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Abstract  

Stochastic and robust optimizations have been considered as two different views of 

stochastic problems. While robust optimization takes optimization in the worst 

case, stochastic optimization regards no conservative view and merely focuses on 

expected value. However, a unilateral view of stochastic problems does not apply 

to most real problems. In this article, a hybrid robust and stochastic approach is 

proposed for optimization problems under uncertainty. Our major contribution is 

presenting different conservative levels in solving an optimization problem using a 

Hybrid Robust and Stochastic Optimization approach. To this end, we cluster 

uncertain parameters into different clusters using Latin Hypercube Sampling and 

k-Means clustering tools; having established various numbers of clusters of 

uncertain parameters, different clustering criteria and a Multi-Criteria Decision 

Making (MCDM) tool is employed to determine the optimal number of clusters of 

uncertain parameters. Then, a hybrid energy optimization model under uncertainty 

is applied to coordinate the scheduling of natural gas-fired electricity generation 

units and gas supply units (gas refinery) under natural gas and electricity demand 

uncertainty, with known probability distribution and uncertain parameters having 

different levels of conservatism. The results indicate that while no special trend is 

evident in the execution time as the number of clusters increases, the optimal value 

is decreased. 
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Introduction 
 

The interdependency of electricity and natural gas systems is escalating [1-6]. This is more 

obvious in power systems with a considerable amount of gas-fired units where electricity 

generation scheduling can be directly and significantly influenced by natural gas prices and/or 

gas production costs [2]. Coordinated scheduling of power and natural gas systems has caught 

the attention of many studies [7].  

On one hand, Stochastic optimization presumes that there is complete knowledge about the 

underlying uncertainty through a known probability distribution and minimizes a cost function 

[8]. There are a plethora of studies pertaining to coordinated scheduling in this approach. An 

integrated operational model for electricity and natural gas systems under uncertain power 

supply is proposed in [9] in which two-stage stochastic programming is applied to co-optimize 

day-ahead and real-time dispatch of both energy systems, aiming at minimizing the total 

expected cost. A short-term stochastic model is proposed to study the coordination of 

 
* Corresponding author: (R. Rafiee) 

Email: rafiee@sharif.edu  



138  Farhadkhani et al. 

 

constrained natural gas and wind energy units in power systems in [4]. In this model, the natural 

gas network constraints, emission limits, and wind energy variability are integrated and solved 

by a Mixed Integer Programming (MIP) approach.  

On the other hand, in robust optimization, it is assumed that the decision maker has no 

distributional knowledge about the underlying uncertainty, except for its support, and the model 

minimizes the worst-case cost over an uncertainty set [8, 10-12]. There is a wide array of works 

regarding coordinating the scheduling of power and gas systems, treating uncertain variables 

as robust. In [13] a tri-level optimization model is proposed to address the vulnerability of 

coupled gas-electric networks against malicious line interdictions by providing the optimal 

strategies for preventive reinforcement, increasing the resilience of the energy supply, and 

decreasing the operational cost of the interdependent energy systems. A robust security-

constrained unit commitment (robust SCUC) model is proposed in [1] to increase the 

operational reliability of integrated electricity-natural gas systems against possible transmission 

line outages. In fact, this model optimizes electricity generation and natural gas allocation for 

the next day, while providing robust feasible controls over a range of possible contingency sets. 

In this work, a two-stage robust convex optimization model against N-k outages is derived. An 

integrated robust optimization model is developed in [14] for the day-ahead scheduling of 

electricity and natural gas systems while considering electrical load and wind generation 

uncertainties. In addition, an energy hub, which encompasses gas-fired units, power-to-gas 

facilities, and natural gas storage, is considered a large-scale electrical energy storage. 

Inspired by the approach introduced in [15] for the hybridization of stochastic and robust 

optimization models for unit commitment in a power system, in this study, a model is proposed 

for the coordinated scheduling of power and gas systems.  

This study intends to model and cope with an uncertain environment where the scheduling 

of both electricity and gas supplies is coordinated. We try to capture the uncertainty of 

electricity and gas demands. For this aim, generating the most likely scenarios, both stochastic 

and robust optimization approaches are taken into account.  

The rest of this article is as follows. In section 2, the literature review is presented. In section 

3 coordinated scheduling of electricity and natural gas supply systems model is represented. 

Section 4 is dedicated to presenting our HRSO method to solve the mentioned model. Scenario 

generation and clustering are represented in section 5 by introducing clustering methods and 

the corresponding clustering performance criteria. Simulation results are presented in section 

6. In the last section, concluding remarks are provided. 

 

Literature Review 

 

In an array of real-world applications, the underlying probability distribution cannot be 

accurately determined, even when historical data are available. This distributional ambiguity 

might result in highly suboptimal decisions. In such cases, an alternative approach to handle 

such an issue is to apply distributionally robust stochastic optimization (DRSO) or 

distributionally robust optimization (DRO) which assumes the underlying probability 

distribution is unknown but lies in an ambiguity set of distributions. Many existing studies on 

DRO focus on how to construct the ambiguity set and how to transform the resulting DRO into 

equivalent models such as mixed-integer programming [16, 17]. DRO is a generalized form of 

a robust optimization approach [18]. This approach aims to minimize the expectation cost in 

the worst-case distribution rather than a particular worst-case in the traditional robust 

optimization. Indeed, DRO, as expressed in [8, 17, 18], has been developed as an intermediate 

approach to bridge the gap between the specificity of stochastic programming and the 

conservatism of robust optimization, and to realize a trade-off between economics and 

robustness. This relatively new approach has the merits of both stochastic and robust methods. 
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DRO applications in coordinated scheduling of gas and power systems have been seen. A data-

driven distributionally robust dispatch model for the integrated electricity and natural gas 

system is proposed in [19]. The proposed model is a two-stage optimization one in which the 

day-ahead total cost for the integrated system is regarded as the optimization objective. The 

predicted wind power information is also taken into consideration in the first stage and the 

output adjustment of thermal generation units and the supply regulation of natural gas source 

are included in the second stage (real-time dispatch). The optimization results from stochastic, 

robust, and distributionally robust optimization methods are obtained and analyzed under 

1,000,000 test probability distributions generated by Monte Carlo simulation. The analysis 

results indicate that distributionally robust optimization shows a better expected performance 

in both averaged and worst-case probability distribution scenarios compared with the stochastic 

and robust optimization methods. In [20] a two-stage distributionally robust optimization 

model, for which an ambiguity set is defined to capture the distribution information of wind 

power uncertainty, is proposed to study the coordination optimization scheduling for this multi-

energy coupled system considering wind power uncertainty. The first stage of this model aims 

to minimize total operation cost in the base case while the second stage minimizes the 

expectation of wind power curtailment under the worst-case distribution of wind power forecast 

error defined by an ambiguity set. Then, the superiority and practicability of the proposed DRO 

model is demonstrated. In [21], a robust day-ahead scheduling model is proposed for electricity 

and natural gas system, which minimizes the total costs including the cost of fuel, spinning 

reserve and operational risk while the feasibility for all possible scenarios within the uncertainty 

set are ensured. For this aim, a risk-averse adjustable uncertainty set approach is proposed to 

mitigate the conservatism of robust optimization. In order to overcome distribution ambiguity, 

the ambiguity set is constructed by using a Wasserstein–Moment metric. Then, operational risk 

is the expected value under the worst-case distribution within such an ambiguity set. This 

approach has been at the center of attention by several authors in capturing uncertainty in power 

system problems while simultaneously considering gas supply factors or limitations [22-29]. 

Nowadays, the Hybrid Robust Stochastic Optimization (HRSO) approach has a more 

dominant role in dealing with uncertainty in power system challenges [30-37]. As far as we are 

concerned less attention has been paid to the HRSO approach for addressing the scheduling of 

coordinated power and gas networks. In [38] a proposed hybrid model handles the continuous 

uncertain variables of electricity market prices and discrete uncertainty sources of units’ 

availability/unavailability, respectively. The uncertainty of electricity market prices is modeled 

by bounded intervals instead of probability distributions, aiming to derive a more tractable 

optimization model. Conservatism against uncertain electricity market prices is adjusted by a 

certain parameter, the so-called budget of robustness. Furthermore, a Markov chain approach 

is proposed to consider the chance of return for failed units together with the forced outage rate, 

in each hour of the scheduling period to produce a set of scenarios modeling the 

availability/unavailability of units. Simulation results demonstrate the higher effectiveness of 

the proposed hybrid model compared to deterministic, stochastic, robust, and CVaR-based 

stochastic models. A similar approach is applied in [39] by constructing scenarios from the 

probability distribution function. 

In this study, In the first stage, the coordinated scheduling of power and gas supply systems 

is modeled into a MILP. Then, stochastic variables (electricity and gas demands) are quantified 

and uncertainty propagation is undertaken by the LHS method in order to provide the required 

scenarios of the problem. Next, having clustered scenarios by the k-means method to different 

numbers, the two most common clustering evaluation indices are applied to examine the 

optimal numbers of clusters. Ultimately, a simulation of the model is conducted for different 

numbers of clusters and the results are compared. The flowchart of the proposed approach is 

shown in Figure 1. 
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Fig. 1. Flowchart of Proposed Approach 

 

Coordinated Scheduling of Electricity and Natural Gas Supply Systems Model 

 

Scheduling power-generating units, widely known as unit commitment, is one of the problems 

in power systems. A great deal of research has been carried out in this context in the literature. 

It focuses on deciding the on-off status of several electricity generation units in 24 hours as well 

as their electricity generation amount.  

Unit commitment of gas-fueled generating units is dependent upon gas flow supply. If gas 

flow reliability is not maintained, the reliability of power generated from gas-fueled generation 

units will be at risk. 

However, some studies focus on the relationship and mutual impacts of these two networks 

as coordinated scheduling of electricity and natural gas supply systems [3, 6]. In this section, 

we introduce the coordinated scheduling of electricity and natural gas supply systems model 

developed in [40], with some changes to consider scenarios (notion ω). 
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Subject to: 

 

𝑔𝑝𝑁𝑔,𝑡,𝜔 − 𝑔𝑒𝑙𝑁𝑔,𝑡,𝜔 − 𝑔𝑛𝑙𝑁𝑔,𝑡,𝜔 + 𝑔𝑙𝑠𝑁𝑔,𝑡,𝜔 + 𝑔𝑓𝑁𝑔→𝑁𝑔,𝑡,𝜔 − 𝑔𝑓𝑁𝑔→𝑁𝑔,𝑡,𝜔

= 0; ∀ 𝑁𝑔, 𝑡, 𝜔 
(2) 

𝑔𝑛𝑙𝑁𝑔,𝑡,𝜔 + 𝑔𝑙𝑠𝑁𝑔,𝑡,𝜔 = 𝑔𝑙𝑜𝑎𝑑𝑁𝑔,𝑡,𝜔              ;   ∀ 𝑁𝑔 𝜖𝑁𝑔𝑙, 𝑡, 𝜔  (3) 

∑ (𝑚𝑝𝑙,𝑘. 𝑔𝑓𝑙𝑝𝑙,𝑘 + 𝑏𝑝𝑙,𝑘 . 𝑜𝑝𝑙,𝑘)𝑘 ≥ 𝐶𝑝𝑙
2 . (𝜋𝑁𝑔,𝑡,𝜔 − 𝜋𝑁𝑔,𝑡,𝜔) ; 

∀ 𝑝𝑙 𝜖 𝐴𝑃𝐿, (𝑁𝑔, 𝑁𝑔)𝜖 𝑝𝑙, 𝑡, 𝜔 
(4) 

∑(𝑚𝑝𝑙,𝑘. 𝑔𝑓𝑙𝑝𝑙,𝑘 + 𝑏𝑝𝑙,𝑘 . 𝑜𝑝𝑙,𝑘)

𝑘

= 𝐶𝑝𝑙
2 . (𝜋𝑁𝑔,𝑡,𝜔 − 𝜋𝑁𝑔,𝑡,𝜔) ; ∀ 𝑝𝑙 𝜖 𝑃𝑃𝐿, (𝑁𝑔, 𝑁𝑔)𝜖 𝑝𝑙, 𝑡, 𝜔 

(5) 

𝑜𝑝𝑙,𝑘. 𝑔𝑓𝑙𝑝𝑙,𝑘 ≤ 𝑔𝑓𝑙𝑝𝑙,𝑡,𝜔,𝑘 ≤ 𝑜𝑝𝑙,𝑘. 𝑔𝑓𝑙
𝑝𝑙,𝑘

     ;  ∀ 𝜔, 𝑘, 𝑝𝑙 (6) 

𝑔𝑓𝑁𝑔→𝑁𝑔,𝑡,𝜔́ =  ∑ 𝑔𝑓𝑙𝑝𝑙,𝑡,𝑤,𝑘

𝑘

                          ;  ∀ 𝑝𝑙, 𝜔, (𝑁𝑔, 𝑁𝑔́ )𝜖 𝑝𝑙 (7) 

∑ 𝑜𝑝𝑙,𝑘 ≤ 1

𝑘

            ;  ∀ 𝑝𝑙 (8) 

(𝑝𝑟𝑁𝑔
𝑚𝑖𝑛)

2
≤ 𝜋𝑁𝑔,𝑡,𝜔 ≤ (𝑝𝑟𝑁𝑔

𝑚𝑎𝑥)
2

                    ;  ∀ 𝑁𝑔, 𝑡, 𝜔 (9) 

(𝛽𝑁𝑔
𝑚𝑖𝑛)

2
≤

𝜋𝑁𝑔́ ,𝑡,𝜔

𝜋𝑁𝑔,𝑡,𝜔
≤ (𝛽𝑁𝑔

𝑚𝑎𝑥)
2

                          ;  ∀ 𝑝𝑙 𝜖𝐴𝑃𝐿, (𝑁𝑔, 𝑁𝑔́ )𝜖𝑝𝑙, 𝑡, 𝜔 (10) 

𝐺𝑃𝑁𝑔
𝑚𝑖𝑛 ≤ 𝑔𝑝𝑁𝑔,𝑡,𝜔 ≤ 𝐺𝑃𝑁𝑔

𝑚𝑎𝑥                             ;  ∀ 𝑡, 𝜔, 𝑁𝑔𝜖𝑁𝑔𝑝 (11) 

∑ 𝑃𝑁𝑒,𝑡,𝜔 = 0𝑁𝑒       ;  ∀ 𝑡, 𝜔  (12) 

𝑃𝑁𝑒,𝑡,𝜔 + 𝑝𝑙𝑠𝑁𝑒,𝑡,𝜔 = −𝑒𝑙𝑜𝑎𝑑𝑁𝑒,𝑡,𝜔                ;  ∀ 𝑁𝑒 𝜖 𝑁𝑒𝑙, 𝑡, 𝜔  (13) 

𝑝𝑓𝑒𝑙,𝑡,𝜔 = 𝑃𝑇𝐷𝐹𝑒𝑙×𝑁𝑒 . 𝑃𝑁𝑒,𝑡,𝜔 +  𝑃𝑆𝐷𝐹𝑒𝑙×𝑒𝑙. 𝛼𝑒𝑙,𝑡,𝜔 +

𝐷𝐶𝐷𝐹𝑒𝑙×𝑒𝑙. 𝑝𝑓𝑒𝑙,𝑡,𝜔
𝐷𝐶          ;  ∀ 𝑒𝑙, 𝑡, 𝜔    

(14) 

𝛼𝑒𝑙
𝑚𝑖𝑛 ≤ 𝛼𝑒𝑙,𝑡,𝜔 ≤   𝛼𝑒𝑙

𝑚𝑎𝑥                                    ;  ∀ 𝑒𝑙, 𝑡, 𝜔 (15) 

𝑝𝑓𝑒𝑙,𝑡,𝜔
𝑚𝑖𝑛 ≤ 𝑝𝑓𝑒𝑙,𝑡,𝜔 ≤   𝑝𝑓𝑒𝑙,𝑡,𝜔

𝑚𝑖𝑛                            ;  ∀ 𝑒𝑙, 𝑡, 𝜔   (16) 

𝐼𝑁𝑒,𝑡. 𝑀𝑖𝑛𝑔𝑁𝑒 ≤ 𝑃𝑁𝑒,𝑡,𝜔 ≤ 𝐼𝑁𝑒,𝑡. 𝑀𝑎𝑥𝑔𝑁𝑒                   ;  ∀ 𝑁𝑒𝜖𝑁𝑒𝑔, 𝑡, 𝜔 (17) 

𝐼𝑁𝑒,𝑡−1 − 𝐼𝑁𝑒,𝑡 +  𝑠𝑢𝑁𝑒,𝑡 ≥ 0                            ;  ∀ 𝑁𝑒 𝜖𝑁𝑒𝑔, 𝑡   (18) 

𝐼𝑁𝑒,𝑡 − 𝐼𝑁𝑒,𝑡−1 +  𝑠𝑑𝑁𝑒,𝑡 ≥ 0                            ;  ∀ 𝑁𝑒 𝜖𝑁𝑒𝑔, 𝑡    (19) 

−𝐷𝑅𝑁𝑒 ≤ 𝑃𝑁𝑒,𝑡,𝜔 − 𝑃𝑁𝑒,𝑡−1,𝜔 ≤ 𝑈𝑅𝑁𝑒          ;  ∀ 𝑁𝑒 𝜖𝑁𝑒𝑔, 𝑡, 𝜔 (20) 

∑ (1 − 𝐼𝑁𝑒,𝜏,𝜔)𝜏 ≤ 𝑚𝑖𝑛𝑢𝑡𝑁𝑒 . (1 − 𝑠𝑢𝑁𝑒,𝑡,𝜔)       ; ∀ 𝑡 ≤ 𝜏 ≤ 𝑡 +

𝑚𝑖𝑛𝑢𝑡𝑁𝑒 , ∀ 𝑁𝑒 𝜖𝑁𝑒𝑔, 𝜔  

(21) 

∑ 𝐼𝑁𝑒,𝜏,𝜔

𝜏

≤ 𝑚𝑖𝑛𝑑𝑡𝑁𝑒 . (1 − 𝑠𝑑𝑁𝑒,𝑡,𝜔)        ; ∀ 𝑡 ≤ 𝜏 ≤ 𝑡 + 𝑚𝑖𝑛𝑑𝑡𝑁𝑒 ,

∀ 𝑁𝑒𝜖𝑁𝑒𝑔, 𝜔 

(22) 

𝑔𝑒𝑙𝑁𝑔,𝑡,𝜔 = 𝐹𝑁𝑒,𝑡,𝜔(𝑃𝑁𝑒,𝑡,𝜔)                             ;  ∀ 𝑁𝑔 𝜖𝑁𝑔𝑒𝑙, 𝑁𝑒 𝜖𝑁𝑒𝑔 (23) 

𝐹𝑁𝑒,𝑡,𝜔(𝑃𝑁𝑒,𝑡,𝜔) = 𝑏𝑓𝑁𝑒 . 𝑝𝑁𝑒,𝑡,𝜔 + 𝑐𝑓𝑁𝑒         ; ∀ 𝑁𝑒 𝜖𝑁𝑒𝑔, 𝑡, 𝜔  (24) 

𝑔𝑝𝑁𝑔,𝑡,𝜔, 𝑔𝑒𝑙𝑁𝑔,𝑡,𝜔 , 𝑔𝑛𝑙𝑁𝑔,𝑡,𝜔 , 𝑔𝑙𝑠𝑁𝑔,𝑡,𝜔, 𝜋𝑁𝑔,𝑡,𝜔 , 𝑝𝑙𝑠𝑁𝑒,𝑡,𝜔 ≥ 0               ; ∀ 𝑁𝑔, 𝑁𝑒, 𝑡, 𝜔 (25) 

𝑜𝑝𝑙,𝑘 , 𝐼𝑁𝑒,𝑡 , 𝑠𝑢𝑁𝑒,𝑡 , 𝑠𝑑𝑁𝑒,𝑡 ∈  {0,1}                  ; ∀ 𝑁𝑒, 𝑡, 𝑝𝑙, 𝑘    (26) 

     

Equation (1) is the objective function, which is the total cost of gas and electricity generation 

to respond to the demand, consists of start-up and shut-down costs (or commitment costs), load 

shedding costs, and fuel (gas) costs of electricity generation units, and natural gas load shedding 

penalty costs. Constraint (2) indicates natural gas supply and demand equilibrium in the 

corresponding node in the natural gas network. Constraint (3) ensures natural gas demands other 

than electricity generation plants are in priority. On the other hand, compressor fuel 
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consumption to compensate for pressure loss in gas pipelines is indicated in constraint (4). 

Constraints (5) to (9) imply natural gas flow constraints in the underlying natural gas pipeline 

network. Constraint (11) assigns natural gas supply limitations. Constraint (12) addresses 

electricity demand load and supply equilibrium to their corresponding node in the underlying 

electricity network. Electricity load shedding is considered in constraint (13). Electricity flow 

modeling in the underlying network is conducted in constraints (14), (15), and (16). 

Electricity generation capacity limitations are reflected in constraint (17), start-up and shut-

down of electricity generation units are indicated in constraints (18) and (19), and ramp-up and 

ramp-down of electricity generation units are derived in constraint (20). Minimum down-time 

and minimum up-time of electricity generation units are formulated in constraints (21) and (22). 

While the gas fuel demand constraint is indicated in constraint (23), constraint (24) reflects the 

corresponding gas fuel consumption function of the electricity generation units. Constraint (25) 

ensures its corresponding variables are non-negative, and constraint (26) indicates its 

corresponding variables are binary. 

  

Proposed Hybrid Robust Stochastic Optimization Method 

 

Our proposed approach is inspired by [15] which is based on scenario generation and clustering 

of the generated scenarios. In this article, we study the effects of the number of scenario clusters 

in the optimum solution. We further study the clustering evaluation in terms of their 

corresponding number.  

In this approach, one may control the extent of conservation of the solution by obtaining the 

expected value of several robust solutions to the stochastic problem. Intuitively, the HRSO 

approach, which is based on discrete feasible space by discretizing probability space, separates 

or splits the feasible space of uncertain parameters into two or more feasible spaces. The 

solution is next determined in the worst possible case in each cluster. Mathematically speaking, 

the robust solution is found in each cluster. Stochastic values of the resulting robust solutions 

are eventually obtained by finding the expectation of the robust solutions. Indeed, the way by 

which the feasible space is separated substantially impacts the optimal value of the HRSO 

solution. Therefore, how discrete scenarios are clustered has a key role in the hybrid robust-

stochastic optimization approach.  

In stochastic programming, different ways to discretize random parameters or random space 

are employed to construct a scenario fan. In this study, the Latin Hypercube Sampling (LHS) 

method is employed for discretization [41], hence the generation of samples of random 

parameters in an efficient manner. Moreover, the LHS method with randomized multi-variate 

normal distribution is employed to form multi-variate samples, considering the linear 

correlation between the random variables.  

A scenario tree is then constructed from the resulting scenario fan. The most widely used 

approach for constructing a scenario tree has been proposed by Heitsch and Römisch [42] who 

used a hierarchal method. In this study, we apply the k-means clustering method in order to 

split the random space. 

In addition, the evaluation of the clustering pattern is taken into account in order to gain the 

optimal number of clustering, investigating whether any relationship between clustering size 

and the solution values is evident. 

In this case study, all values of random parameters are feasible as a penalty function is 

considered in the objective function in case demand is not met. Hence, there would be no 

concern about the feasibility of the discretized values. More precisely speaking, our problem is 

robust in terms of the feasibility of the solutions. 

We also compare the number of iterations to achieve the optimal solution in each case 

(cluster number) since it shows the computational burden of the solution in a better way as it 
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does not depend on the computer system features (computer processor and RAM size) in which 

the operations are conducted.  

As both gas and electricity demand are uncertain, simultaneous scheduling of gas and power 

supply is the center of attention in this study. This problem involves solving a stochastic 

programming model under gas and electricity demand uncertainty. Hence, we deal with 

investigating the HRSO approach to solve this problem by considering stochastic and robust 

approaches. For this aim, we first solve the coordinated scheduling of electricity and natural 

gas supply systems from an absolutely robust viewpoint. Next, the mentioned model is solved 

from an absolutely stochastic point of view. In the following stage, the clustering method is 

proposed to implement the HRSO approach. 

Carrying out the above-mentioned approaches requires discretizing the random parameters 

in each time step to obtain abundant samples to achieve well-reliable solutions. 

 

Scenario Generation 

In this section, the scenario generation method for the stochastic optimization model is 

presented. It is assumed that electricity demand and gas demand are stochastic parameters of 

our model. In order to generate the scenarios related to these parameters, we assume a normal 

probability distribution with two known parameters, mean and standard deviation, for each 

period, which is 24 hours for both electricity and gas demand. These values are shown in Tables 

1 and 2.  

Latin hypercube sampling is often the preferred sampling procedure in Monte Carlo analyses 

due to the efficient manner in which it stratifies across the range of each sampled variable [41]. 

The use of Latin hypercube sampling, which is part of a Monte Carlo procedure for the 

propagation of uncertainty, is extensive and growing [41]. 

Then applying the Latin Hypercube Sampling (LHS) method, assuming independence 

between gas and electricity demands, 50 samples are taken from electricity and gas demands 

based on this method. Figure 2 illustrates electricity and gas demand scenarios. 

 
Table 1. Electricity Demand Distribution Parameters (MW) 

Hours 1 2 3 4 5 6 7 8 9 

Mean 175 165 158 155 155 160 173 190 206 

Std. 50 50 50 50 60 40 80 30 40 

Hour 10 11 12 13 14 15 16 17 18 

Mean 217 229 236 242 244 249 256 256 247 

Std. 70 20 80 20 30 40 30 50 60 

Hour 19 20 21 22 23 24    

Mean 246 237 237 227 201 197    

Std. 90 90 90 70 60 40    

 

Table 2. Gas Demand Distribution Parameters (KCF/H) 

Hours 1 2 3 4 5 6 7 8 9 

Mean 5220 4920 4680 4740 5100 5640 5580 6060 6180 

Std. 150 150 150 150 160 240 280 230 240 

Hour 10 11 12 13 14 15 16 17 18 

Mean 6240 6120 6120 6000 5700 5760 5880 6060 6240 

Std. 170 220 180 220 230 240 230 150 160 

Hour 19 20 21 22 23 24    

Mean 6540 6780 6660 6540 6060 5520    

Std. 190 290 290 270 160 140    
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Fig. 2. Electricity demand (top) and Gas demand (bottom) scenarios 

 

Clustering Stochastic Scenarios 

The generated scenarios in the last section are grouped into different numbers of clusters to 

form the corresponding scenario tree. In essence, stochastic space is partitioned into several 

subspaces.  

There are different clustering methods. Data clustering algorithms can be either hierarchical 

or partitional. Hierarchical algorithms determine successive clusters using previously 

established clusters, whereas partitional algorithms determine all clusters at a time. Hierarchical 

algorithms are agglomerative (bottom-up) or divisive (top-down). Agglomerative algorithms 

begin with each element as a separate cluster and merge them into successively larger clusters. 

Divisive algorithms begin with the whole set and proceed to divide it into successively smaller 

clusters. Besides, clustering methods are composed of Partitional Clustering (including K-Mean 

and K-Medoids algorithms), Density-Based Clustering (including DBSCAN and SSN 

algorithms), Grid-Based Clustering (including STING and CLIQUE algorithms), and Grid-

Based Clustering (including Statistical and Neural network approaches) [43].  

Furthermore, there are different criteria to evaluate the suitability of the number of clusters 

of clustered data. The criteria are categorized into internal and external indices. In this article, 

two common clustering indexes are applied: the Dunn index and the Davies-Bouldin (DBI) 

index [44]. 

Here, scenarios are clustered from 2 to 15 clusters through the k-means clustering method, 

as one of the most common clustering methods is k-means clustering [45, 46]. Thereafter, 

clustering evaluation indices are attained for each clustered scenario. The results are 

demonstrated in Table 3 and Figure 3. Accordingly, while the Dunn index for different numbers 

of clusters ranges from approximately  0.5 to 0.65, this is approximately 2.6 to 4 for the DBI 
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index. As it is evident from Table 3, the dominant trend in the Dunn index is decreasing while 

there are some exceptions. From the DBI index’s perspective, there is no special trend. 

In order to determine the optimal number of clusters, we apply a multi-criteria decision 

analysis method so-called TOPSIS [47], as one of the most common methods used, using Dunn 

and DBI index values. Figure 4 depicts the TOPSIS value for each number of clusters. Again, 

no obvious trend is observed in TOPSIS values, with the 8-cluster having the least value, and 

number 13 the largest one. Following this analysis, the simulation is carried out, and the results 

are described in the next section. Then, TOPSIS indicates the best number of clusters is the 

maximum value that here is 13. This implies that the best partitioning state of feasible space 

relates to the 13-cluster case in HRSO. 

 
Table 3. Clustering Evaluation Indices For Clustered Scenarios 

Clusters 

Index 
2 3 4 5 6 7 

Dunn 0.5700 0.5761 0.6026 0.6208 0.6070 0.5696 

DBI 3.9690 3.4066 3.4451 3.2860 3.1224 3.0613 

 8 9 10 11 12 13 

Dunn 0.5999 0.5726 0.5416 0.5580 0.5191 0.6424 

DBI 2.9021 2.7446 2.7035 2.8844 2.7589 2.7810 

 14 15     

Dunn 0.6307 0.5999     

DBI 2.9378 2.8568     

 

 
 

 
Fig. 3. Clustering evaluation indices for different clustered scenarios: DBI index (top) and Dunn index (bottom) 
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Fig. 4. Clustering evaluation through the TOPSIS method 

 

Simulation Results 

 

Our solution performance is tested by applying a sample system including a 7-node natural gas 

network and a 6-node power grid, which originally appeared in [48]. The power grid has three 

demand nodes and three generating units, all of which are gas-fired and receive their fuels from 

three nodes of the natural gas network. The natural gas network has two refineries as production 

units and three demand nodes. Figure 5 depicts the sorted total cost (objective function value) 

for different clusters. As expected, notwithstanding some exceptions, the more the number of 

clusters, the less the cost of energy scheduling is. The general trend of the combined energy 

scheduling cost is decreasing. The robust case has the most expensive scheduling cost, while 

the stochastic case indicates the least cost. As observed in Figure 5, the 13-cluster case of 

HRSO, as the best number of clustering, stands in 14th position among all cases. 

Total penalties consisting of power and gas penalties for each HRSO case are depicted in 

Figure 6. Yellow parts of bars indicate gas penalties. According to this plot, excluding some 

HRSO cases, power penalties generally decrease as the number of clusters increases. With 

solely 5-, 9- and 10-clusters having gas penalty, no special trend is observed in this penalty. 

The same decreasing trend as the power penalty can be considered in total penalty amounts, but 

more exceptions. Again, we can see the 13-cluster case in the same position, with no gas 

penalty. 

Table 4 indicates the ranking of the cost, power penalty, gas penalty, and sum of penalties 

for each cluster. It is evident that the ranking in cost and power penalty is almost decreasing, 

while the rankings of different clusters are not decreasingly in order, more specifically in the 

case of a gas penalty.  
 

 
Fig. 5. Combined gas and power scheduling cost of all HRSO cases ($) 
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Fig. 6. Total penalty including both power penalty (blue) and gas penalty (yellow) for all HRSO cases ($) 

 

The total power generation in each hour for selected HRSO cases is illustrated in Figure 7. 

The black, blue, and red plots are robust, 7-cluster, and stochastic cases, respectively. 

Accordingly, total power generation in robust and stochastic cases are different from each other 

and from other cases. For instance, regarding the robust case, total power generation is 

meaningfully less than in other cases (excluding stochastic case) in some hours (8,16-20,22, 

23), and meaningfully more than in other hours (7,10,21,24). This difference at most amounts 

to about 40 MW. Generally speaking, the difference occurs more in middle load rather than 

peak and base loads. Comparing stochastic and robust cases, the most gaps are considered in 

8,10,17, and 19-23 hours (middle plot). Eventually, there are differences in power generation 

between stochastic and middle-cluster cases in 3,5,7-10,12-15,17-19, 21, and 22 hours. 

Total gas generation on a daily-hour basis in selected HRSO cases is depicted in Figure 8. 

Concerning the robust and middle-cluster cases (or cluster-wise cases), total gas generation is 

meaningfully different in 1,2,9,10,15,17, and 21-23 hours. It seems this difference escalates by 

comparing the robust and stochastic cases in middle hours, accounting for 1,2,7,8,10-16,18,21 

and 23 hours. As far as the comparison of the stochastic and the middle-cluster cases is 

concerned, considerable gaps are observed in 8,10-12,14,17,18, and 22 hours. This difference 

almost ranges from around 10 to 40 kcf/h.  

 
Table 4. Rankings Of Costs And Penalties For All Hrso Cases 

Cluster Number Cost Power Penalty Gas Penalty Total Penalty 

Robust 1 1 5 1 

2 2 2 6 4 

3 4 3 11 5 

4 5 5 12 7 

5 6 6 2 2 

6 3 4 10 6 

7 7 8 4 9 

8 8 10 14 11 

9 11 11 1 3 

10 10 7 3 8 

11 14 15 8 15 

12 12 13 7 13 

13 13 14 13 14 

14 9 9 9 10 

15 15 16 15 16 

Stochastic 16 12 16 12 
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Fig. 7. Total power generation on an hourly basis for selected HRSO cases (MW) 
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Fig. 8. Total gas generation on an hourly basis for selected HRSO cases (kcf/h) 

 

Total power and gas generation are demonstrated in Figure 9. Total power generation takes 

the least amount in the robust case, with 9804.5 MW. The stochastic case has the largest total 

power generation among other cases, accounting for 9937.5 MW. The more the cluster number, 

the less the total power is generated with the exception of 6-cluster, 10-cluster, 13-cluster, and 

14-cluster. Regarding total gas generation, 12-cluster HRSO has the largest amount, accounting 

for 463310 kcf/h, while the stochastic case has the least amount, with 455040 kcf/h, and 13-

cluster in 11th rank, with about 9920 kcf/h. Moreover, no special relationship is observed 

between the number of clusters and total gas generation. 
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The power generation unit 1 is in an "on" state at all hours for all HRSO cases. The power 

generation unit 3 is in the "off" state in the first seven hours, turning "on" afterward for all 

HRSO cases. However, the on-off pattern of power generation unit 2 is different among HRSO 

cases, where that unit is off for all HRSO cases for the first seven hours and remains on for all 

HRSO cases from hour 10 to hour 22. The on-off status of power generation unit 2 in all hours, 

except three hours (8,9, and 23), is the same in all HRSO cases. This power generation unit is 

on in hour eight in 5-cluster, 6-cluster, 12-cluster, 13-cluster, and stochastic cases while it is off 

for the rest. In hour 9, the power generation unit is on except for the robust and 2-cluster cases. 

Regarding hour 23, the unit is on in all cases but 5-cluster, 6-cluster, 10-cluster, and robust 

cases. 

Hence, it is evident that as we move from robust case, in which there is a single cluster 

including all scenarios, to increasing cluster-wise cases and eventually stochastic case (which 

is a case in which every scenario is itself a single-point cluster) more units are in on status. 

While 13 power generation units are on in robust case, 14 units are on in 2-cluster and 10-

cluster, 15 units are on in 3-, 4-, 5-, 6-, 7-, 8-, 9-, 11-, 14-, and 15-cluster cases, and the most 

units in on status (16 units) are in 12-cluster, 13-cluster, and robust cases. 

 

 
 

 
Fig. 9. Total power and gas generation for selected HRSO cases (kcf/h) 
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Table 5. Unit Commitment Of Power Generation Unit 2 In Hrso Cases 

 

Conclusion 

 

This paper proposes a scenario-wise hybrid robust and stochastic optimization approach for 

coordinated scheduling of natural gas-power generation systems, considering uncertainty in 

natural gas and power demands. Uncertainty is represented by the discretization of the 

stochastic space of the problem through two-variate stochastic scenarios; 50 stochastic 

scenarios are generated through the Latin Hypercube Sampling method. A mixed integer linear 

programming model is applied, considering stochastic scenarios. In order to employ a hybrid 

robust stochastic optimization approach to solve the model, generated scenarios are partitioned 

into a different number of clusters, together with no clustering (robust case) and each cluster 

containing exactly one scenario (stochastic case) providing 17 different cases for the HRSO 

approach. In trying to answer the question of which number of clusters of scenarios is best, the 

two most common clustering indexes, Dunn and Davies-Bouldin, are employed and their value 

for each number of clusters of scenarios is obtained. Since the results of the mentioned 

clustering indexes are not enough to reach a conclusion, the TOPSIS method as a multi-criteria 

decision-making tool of clustering is applied to deduce the values of two indexes. The result 

indicates that the best number of clusters for stochastic scenarios is 13. The results of the 

simulation of the model for all cases of HRSO demonstrate that the main difference among all 

cases is seen between stochastic and robust cases while there is no major difference among 

others. As expected, there is almost a decreasing trend in penalties from robust cases to 

stochastic ones. It implies that as the number of clusters increases, the amount of objective 

function decreases. 

Future work could be focused on how many clusters should be chosen for studying and 

analyzing the objective functions so that these number of clusters are offered to different risk-

averse attributes. In better words, various individuals with corresponding risk behaviors could 

choose their appropriate number of clusters, without needing to examine all possible numbers 

of clusters. 

 

Nomenclature 

 

Indices, parameters, sets, and functions 

 
ω, Ω Index and set of the stochastic scenarios. 𝜔=0 means the day-ahead forecast scenario 

t, T Index and set of time periods 

Ne, NE Index and set of electricity network nodes 

el, EL Index and set of electricity transmission lines 
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Ng, NG Index and set of natural gas network nodes 

pl, PL Index and set of pipelines 

k, K Index and set of piecewise linear function pieces 

Nep(Ne)  Subset of generating units 

Nel(Ne) Subset of electricity demand nodes 

Ngp(Ng) Subset of refineries nodes 

Ngl(Ng) Subset of natural gas demand nodes 

APL(pl) Subset of active pipelines 

PPL(pl) Subset of passive pipelines 

gloadNg,t Natural gas demand parameter 

Cpl Pipeline constant parameter 

mpl,k Slope parameter in piecewise linear function 

bpl,k Intercept parameter in piecewise linear function 

𝑔𝑓𝑙𝑝𝑙,𝑘 Gas flow lower bound 

𝑔𝑓𝑙
𝑝𝑙,𝑘

 Gas flow upper bound 

𝑝𝑟𝑁𝑔
𝑚𝑎𝑥  Gas pressure upper bound 

𝑝𝑟𝑁𝑔
𝑚𝑖𝑛  Gas pressure lower bound 

𝛽𝑁𝑔
𝑚𝑎𝑥 Active pipeline output pressure ratio upper bound 

𝛽𝑁𝑔
𝑚𝑖𝑛 Active pipeline output pressure ratio lower bound 

𝐺𝑃𝑁𝑔
𝑚𝑎𝑥  Refinery upper production bound 

𝐺𝑃𝑁𝑔
𝑚𝑖𝑛  Refinery lower production bound 

CNg
GLS Natural gas load shedding penalty cost 

eloadNe,t Electricity demand parameter 

PTDF Electricity transmission matrix 

PSDF Phase shifter distribution matrix 

DCDF DC distribution matrix 

𝛼𝑒𝑙
𝑚𝑎𝑥 Phase shifter angle upper bound 

𝛼𝑒𝑙
𝑚𝑖𝑛 Phase shifter angle lower bound 

𝑝𝑓𝑒𝑙
𝑚𝑎𝑥  Electricity flow upper bound 

𝑝𝑓𝑒𝑙
𝑚𝑖𝑛  Electricity flow lower bound 

maxgNe Power plant upper generation bound 

mingNe Power plant lower generation bound 

URNe Ramp-up rate of power plant 

DRNe Ramp-down rate of power plant 

minutNe Minimum-up time of power plant 

mindtNe Minimum-down time of power plant 

𝐶𝑁𝑒
𝑆𝑈 Power plant start-up cost 

𝐶𝑁𝑒
𝑆𝐷 Power plant shut-down cost 

𝐶𝑁𝑒
𝐹𝐶  Natural gas cost for power plant 

𝐶𝑁𝑒
𝑃𝐿𝑆 Electricity load shedding cost 

𝐹𝑁𝑒,𝑡,𝜔 Power plant fuel usage function 

bfNe , cfNe Coefficient of the piecewise linear fuel usage cost function of power plants 

𝑔𝑓𝑙𝑁𝑔,𝑡,𝜔,𝑘 Natural gas flow variable in piecewise linear function 

𝑜𝑝𝑙,𝑘 Binary variable in piecewise linear function 

 

A. Variables 
𝑔𝑝𝑁𝑔,𝑡,𝜔 Refinery natural gas production  

𝑔𝑒𝑙𝑁𝑔,𝑡,𝜔 Natural gas demand (power plants)  

𝑔𝑛𝑙𝑁𝑔,𝑡,𝜔 Natural gas demand (other than power plants)  

𝑔𝑙𝑠𝑁𝑔,𝑡,𝜔 Natural gas load shedding  

𝑔𝑓𝑁𝑔→𝑁𝑔,𝑡,𝜔́  Natural gas flow 

𝜋𝑁𝑔,𝑡,𝜔 Square natural gas pressure  

𝑃𝑁𝑒,𝑡,𝜔 Electricity nodal injection  

𝑝𝑙𝑠𝑁𝑒,𝑡,𝜔 Electricity load shedding  

𝑝𝑓𝑒𝑙,𝑡,𝜔 Electricity flow  

𝛼𝑒𝑙,𝑡,𝜔 Phase shifter angle variable 
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𝐼𝑁𝑒,𝑡 Power plant situation (On, Off) binary variable 

suNe,t Power plant start-up binary variable 

sdNe,t Power plant shut-down binary variable 

TC Total cost  
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