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Abstract  

Airlines try to reduce costs by improving the quality of their operational schedules. 

However, numerous uncontrollable factors make disruptions inevitable. A flight 

delay or cancellation caused by disruption may spread throughout the network and 

increase the operational costs by affecting the schedule of other flights, including 

aircraft, crew, and passengers’ itineraries. While previous researchers have focused 

on one of these aspects or sequential approaches, the resulted solutions cannot lead 

to a reliable operational solution due to the complex relationships between these 

factors in practice. Therefore, integrated recovery approaches are highly essential. 

The main objective of this research is to provide a fully integrated recovery model 

that contains various recovery scenarios to tackle the disruption and delay 

propagation with more flexibility and acceptable solution time. So, an integrated 

model for crew, aircraft, and passenger recovery problem is proposed in this paper. 

The proposed model is formulated as MILP, based on individual flight legs to 

achieve a more accurate schedule with better recovery solution. Options such as 

aircraft reassignment, crew swapping, reassignment of passengers, and ticket 

refunds are considered as alternatives to face disruption. Moreover, the 

considerations related to crew rest-time and maintenance requirements are also 

included in the model. Due to the NP-Hard nature of the problem, the Genetic 

algorithm is used as the solution approach successfully for the real-world data to 

limit delay propagation on various random flights. 
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Introduction  
 

The aviation industry has a direct impact on the quality of global transportation systems and 

economic growth [1]. However, high costs and low profits are the two main challenges for the 

airline industry. The industry faced net losses of $52 billion in 2021 and cutting these losses to 

$12 billion in 2022. Airlines are expected to cut costs by 31% in 2021 vs 2019 [2]. According 

to the IATA annual report, Airline industry is recovering gradually from COVID-19, but 

demands for air travel are still estimated to be only 40% of pre-crisis levels in 2021. According 

to the Bureau of transportation statistics [3], the number of disrupted flights has increased 

gradually as well. As an instance, 19.36% of flights were delayed in 2022 in the United States, 

which is 8.36% greater than 2021. Also, cancelled flights increased from 2.45% to 3.99%. 

Flight network expansion for an airline is vital as a competitive advantage to cover more cities. 
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However, this growth may cause a grave problem for these companies. Based on studies, each 

1% increase in number of flights may increase 5% delays in entire flight network [4]. Disruption 

is an inseparable part of the airline's operations. Atmospheric condition, airport issues, air 

traffic, aircraft technical failure, crew unavailability,  and management decisions may lead to 

the disruption. To overcome this challenge, recovering the schedule to prevent propagation is 

essentially needed [5]. Scheduling is an intricate operation for airlines that includes various 

aspects of aircraft, crew and passenger itinerary [6]. A slight disruption in an individual flight 

can cause a serious issue for the flight network [7]. The issue may propagate to other flights of 

the network owing to deployment of common resources (see the references [8-9]). Aircrafts, 

crews and passengers are key elements of the recovery process. While some studies have 

addressed each element solely, some others have considered them sequentially. In this case, the 

output of each stage is applied the next one as an input. This approach may considerably reduce 

the complexity of the problem. However, the risk of reaching to infeasible solutions is highly 

expected. To overcome this issue, the fully integrated recovery models are strongly 

recommended.  

Here, the evolution of an integrated airline schedule recovery approach is discussed to 

illustrate how it might cover all elements of aircraft, crew, and passengers concurrently. The 

current model is exceedingly different from the previous pieces of research. According to 

Hassan et al. [10], few pieces of research have considered aircraft, crew and passenger recovery 

in their models. In some of these researches, the aircraft, crew or passenger recovery has been 

defined as a multi-stage problem. Thus, the aircraft recovery formulated on time-space network 

concept as the initial stage of the recovery. Then, the results of the initial stage have been 

utilized for the crew rescheduling and recovery. Similarly, the results of the second stage have 

been deployed as input for passenger recovery. Compared to the space-time network, 

connection-based network provides more flexible schedule recovery options (see the references 

[11-13]). Maher [12] used a flight string concept to simplify the integrated recovery problem, 

but, this may lead to non-optimal solutions. On the other hand, the integrated model represented 

by Arikan et al. [13] has been formulated as a conic quadratic model. The current integrated 

model is configured to lead to optimum solutions by rescheduling individual flight legs in 

addition to using an exact solution approach. Furthermore, the current linear model may reduce 

CPU time to operate compared to Arikan et al. [13] approach and the solution will be global 

optimum as well. 

The main contribution of this paper is as follow: First, the fully integrated aircraft-crew-

passenger recovery model is formulated for total network instead of using flight strings concept. 

So, all flight legs are considered in the process to evaluate all possible options for the optimum 

recovery solution. Moreover, different fleet types are considered in the model as they have 

different seat capacities. Also, conditions related to ground operation time, crew rest, and 

maintenance requirements are also considered. Also, the variation of recovery scenarios such 

as under controlled flight delay or cancellations, rerouting of aircraft/crew, resource swapping 

and using deadhead options, passenger reallocation/refunding are available for more flexibility. 

Finally, due to the Np-hard nature of the problem, the genetic algorithm - one of the well-known 

metaheuristic solution approaches- is used to solve the case study generated with real world 

data. The objective function of the model defined as minimum cost. The rest of this paper is 

organized as follows: The literature of the airline recovery solutions is presented in Section 2. 

Section 3 is dedicated to the problem statement and proposed model. Genetic algorithm 

structure for the recovery model is described in Section 4. Various numerical examples and the 

case study of real world data are solved in Section 5 to evaluate the model performance. Section 

6 is devoted to the review of the proposed model and other studies. At last,  the conclusion is 

presented in Section 7. 
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Literature Review  
 

Over the last few decades, there has been an increase in publications of airline disruption 

recovery. In particular, in of works integrating two or more resources (i.e., aircraft, crew, 

passengers) [10]. Some surveys and review papers were presented by Kohl et al. [14], Clausen 

et al. [6], Hassan et al. [10] and Su et al. [15] to evaluate the various aspects of the airline 

recovery problem. Kohl et al. [14] focused on how disruption management and large scale 

disruptions impact on airline performance.  Clausen et al. [6] presented a comprehensive review 

of variation of flight networks and both the traditional and modern recovery policies for aircraft, 

crew and passengers. Su et al. [15] listed the disruption sources and how basic models are trying 

to tackle the disruption side effects. Hassan et al. [10] presented a review of optimization 

approaches that applied for airline recovery problem. Below, the brief review of related studies 

are represented based on aircraft, crew and passenger recovery. Moreover, multi-stage and 

integrated approaches are described. Finally, common types of flight network structure used in 

the integrated approaches is provided. 

  

Single aspect recovery  

 

Aircraft recovery problem has been discussed in many studies. The classic approach to this 

problem usually involves revising the fleet and available routes for aircraft (see the references 

[16-17]). Liang et al. [18] considered the maintenance requirements and airport capacity aspects 

to reduce aircraft recovery cost. Vink et al. [19] proposed a MILP aircraft recovery model to 

handle Two different types of maintenance operations for multi-fleet airlines. 

The main objective of crew recovery is to reassign available crew to existing flights for duty. 

In this process, only the flights that defined in recovery time window get considered to avoid 

extra complexity of the problem [15]. By deploying the set partitioning concept, Guo [20] 

applied set partitioning, linear programming relaxation and genetic algorithm to solve the crew 

recovery problem. Due to the NP-HARD nature of the problem, Chang [21] used the Genetic 

Algorithm to solve his proposed crew recovery model. Bayliss et al. [22] studied the effects of 

crew unavailability and reserved crew in the airline recovery process. Also, simulation based 

optimization also get applied by Scherp et al. [23] to estimate the optimum number of reserved 

crew.  

Passenger recovery problem has a great impact on the airline performance. Bratu and 

Barnhart [24] formulated couple of different models with reserved crew and aircrafts, so they 

can study the impact of passenger delays and operational costs on total costs for airlines. The 

results of their study showed that passenger reallocation may significantly reduce the total cost. 

The approach proposed by Jafari and Zegordi [25] includes a sequential mixed integer 

programming for aircraft rotations - passenger itineraries recovery based on Abdelghany’s [26] 

work with independent flight resources. By better understanding of passenger itinerary, 

McCarty [27] focused on improving more possible routes for passenger recovery. Therefore, 

the passenger itinerary changes get minimized. McCarty et al. [28] proposed a novel stochastic 

programming model to preventative rerouting and re-accommodating passengers under 

uncertain delays. 

 

Multi-stage and integrated approaches 

  

As mentioned before, separating the crew, aircraft, and passenger recovery as an individual 

problem may strikingly dwindle the complexity of the recovery problem. Though, the final 

solution to real-world problems cannot be expected to be completely optimized. This situation 

can become worse by reaching an infeasible solution. To overcome this problem, an integrated 
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recovery approach is essential. Integrated airline solutions are effective for both creating the 

original schedule and recovering process as well. However, creating and solving an integrated 

model is exceptionally difficult and challenging. Therefore, there are a few number of research 

published in this field of study. Rashidi et al. [29] proposed an integrated model of fleet 

assignment and crew scheduling. Their approach provided better results for allocating the 

appropriate fleet and crew to the flight schedule. From the recovery aspect, Petersen et al. [30] 

proposed mixed integer based sub problems for a single day operation period. Flight schedule, 

aircrafts, crew, and passengers get considered in each sub problem. The proposed integrated 

model was based on “flight strings” concept, but the solution approach utilized column 

generation and Benders decomposition sequentially. Sinclair et al. [31] adopted the Bisaillon 

[32] recovery model to reach better final solutions. As an extension of their previous research, 

an integrated aircraft-passenger model proposed by Sinclair et al. [33] through a smaller model 

for better run-time in a hub and spoke networks. Maher [11] proposed an integrated model that 

included all three aspects of aircraft-crew-passengers. His string-based model was able to 

reallocate the passengers from the cancelled flight to other available flights. However, the 

model was not designed for multi-fleet airlines and did not include the maintenance aspects. 

Maher [12] presented another flight string-based model including which could handle reserved 

crew. To reduce the problem size, the column and row generation approach was used for daily 

operation as a solution method. Hu et al. [17] adopted a similar approach to evaluate the 

decisions about passenger reallocation thru his integrated aircraft-passenger recovery by using 

a connection network. Arikan et al. [34] studied the role of cruise speed control on the quality 

of their solutions for aircraft-passenger recovery model. The results show that this option may 

mitigate the side effects of the disruption. The integrated model of Arikan et al. [13] includes 

aircraft, crew, passengers, and a diverse number of recovery scenarios which get defined 

through a simple innovative flight network. However, the model is non-linear. Finally, 

Khiabani et al. [35] presented a fully integrated aircraft and crew recovery model formulated 

as MILP. They solved the model successfully by deploying Benders decomposition with an 

acceptable solution time. But their model does not support the maintenance requirements and 

passenger aspects. 

 

Schedule network  

 

The airline's operational schedule is provided via flight network. Each flight network may 

necessarily include the flight route, maintenance requirements, or other needed flight resources. 

Liang et al. [36]. As explained in their report, the time-space network (e.g. Petersen et al. [30] 

and Zhang et al. [37]) and connection network (e.g. Aguiar et al. [38] and Arikan et al. [13]) 

are frequently used for multi-stage / integrated airline recovery problem [10]. The time-space 

network is an improved form of time-line networks, contains all possible landing and takeoff 

events connect with time lines. This may help for easier scheduling [39]. The connection 

network is the modified version of the string-based network with more flexible options 

proposed by Barnhart et al. [40]. This network includes more additional variables and 

constraints for each flight leg. When a disruption happens middle of the schedule, the flight 

string concept helps to simplify the reassignment and rescheduling of the remaining flights for 

the specific pairing. So, other pairings and flights are not affected (see the references [11-12]). 

for integrated models. Studies shows that the connection networks have better performance for 

large airlines compare to the string-based networks by allowing them to monitor aircraft, crew, 

and passengers through a unique network [13]. So, all scheduled flights may be adjusted during 

the recovery operation. Also, when the number of the strings and related variables increase in 

the string-based network compared to the leg-based approach, the risk of leading to non-optimal 
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answers in practice increase as well [41]. Therefore, by taking all flights in the rescheduling 

process, it is ensured to reach to the optimum solution in a more flexible way [13,36,42]. 

In conclusion, simultaneous recovery of aircraft-crew-passengers is very rare in existing 

studies. The majority of these studies have used a multi-stage approach. Solving the model 

sequentially, may ends to non-optimal or even infeasible solutions. Bratu and Barnhart [24] 

proposed the first fully integrated recovery problem. However, they focused on reserved crews 

and cost trade-offs between recovery cost and passenger costs. Maher’s [11] model formulated 

as the flight string, which has the risk of non-optimal solutions. At the other hand, the CPU 

time of Arikan et al. [13] non-linear approach is substantially increased. while shorter solution 

time is crucial for recovery models in practice. Moreover, the risk of reaching to local optimum 

solution is high in a non-linear approach. The main objective of this study is to present a fully 

integrated aircraft-crew- passenger recovery model by using a mix integer linear programming 

approach. Individual flight legs concept gets applied to the model to ensure the optimal solution 

is achievable. Our recovery model includes various scenarios such as under controlled flight 

delays / cancellation, rerouting, deadheading, and swapping of aircraft / crew, passenger 

reallocation and refunding. Also, the model is multi-fleet and includes maintenance 

requirements. Comparison between the current research with the previous studies is presented 

in Table 1.  

 

Problem Statement: Integrated Airline Recovery Problem (IARP) 
 

This research is dedicated to introduce a novel linear mathematical model for the Integrated 

Airline Recovery Problem (IARP) by considering aircraft-crew-passengers. For this purpose, it 

is assumed that the original daily flight schedule is already available. Disruption may happen 

for any unexpected reason and involve one or more different flights at the operation day. Unlike 

the rest of other studies, the IARP takes advantage of single flight legs in the rescheduling 

process instead of the flight-string concept. So, the model has better opportunity to reach better 

solutions. Moreover, each flight in this model can be done on time, with delay, or may be 

cancelled. The resource swapping, deadheading, and rerouting are considered as recovery 

options by considering the availability of aircraft and crew. In the case of cancellation, 

passengers may be refunded or reassigned to other flights of the same or other airline. In the 

case of passenger reassignment, free seats of other flights are considered. Moreover, IARP 

reassigns flights to the proper aircraft according to the maintenance and multi-fleet 

requirements. For more realistic aspect of the IARP, sit / ground time constraints are applied 

for flight resources.  

IARP is formulated as a multi-fleet problem with different types of aircraft. Naturally, each 

cockpit crew can handle specific types of aircraft. Also the real world data of American airline 

published by Kaggle.com is used to create all examples for this study.  

 

Mathematical model 

 

Current section dedicated to describe the formulation of the mathematical model and its flight 

network in detail. The objective function of IARP includes flight deadhead, swapping, delay, 

cancellation, reassignment, and refunding options with minimum cost. The set of resources is 

used for crew and aircraft, to prevent similar constraints for, both of these elements. So, the set 

of R represents all flight resources in the model. Likewise, A and C are representing the set of 

every aircraft and crew as the flight resources and the set of F indicates the flights. 

The other concept used in the model is flight round, which is shown by index n. It refers to 

each movement (flight) done by a resource, either crew or aircraft. Let’s suppose that an aircraft 

is going to be assigned to three different flights in a single duty day. For the first flight, n equals 
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to one as it is the first travel of the aircraft in that day. Similarly, for the second and third flights, 

n equals to two and three, respectively.  

 
Table 1. Recovery studies from the literature 
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Bisaillon 

et al. [32] 
time space Metaheuristic ✓ ✓ ✓      ✓ ✓ ✓ ✓  ✓  ✓ 

Jafari et al. 

[25] 
connection rolling horizon ✓ ✓ ✓ ✓     ✓ ✓ ✓  ✓ ✓  ✓ 

Petersen et 

al. [30] 
time space Benders ✓ ✓ ✓   ✓ ✓  ✓ ✓ ✓ ✓   ✓ ✓ 

Aguiar et 

al. [38] 
connection Metaheuristic ✓ ✓ ✓   ✓     ✓ ✓  ✓   

Le and 

Mei Long 

[43] 

time space Metaheuristic ✓ ✓ ✓  ✓ ✓  ✓  ✓ ✓   ✓   

Castro et 

al.[44] 
time space 

multi-agent 

sys. 
 ✓ ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓  ✓ 

Sinclair et 

al. [31] 
time space Metaheuristic ✓ ✓ ✓      ✓ ✓ ✓ ✓  ✓  ✓ 

Maher [11] string 
column & row 

generation 
✓ ✓ ✓  ✓  ✓ ✓ ✓  ✓ ✓   ✓  

Sinclair et 

al. [33] 
time space Metaheuristic ✓ ✓ ✓      ✓ ✓ ✓  ✓ ✓  ✓ 

Zhang et 

al. [37] 
time space 

2stage 

heuristic 
✓ ✓ ✓   ✓ ✓   ✓ ✓ ✓  ✓  ✓ 

Hu et al. 

[45] 
time space Metaheuristic ✓ ✓ ✓ ✓ ✓    ✓   ✓  ✓  ✓ 

Maher [12] string 
column & row 

generation 
✓ ✓ ✓   ✓ ✓ ✓   ✓ ✓   ✓  

Zhu et al. 

[46] 
time space Metaheuristic ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓   ✓  ✓ ✓ 

Arikan et 

al. [13] 
connection conic quadratic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓  ✓ ✓ 

Wu et al. 

[47] 
connection 

integer 

programming 
✓ ✓ ✓         ✓    ✓ 

liang et al. 

[18] 
connection 

column 

generation 
✓ ✓ ✓        ✓ ✓    ✓ 

McCarty et 

al. [28] 
none 

stochastic-

benders 
        ✓    ✓   ✓ 

Shaochang 

[48] 
time space Metaheuristic ✓ ✓ ✓         ✓     

Bayliss et 

al. [22] 
time space Heuristic      ✓ ✓ ✓         

Scherp et 

al. [23] 
none 

simulation 

based 

optimization 

      ✓ ✓         

Khiabani 

et al. [35] 
Connection Benders ✓ ✓ ✓   ✓ ✓ ✓    ✓   ✓ ✓ 

IARP  

individual 

flights Total 

network 

Genetic 

algorithm 
✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ 
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Now, decision variables can be described: the  binary variable of 𝑋𝑟𝑓𝑛 is indicating whether 

flight f  is done by resource r in its nth travel. 𝑌𝑓 is a positive variable that represents the real 

departure time of flight 𝑓. Also, 𝑍𝑓 is a binary variable that shows if flight 𝑓 is cancelled or not. 

𝑆𝑓 is a binary variable indicating if flight 𝑓 is swapped or not. If a flight is handled by another 

crew rather than the originally assigned one, it is labeled as a swapping flight. 𝐷𝑒𝑙𝑓 is a positive 

variable counts the amount of delay per minute for flight f. If a flight is cancelled, the passengers 

may be reassigned to other flights or refunded. The number of passengers of flight 𝑓 that are 

reassigned to flight 𝑓′ is shown by an integer variable, 𝑁𝑅𝐴𝑓𝑓′. Also, 𝑁𝑅𝑓 shows the number 

of unassigned passengers that should be refunded.  

 

The sets, parameters, and variables of the model is as what follows: 

 

Sets and indices 

  
𝑅 Set of flight resources, (aircrafts, crew) 

𝑟 Index for resource of the flight  

𝐶 Set of the crew  

𝐴 Set of the aircrafts 

𝐹𝐿 Set of the flights (offered by either the assumed airline or other airlines) 

𝐹 Set of the flights offered by the assumed airline 

𝐹𝑐𝑜𝑚𝑓 Set of the flights that their origin and destination are similar to flight f 

𝑓. 𝑓′ Index for individual flight 

𝑁 Set of the flight rounds 

𝑛 Index of flight round 

𝐹𝑂𝑟 Set of the flights that depart from the home base of resource r 

𝑐𝑓 The crew of flight f according to original schedule (before disruption)  

𝐶𝑓
′ Set of crew who have not been originally assigned to flight f  (𝐶 − 𝑐𝑓) 

𝐶𝑎 Set of all crew who can handle aircraft a 

𝑛𝑒𝑡𝑟𝑒𝑞𝑎 Set of all flights with maintenance requirement 

𝑛𝑒𝑡𝑓 Set of all flights that their destinations are equipped with a maintenance facility  

 

Parameters and scalars 
𝑔𝑟𝑜𝑢𝑛𝑑𝑟 Minimum ground / sit time of specific resource r to operate two flights in 

sequence  

𝑁𝑃𝑓 Number of passengers in flight f 

𝑎𝑟𝑓 Flight f Arrival time 

𝑑𝑒𝑓 Flight f departure time 

𝑑𝑢𝑟𝑓 Duration time of flight f 

𝑈𝑆𝑓 Number of unequipped (free) seats of flight f  

𝑐𝑐𝑓 Cost of cancellation for flight f 

𝑑𝑐𝑓 Cost of delay for flight f (per minute)   

𝑠𝑐𝑓 Swapping costs for flight f 

𝑎𝑐𝑓𝑓′  Reassignment cost for passengers of flight f to f ' 

𝑟𝑐𝑓 Refund cost of passengers of flight f 

𝑑ℎ𝑐𝑓 Deadheading cost of flight f 

𝑜𝑑𝑓𝑓′  A binary parameter to show if the destination of flight f is the similar origin of 

the flight f '  

𝑀 A large number 
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Variables 
𝑋𝑟𝑓𝑛 Binary variable to track the movement of each resource r. this variable equals 1  

if the flight 𝑓 uses resource 𝑟 in the 𝑛th flight round 

𝑌𝑓 represent the real time of flight 𝑓 

𝑍𝑓 Binary variable that show if flight 𝑓 is cancelled when it is equal to 1 

𝑆𝑓 Binary variable equal 1 to show that if the flight 𝑓 gets swapped. 

𝐷𝑒𝑙𝑓 variable that counts the delay minutes for flight f 

𝑁𝑅𝐴𝑓𝑓′ Counts the number of passengers from flight 𝑓 that reallocate to flight 𝑓′ 

𝑁𝑅𝑓 The number of other passengers that booked flight 𝑓 that are not reallocated to 

any other flights 

 

IARP model is formulated as follows: 

 

𝑀𝑖𝑛 ∑ 𝑑ℎ𝑐𝑓(∑ ∑ 𝑋𝑟𝑓𝑛 − 1 + 𝑍𝑓)

𝑛∈𝑁𝑟∈𝐶𝑓∈𝐹

+ ∑ 𝑠𝑐𝑓𝑆𝑓

𝑓∈𝐹

+ ∑ 𝑑𝑐𝑓𝐷𝑒𝑙𝑓

𝑓∈𝐹

+ ∑ 𝑐𝑐𝑓𝑍𝑓

𝑓∈𝐹

+ ∑ ∑ 𝑎𝑐𝑓𝑓′𝑁𝐴𝑓𝑓′

𝑓′∈𝐹𝐿𝑓∈𝐹

+ ∑ 𝑟𝑐𝑓𝑁𝑅𝑓

𝑓∈𝐹

                                                                                                                                        (1) 

S.t. 

∑ ∑ 𝑋𝑟𝑓𝑛

𝑛∈𝑁𝑟∈𝐶

+ 𝑍𝑓 ≥ 1      ∀𝑓 ∈ 𝐹                                                                                                                                      (2) 

∑ ∑ 𝑋𝑟𝑓𝑛

𝑛∈𝑁𝑟∈𝐶

≤ 𝑀 ∑ ∑ 𝑋𝑟𝑓𝑛

𝑛∈𝑁𝑟∈𝐴

      ∀𝑓 ∈ 𝐹                                                                                                                      (3) 

𝑌𝑓 + 𝑑𝑢𝑟𝑓 + 𝑔𝑟𝑜𝑢𝑛𝑑𝑟 ≤ 𝑌𝑓′ + 𝑀(2 − 𝑋𝑟𝑓𝑛 − 𝑋𝑟𝑓′𝑛+1)                                                                   

∀𝑟 ∈ 𝑅. 𝑛 ∈ 𝑁. 𝑓. 𝑓′ ∈ 𝐹: 𝑓 ≠ 𝑓′                                                                                                                                      (4) 

∑ 𝑋𝑟𝑓𝑛+1

𝑓∈𝐹

≤ ∑ 𝑋𝑟𝑓𝑛

𝑓∈𝐹

       ∀𝑟 ∈ 𝑅. 𝑛 ∈ 𝑁                                                                                                                      (5) 

∑ 𝑋𝑟𝑓𝑛

𝑓∈𝐹

≤ 1       ∀𝑟 ∈ 𝑅. 𝑛 ∈ 𝑁                                                                                                                                        (6) 

𝑋𝑟𝑓𝑛 + 𝑋𝑟𝑓′𝑛+1 ≤ 𝑜𝑑𝑓𝑓′ + 1       ∀𝑟 ∈ 𝑅. 𝑛 ∈ 𝑁. 𝑓. 𝑓′ ∈ 𝐹: 𝑓 ≠ 𝑓′                                                                          (7) 

𝑌𝑓 ≥ 𝑑𝑒𝑓(1 − 𝑍𝑓)          ∀𝑓 ∈ 𝐹                                                                                                                                        (8) 

𝑌𝑓 ≤ 𝑀(1 − 𝑍𝑓)        ∀𝑓 ∈ 𝐹                                                                                                                                             (9)

  

𝐷𝑒𝑙𝑓 ≥ 𝑌𝑓 − 𝑑𝑒𝑓         ∀𝑓 ∈ 𝐹                                                                                                                                            (10) 

∑ 𝑋𝑟𝑓𝑛

𝑓∈𝐹𝑂𝑟

= 1       ∀𝑟 ∈ 𝑅. 𝑛 = 1                                                                                                                                   (11) 

1 − (∑ 𝑋𝑟𝑓𝑛

𝑛∈𝑁

+ 𝑍𝑓) ≤ 𝑆𝑓     ∀𝑓 ∈ 𝐹. 𝑟 = 𝑐𝑓                                                                                                                (12) 

∑ 𝑋𝑟𝑓𝑛

𝑛∈𝑁

≤ ∑ ∑ 𝑋𝑟′𝑓𝑛

𝑛∈𝑁𝑟′∈𝐶𝑎

     ∀𝑟 ∈ 𝐴. 𝑓 ∈ 𝐹                                                                                                               (13) 

∑ ∑ 𝑋𝑟𝑓𝑛

𝑛∈𝑁𝑓∈𝑛𝑒𝑡𝑓

≥ 1     ∀𝑟 ∈ 𝑛𝑒𝑡𝑟𝑒𝑞𝑎                                                                                                                             (14) 

∑ 𝑁𝑅𝐴𝑓𝑓′

𝑓′∈𝐹𝑐𝑜𝑚𝑓

+ 𝑁𝑅𝑓 = 𝑁𝑃𝑓𝑍𝑓     ∀𝑓 ∈ 𝐹                                                                                                              (15) 

∑ 𝑁𝑅𝐴𝑓𝑓′

𝑓∈𝐹

≤ 𝑈𝑆𝑓′      ∀𝑓′ ∈ 𝐹𝐿                                                                                                                                    (16) 

∑ ∑ 𝑋𝑟𝑓𝑛 ≤ 𝑀(1 − 𝑍𝑓)

𝑛∈𝑁𝑟∈𝐶

                                                                                                                                            (17) 

𝑌𝑓 , 𝐷𝑒𝑙𝑓 ≥ 0                                                                                                                                                                    (18) 

𝑋𝑟𝑓𝑛, 𝑆𝑓 , 𝑍𝑓: 𝐵𝑖𝑛𝑎𝑟𝑦                                                                                                                                                    (19) 

𝑁𝑅𝐴𝑓𝑓′, 𝑁𝑅𝑓: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟                                                                                                                                                 (20) 
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The objective function of the IARP model includes flight deadhead, swapping, delay, 

cancellation, reassignment, and refunding cost with minimum cost. Eq. 2 guarantees that each 

flight must be assigned to a crew or get canceled. Constraint (3) ensures to assign an aircraft to 

the flight which the crew is assigned to it as well. Constraint (4) states that the minimum sit / 

ground time for a resource used in two consecutive flights must be considered. Constraint (5) 

ensures that a resource cannot handle its n+1st trip without handling its nth trip. Eq. 6 shows that 

each resource cannot be assigned to more than one flight in each travelling round.  Eq. 7 ensures 

integrality of two consecutive flights. Constraint (8) insures that a flight prohibited to be done 

before the scheduled departure time. Constraint (9) shows the relationship between decision 

variables. It shows that if 𝑌𝑓 takes value, 𝑍𝑓 should take zero. The delay in a flight is calculated 

by Constraint (10). Constraint (11) ensures that the first flight of each resource must be done 

from its defined home base. Constraint (12) guarantees that if a flight is neither cancelled nor 

handled by its originally assigned crew, it is swapped. Eq. 13 ensures that a crew member is 

assigned to the fleet type that he/she can technically handle. Constraint (14) ensures that aircraft 

with maintenance requirements handles a flight to one of the equipped airports. Constraint (15) 

shows that all passengers of a cancelled flight are either reassigned to other flights or refunded. 

Constraint (16) indicates that only free seats of a flight can be used for reassignment of 

passengers. Similar to Constraint (9), Constraint (17) shows the relationship between decision 

variables. Finally, Eqs. 18 to 20 show the type of variables. 

 

Genetic Algorithm  
 

Many decisions in operations management belong to the class of Non-Deterministic Polynomial 

hard problems and thus metaheuristic search methods have been applied to improve these 

decisions [49]. Metaheuristic approaches commonly get used for the airline recovery problem. 

Hu et al. [17] used neighborhood search algorithm to solve their aircraft recovery problem. 

Chen et al. [50] applied the genetic algorithm II for crew rescheduling. Bisaillon [32], Sinclair 

et al. [31,51] used the neighborhood search algorithm to recover aircraft and passengers in his 

model. Aguilar et al. [38] applied the hill climbing algorithm for aircraft and crew recovery 

problem successfully. Genetic algorithm (GA) is a well-known metaheuristic algorithm that is 

inspired by the biological evolution process [52]. The GA is a promising tool for searching 

rapid and accurate solutions with basic elements of chromosome representation, fitness 

selection, and biological inspired operators [53]. Lee [49] presented a comprehensive survey of 

GA applications in operation management. Also, Katoch et al. [53] discussed the evolution of 

GA variations among the time in their state of art. Both of these studies includes the applications 

of GA in airline scheduling problems as well. (For more GA applications on recovery problems 

see [20-21, 54-56].   

 

Solution display 

 

To solve the IARP, the solution display has been designed in a chromosome with four parts. In 

the first part of the chromosome, it is determined which flights may have made or get canceled. 

For this matter, a chromosome is formed with columns equal to the number of flights F. Then 

a random number is assigned to each flight. At the end, each number is converted to the binary 

number by using the rounding technique. In the second part of the chromosome, the number of 

flights F that can be assigned to the crew C is estimated. First, F- 1 number of columns are 

considered. A random number get assigned for each column. Then, the columns are reordered 

descending by using the sorting technique. C-1 elements of the chromosome are selected as 

separators and get applied to estimate number of flights covered by each crew. In the third part, 

each flight is assigned to the specific crew and the flight sequence of each crew is determined. 
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This part of the chromosome has F rows and F columns. According to the FOrf, odff’ and 

outcome of the part 2, each flight get assigned to the specific crew. In the fourth part, according 

to the required maintenance capabilities of the destination as well as the compatibility of the 

crew and the aircraft, the aircraft is assigned to the designated flight and crew. This part of the 

chromosome has columns equal to number of aircraft A, which get separated based on relca 

parameter for each crew. Then similar to the previous parts, each aircraft is assigned to the 

chosen flight and crew by using the sorting technique. Finally, the passengers of the canceled 

flight reassign/rebook through the network. Fig. 1 illustrates the general scheme of the 

chromosome. To avoid infeasible solutions by crossover and mutation operators, penalty 

amount of M has been defined for each part cumulated in objective function. 

 
Part 1: flight done/canceled 0.44 … 0.81 

Part 2: estimating the number of flights to 

crew 

0.64 … 0.09 

 

 

Part 3: crew assignment and sequencing 

0.25 … 0.01 

…
 … 

…
 

0.3 … 0.2 

0.63 … 0.74 

Part 4: aircraft assignment 0.64 … 0.09 

Fig.  1. Chromosome illustration of IARP 

Generating the initial solution and new solution 

 

To generate the initial solution of our paper, the flights, aircrafts and available crew are 

randomly placed together. To generate the new solutions, crossover and mutation operators are 

applied to the chromosomes. 

 

Crossover operator 

Several methods have been defined for the crossover operator, but the method used in this 

research is the uniform crossover. In this type of crossover, a gene from both parents has an 

equal chance to be present in the chromosome of an offspring independently. The structure of 

this operator as follow: 

 
X1= {X11, X12, . . . . . , X1n}                                                                                                                                (21) 

X2= {X21, X22, . . . . . , X2n}                                                                                                                                (22) 

Y1= {Y11, Y12, . . ... , Y1n}                                                                                                                      (23) 

Y2= {Y21, Y22, . . ... , Y2n}                                                                                                                      (24) 

Y1= 𝜶 . X1+ (1-𝜶).X2               𝟎 ≤ 𝜶 ≤ 𝟏                                                                                                   (25)

  

Y2= 𝜶 . X2+ (1- 𝜶).X1                                                                                                                                          (26) 
 

Mutation operator 

The mutation of the chromosome is obtained based on the parameters of the probability of 

mutation and the number of genes. For better understanding, consider a chromosome with 6 

genes as follow. 

0.56] 0.9 0.75 0.32 0.55 0.2 
 

y=[ 

Gene 

6 

Gene 

5 

Gene 

4 

Gene 

3 

Gene 

2 

Gene 

1 
 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑛𝑜𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑒𝑛𝑒𝑠 ∗
𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦                                                         (27) 



Advances in Industrial Engineering, June 2023, 57(1): 75-95 

 85 

 

Now, the number 0.1 is multiplied by the difference between the highest value and the lowest 

value of the genes. 

 
𝑠𝑖𝑔𝑚𝑎 = 0.1 ∗ (𝑉𝑎𝑟𝑀𝑎𝑥 − 𝑉𝑎𝑟𝑚𝑖𝑛) = 0.1(1 − 0)

= 0.1                                                                                                                                                        (28) 

 

Random numbers between 0 and 1 are generated for the selected genes. The resulting number 

is multiplied by the number obtained from the previous step. 
 

𝑦(𝑗) = 𝑦(𝑗) + 𝑠𝑖𝑔𝑚𝑎 ∗ (𝑟𝑎𝑛𝑑𝑛)                                                                                                                                    (29) 

For gene 6 we have:  

y(6) =y(6)+0.1*(0.56)                                                                                                                                      (30)   

 

Parameter tuning  

The higher efficiency of the meta-heuristic algorithm depends on the proper setting of the 

parameters. In this research the Taguchi method get used to estimate the optimum value of the 

iterations, population, crossover and mutation rates. Table 2 illustrates the three different levels 

of GA parameter tuning. Also Table 3 and Fig. 2 represent the final results of the tuning process.   

 
Table 2. Parameters and Levels of GA applied to the model 

Parameter 
Level 

1 2 3 

Iterations 100 200 300 

Pop size 90 100 110 

Cross over rate 0.5 0.6 0.7 

Mutation rate 0.2 0.3 0.4 

 
Table 3. Adjusted value of GA parameters applied to IARP 

 Iterations Pop size Cross over rate Mutation rate 

parameters value 300 90 0.6 0.4 

 

 
Fig. 1. GA signal to noise ratio 

 

Computational Results  
 

Demand for travel, aviation infrastructures and airline resources availability have a major 

impact on the number of daily flights get done by commercial airlines. As mentioned before, 

Schaefer et al. (2005) reported that every 1% increase in flight numbers in each network may 

end to delays increasing up to 5%. Despite the significant decrease in number of flights made 
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in 2021 due to Covid-19, 10.84% of flights have been reported to be delayed for more than 15 

minutes (Transtats 2022†). The proposed IARP model performance has been tested with real-

world data extracted from Kaggle.com‡. The data includes daily flight schedule information for 

the first 4 months of 2015 related to 10 greatest north American airlines published by the 

Department of Transportation's (DOT). The New Year vacations period has been selected to 

create various test cases and final case study. This may help to evaluate the model performance 

in conditions of high air transportation demand and tight scheduling situations. The database 

includes various information about variables of flights, airports, fleet type, planned/actual 

departure-arrival time and flight duration, disruption, cause of disruption and delay cancelation 

etc. First, the raw data extracted from the main database by choosing the specific airline and 

the operational day. Then, all flights had been sorted based on the aircraft tail numbers to 

discover their sequences throw the schedule. some overlapped /missing data got cleaned. The 

remaining flights data had been restructured to apply to the model. The case study includes 375 

flights, 119 crew, 107 aircraft and 67 different airports. The route of each tail number of aircraft 

got tracked for a single day operation time window. Crew members' rest periods, their 

compatibility to the aircraft and daily flight allowances were also taken into account. It was also 

determined which airports can carry out maintenance operations for each class of aircraft. 

Moreover, the capacity of each aircraft and number of empty seats got estimated. Finally, some 

of the flights got disrupted randomly in order to analyze the performance of the model in 

preventing delay propagation in the flight network. A basic test problem with five flights is 

illustrated in details for better understanding. Table 4 and Fig. 3 presents the main schedule. In 

this small scale problem, the minimum ground time and sit time for aircraft and crew are 

assumed 30 and 45 minutes, respectively. 

 
Table 4. original flight schedule for 5 flights 

Flight ID Resources Origin Destination Departure Arrival Duration (min) 

F1 A1,C1 MIA DFW 06:04 08:15 130 

F2 A1,C1 DFW SJU 10:41 16:30 349 

F3 A2,C2 PHL DFW 06:30 09:05 155 

F4 A2,C2 DFW IAH 09:51 11:01 70 

F5 A2,C2 IAH LAS 11:50 12:55 65 

 

As represented in Table 4, the first two flights are assigned to A1 and C1 (the first aircraft 

and crew) and the other three ones are assigned to A2 and C2. A schematic view of the primary 

assignment is also illustrated in Fig. 1. If the departure time of F3 is delayed for 45 minutes due 

to the national aviation system delay. In this case, its arrival time to DFW will be 9:50. 

Therefore, F4 is disabled to depart on time due to sit / ground time considerations. As sit time 

is 45 minutes, the earliest departure time of F4 from DFW is 10:35 and it experiences a 44-

minutes delay. Also, F5 will face an extra 40-minutes delay and total propagated delay for 

network will be 129 minutes. By applying the proposed IARP model, the delay propagation is 

considerably reduced.  The model provides various options to decrease the delay impact and its 

propagation to the flight network. These options are delay, cancellation, swapping aircraft/crew, 

reserved aircraft/crew and deadhead flights. The recovered schedule generated from the IARP 

model is shown in Fig. 4. Based on the model results, flights F4 and F5 are reassigned to crew 

C1 and aircraft A1. to put it another way, C2 and A2 handle F3 and F2 sequentially. Similarly, 

C1 and A1 handle F4 and F5 after covering F1. As a result, there is no delay spread in entire 

network and the delay is successfully limited to F3. 

 

 
† https://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp?20=E 
‡ https://www.kaggle.com/usdot/flight-delays 

 

https://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp?20=E
https://www.kaggle.com/usdot/flight-delays
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R1 route

R2 route

LAS

F1(C1,A1)
DEP:06:05
ARR:08:15

DFW

IAH

MIA

PHL

SJU

F3(C2,A2)
DEP:06:30
ARR:09:05F5(C2,A2)

DEP:11:50
ARR:12:55

F4(C2,A2)
DEP:09:51
ARR:11:01

F2(C1,A1)
DEP:10:41
ARR:16:30

 
Fig. 2. Overview of original flight schedule before disruption 

 

R1 route

R2 route

LAS

F1(C1,A1)
DEP:06:05
ARR:08:15

DFW

IAH

MIA

PHL

SJU

F3(C2,A2)
DEP:07:15
ARR:09:50F5(C1,A1)

DEP:11:50
ARR:12:55

F4(C1,A1)
DEP:09:51
ARR:11:01

F2(C2,A2)
DEP:10:41
ARR:16:30

Fig. 3. Overview of recovered schedule after applying IARP 

 

To analyze the performance of the IARP model, 34 test problems of varying scales were 

evaluated.  Furthermore, a case study extracted from real-world data was considered. Several 

number of flights of each original schedule were intentionally disrupted in order to examine the 

performance of the model in recovering the schedule and preventing delay propagation. A 

system with Core i7 8th Gen, 16 GB RAM is used for CPLEX solver in GAMS software to 

solve the model for test problems. Increasing the number of flights defined in the flight network 

leads to a drastic increase in the number of variables. Also, diversity of  recovery strategies and 

binary variables intensify the complexity of the problem. Through the NP-Hard nature of the 

IARP problem, GA has been used to solve the model as well. The algorithm coded in MATLAB 

2014a. The brief summary of the solver and GA results is shown in Table 5. Since the GAMS 

may not solve medium or large size test problems, CPU time was set 10800s and 14400 for 

medium and large data sets respectively to find out the feasible solution from the solver. The 

dimensions of the problems presented in second column of Table 5. The next four columns 
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present optimum solution as well as CPU time for both solver and GA. The last column 

presented the gap between solver and GA results. Table 6 also represents the details of each test 

case and scenarios used for the recovery. Columns 2 to 4 show number of flights, crew and 

aircraft, respectively. The column 5 shows how many disruptions have been occurred to the 

original schedule before applying the proposed model. Columns 6 - 7 represents the number of 

flight swapping and deadheads occurred to recover the schedule. Columns 8 - 9 shows the 

number of flights effected by propagation delay and cancelled flights after recovery process 

(final results of the recovery model). The last column refers to the number of refunded 

passengers due to the flight cancelation and lack of open seats to get reallocation. while we 

imposed 60 to 110 minutes’ delay in the flights of original schedule, CPU time did not exceed 

21 minutes. The average gap between the solver and GA for test cases is 0.26. Also, the 

maximum gap for all test cases is equal to 1.06%. This is a great advantage to recover a schedule 

in a fully integrated platform. Fig. 5 illustrates the solution time for all test problems. The red 

and blue columns refer to GA and solver CPU time. According to this graph, the performance 

of GA to find the solution for medium and large problems is clearly better than the Solver. Also, 

Fig. 6 shows the objective function get achieved by solver (red line) and GA (green line). 

 

 
Fig. 5. comparison of solution time between the solver and GA 

 

 
Fig. 6. Comparison between objective function value achieved  from solver and GA 
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Table 5. Results comparison between solver and GA 

Case No. of flights 
Solver GA 

Gap 
Objective value ($) CPU time (s) Objective value ($) CPU time (s) 

1 7 27 3.1 27 0.7 0 

2 10 30 67.3 30 0.8 0 

3 16 556 184.1 556 1.3 0 

4 19 1079 176.8 1079 1.2 0 

5 23 1563 917.6 1564 6 0.06398 

6 27 2087 1154.7 2089 19.1 0.095831 

7 30 2610 1897.9 2611 33.4 0.038314 

8 36 1116 1942.7 1119 21.1 0.268817 

9 40 1600 2395.6 1601 48.8 0.0625 

10 45 3605 3326.4 3633 73.5 0.776699 

11 49 2609 4991.4 2617 69.7 0.306631 

12 52 4132 6342.5 4166 117.2 0.822846 

13 56 4636 7094.1 4661 146.3 0.539258 

14 59 2639 7933.4 2649 151.8 0.378931 

15 62 3662 10113.5 3701 149.6 1.064992 

16 67 8365 10800 6667 215.1  

17 71 37346 10800 20271 472.8  

18 74 8952 10800 4379 361.5  

19 78 15632 10800 5398 344.9  

20 81 29541 10800 4271 403.1  

21 85 40346 10800 5405 486.7  

22 89 44860 10800 6189 541.5  

23 92 76573 10800 20852 628.1  

24 96 80317 10800 7216 601.3  

25 101 89674 14400 25221 677.7  

26 111 96749 14400 20971 686.9  

27 121 172353 14400 7281 783.4  

28 132 197880 14400 27492 854.2  

29 145 142365 14400 9765 798.6  

30 153 295681 14400 25293 842.1  

31 187 312224 14400 28927 861.7  

32 221 366548 14400 47561 1035.6  

33 226 396512 14400 29486 1187.4  

34 332 452307 14400 73032 1260.3  

 

Case study  

 

After the genetic algorithm is successfully evaluated on test problems, the IARP model is 

applied to recover American Airlines carrier. The original schedule including 375 flights 

between 67 bases using 119 crew and 107 aircraft in a single day horizon has been given. Fig. 

7 illustrates the crew and aircraft home base location details. 17 flights got chose randomly and 

postponed intentionally with 60 to 110 minutes’ delays. As a consequence of these disruptions, 

46 other flights in the original schedule are affected by delay propagation as well (Table 7). 

The performance of the IARP is illustrated in Table 8. Without applying the model for the 

recovery, all 63 flights shown in Table 7 are faces with considerable amount of delays. Total 

delay will be 4055 minutes and delay cost will be 81100$. Also, five flights (F203, F232, F308, 

F272 and F297) will be cancelled with total cancellation cost of 60600$. In this case, the total 

cost will be 141700$. By applying the IARP, only 34 flights are delayed (see Table 8). This 

shows a 53.9% decrease in number of flights effected by propagation delay. Moreover, total 

delay is reduced to 2109 minutes (This value is equal to 844 minutes for flights with delay 

propagation).  
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Table 6. Final state of test cases after schedule recovery 
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1 7 2 2 1 1 0 0 0 0 

2 10 4 3 1 0 1 0 0 0 

3 16 5 4 2 2 0 1 0 0 

4 19 6 5 2 3 0 2 0 0 

5 23 6 6 2 2 0 3 0 0 

6 27 8 7 3 3 0 4 0 0 

7 30 9 8 3 3 1 5 0 0 

8 36 11 9 4 3 1 2 0 0 

9 40 11 10 4 2 1 3 0 0 

10 45 13 11 5 3 0 7 0 0 

11 49 14 13 5 3 0 5 0 0 

12 52 15 13 5 3 1 8 0 0 

13 56 16 14 5 4 0 9 0 0 

14 59 17 14 6 4 0 5 0 0 

15 62 18 15 6 4 1 7 0 0 

16 67 19 18 6 5 0 13 0 0 

17 71 21 18 6 4 1 11 1 23 

18 74 21 19 6 5 0 9 0 0 

19 78 22 20 6 4 2 9 0 0 

20 81 24 21 6 7 1 8 0 0 

21 85 25 22 7 5 1 10 0 0 

22 89 26 23 7 3 2 12 0 0 

23 92 26 24 8 7 1 13 1 18 

24 96 28 24 7 6 0 14 0 0 

25 101 29 25 7 9 2 18 1 36 

26 111 31 28 8 6 2 13 1 19 

27 121 35 30 8 7 1 14 0 0 

28 132 38 35 9 8 0 21 1 44 

29 145 41 36 9 5 1 19 0 0 

30 153 45 41 9 10 2 15 1 51 

31 187 55 49 8 9 3 17 1 77 

32 221 66 58 11 13 4 16 2 144 

33 226 65 60 15 16 2 22 1 56 

34 332 96 84 18 22 3 31 3 198 

 

 
Fig. 4. Home base of aircraft and crew in original schedule 
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Table 7. Disrupted flights and other affected flights 

postponed flight Delay per min Delay propagation 

F7 60 F13, F63, F96 

F19 60 F27,F54,F79,F203 

F24 100 F46, F97, F158,F232 

F33 60 F67,F95,F172,F308 

F46 70 F81,F110,F142 

F55 85 F84,F169,F253,F272 

F62 60 F74,F85,F159 

F64 60 F141 

F71 60 F108,F152 

F88 110 F247,F316 

F101 60 F149,F165,F242,F297 

F165 60 F199,F275 

F177 90 F198,F251,F295 

F209 60 F226,F303 

F234 90 F312 

F271 90 F290,F315,F344 

F317 90 F321 

 
Table 8. List of flights affected by delay propagation after the recovery process 

disrupted 

FLIGHT 

DELAY per 

min 

disrupted 

FLIGHT 

DELAY per 

min 

disrupted 

FLIGHT 

DELAY per 

min 

F36 34 F151 11 F239 21 

F44 27 F158 48 F242 49 

F58 36 F159 15 F250 13 

F72 22 F165 50 F252 24 

F76 32 F168 13 F253 6 

F85 10 F188 27 F274 22 

F91 17 F193 15 F279 28 

F97 39 F197 10 F301 30 

F123 23 F211 17 F303 23 

F141 41 F227 10 F317 31 

F147 16 F236 22   

F149 43 F237 19   

 

According to the results of the model, 4 deadheads and 24 swaps occurred during the 

recovery process. Number of cancelled flights also reduces from five to two, which flights F232 

and F297 are got cancelled. Also 97 out of 283 passengers of these flights were refunded. Table 

9 shows the advantage of applying the proposed model. Total recovery cost is reduced to 

49724$ (64.9% improvement). The GA CPU time for case study was 1472.6 seconds.  
 

Table 9. Summery of recovery solution vs disrupted original schedule. 

 without recovery After recovery Improvement (%) 

Number of flights get delayed 63 34 53.9 

Total delay propagation per min 4055 844 79.18 

Delay cost ($) 81100 12760 75.3 

Number of deadheads 0 4  

Cost of deadhead ($) 0 80  

No. of swaps 0 24  

swap cost ($) 0 480  

Number of cancellations 5 2 60 

Cost of cancellation ($) 60600 22700 62.5 

Number of refunds  97  

Cost of refunding ($)  9700  

Total cost ($) 141700 49724 64.9 
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Discussion  
 

One of the fundamental factors of creating a proper flight schedule is choosing a suitable 

network type. The chosen network and its capability to handle the flight resources may affect 

the recovery process as well. The flight networks evolved over time to improve the quality of 

the schedule. Discussing about the creation of these networks or any possible novel networks 

is beyond of the current research scope. Therefore, only the use of existing networks has been 

considered. Previously, multiple applications of time-space and connections networks (string 

based networks are also considered as connection networks) in flight schedule recovery were 

discussed in Section 2. Time-space network applied by Petersen et al. (2012) is easy to use, but 

more variables are needed to be handle to achieve better results in recovery process. The string 

based networks applied by Maher (2015,2016) simplify the rescheduling process by limiting 

the changes to specific pairings but may led to non-optimal solutions. Taking all flights and 

related variables in to account throw a connection network is a critical challenge as well. 

However, this ensure to reach to the optimum solution (see Sherali et al. 2013, Arikan et al., 

2017). To produce more accurate results IARP uses all flight legs for recovery. The variation 

of recovery options is another challenge for the recovery model. The diversity of the recovery 

options has been observed more in recovery models which are limited to one aspect such as 

aircraft or crew. However, the complexity of the model devastatingly increases by extending 

the scope of the model to a multi aspect recovery problem. This issue reaches its peak in fully 

integrated approaches. To tackle this problem, Arikan et al., (2017) formulated a non-linear 

integrated model. But, the non-linearity, increased the CPU time significantly. While the 

solution time is very critical and should be as short as possible. Moreover, local optimum 

solution may be reached in a non-linear approach. The IARP formulated as a MILP to avoid 

the mentioned issues. Due to the NP-Hard nature of the recovery problem the heuristic 

approaches are widely applied to solve this problem. The GA used to solve the IARP provided 

an accurate answer for the test cases in acceptable CPU time as well. Therefore, the IARP may 

be considered more suitable version of previous works for operational field.  

 

Conclusions 
 

An accurate and swift schedule recovery solution for airlines has become more necessary in 

today's competitive environment. High operating costs, long-term effects of Covid-19 and 

extensive competition of airlines to attract more customers and reduce losses are all among the 

factors that encourage airlines to create better operational schedule with less vulnerability. In 

the meantime, the occurrence of a disruption in the flight schedule can be very challenging. Due 

to the uncertainty nature of the disruption and delay propagation on entire flight network, the 

importance of managing this phenomenon increases even more. The integrated recovery of the 

flight schedule is an effective method in controlling the disruption and preventing its side 

effects. The fully integrated airline recovery model presented in current essay provides reliable 

results for various test cases in an acceptable time. The IARP presents various recovery options 

for all aircraft, crew, and passengers in a solid integrated recovery problem, formulated as a 

mixed-integer linear programming model. Also, to deal with the NP-Hard nature of the 

problem, genetic algorithm has been used to solve medium and large-scale problems 

successfully. The solution time is one of the most important factors in the applicability of the 

recovery models in real world operations. While the GAMS solver couldn’t able to reach to the 

optimal solution at the proper CPU time for medium and large scale test cases, the GA provided 

more accurate solutions for these test cases in much less time frame. The computational results 

show that the average gap between the solver and GA for test cases is 0.26%. Also, the 

maximum gap for all test cases is equal to 1.06%. This is a great advantage to recover a schedule 
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in a fully integrated platform. In addition, IARP had admirable performance on the case study. 

Postponing random 17 from 375 flights with 119 crew and 107 aircraft caused 63 flights get 

disrupted and 5 flights cancellation. The IARP successfully reduced the cost of delays to less 

than 75%. The flight cancellation dropped to 2 from 5 and total cost of the network significantly 

reduced to 64.9% in an acceptable CPU time of 1472.6 seconds. Since the IARP have been 

designed to cover various recovery scenarios, it has vast options to recover the disrupted 

schedule at operational level. Also decision makers can modify the recovery cost related 

parameters the way it is more suitable for their needs. In this case, IARP provides a great 

capability to get used as a main model for analytical data base in airline disruption decision 

support system. Therefore, the decision makers may analyses their what-if scenarios about how 

to tune their recovery options in strategic level. The scope of this paper includes all three major 

aspects of aircraft, crew, and passenger recovery with some ground operations such as 

maintenance requirements which is rare in literature review. However, it doesn’t consider 

options like cruise speed control to reduce the size of the model. Also, using the robust 

optimization approach may help to deal with uncertainty in more flexible way. Data oriented 

methods also may help to reduce the complexity of the recovery problem for future works. 

Therefore, lighter models can deploy to solve the integrated recovery problem in shorter period 

of time. Moreover, by applying other metaheuristic methods to the IARP and compare the 

results may help to converge to the optimum with lower CPU time in future studies. 
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