Motalebi, N., Owlia, M. S., Amiri, A., and Fallahnezhad, M. S. (2021). “Monitoring social networks based on zero-inflated poisson regression model”, Communications in Statistics-Theory and Methods, 1–17.
[13] Sullivan, J. H. and Woodall, W. H. (1996). “A control chart for preliminary analysis of individual observations”, Journal of Quality Technology, 28(3), 265–278.
[14] Motalebi, N., Owlia, M. S., Amiri, A., and Fallahnezhad, M. S. (2021). “Monitoring social networks based on zero-inflated poisson regression model in phase i”.
[15] Yeh, Longcheen Huwang, and Yu-Mei Li. ,(2009), Profile monitoring for a binary response. IIE Transactions, 41(11):931–941.
[16] https://www.cs.cmu.edu/~enron/
[17] Azarnoush, B., Paynabar, K., Bekki, J. and Runger, G (2016), “Monitoring temporal homogeneity in attributed network streams”, Journal of Quality Technology, 48(1), 28–43
[18] Yu, L., Woodall, and Tsui, K., (2018), “Detecting node propensity changes in the dynamic degree correctedstochastic block modelLisha”, Social Networks, 54, 209-227.
[19] https://datareportal.com/reports/digital-2021-iran
[20] Shariatpanahi, G., Tahouri, K., Asadabadi, M., Moienafshar, A., Nazari, M., and Sayarifard, Azadeh. (2021), “Cyberbullying and Its Contributing Factors Among Iranian Adolescents”, International Journal of High Risk Behaviors and Addiction, In Press.
72 Motalebi et al.
[21] Zhou, X., anChen, Lei , “Event detection over twitter social media streams”, The VLDB journal, 23(3), 381—400.
[22] http://networksciencebook.com/
This