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Abstract  

Environmental pollution, rapid depletion of fossil fuels, and high energy losses 

during transmission-distribution are the main problems of traditional power grids. 

This motivates the development of microgrids (MGs), which are a localized 

network of fossil fuel and renewable generators, energy storage systems, and 

electrical loads. Due to the limited operational capacity of individual MGs, multiple 

adjacent MGs can be networked to form a cluster of interconnected MGs. This 

paper develops a robust energy management and scheduling model for the co-

optimization of internal network operation inside MGs and external energy sharing 

between MGs. The uncertainty of renewable energy sources is handled by 

proposing a data-driven robust optimization model with a self-adaptive uncertainty 

set. This set is constructed by the kernel density estimation method based on the 

distributional information extracted from uncertainty data. To account for the multi-

level and sequential decision-making process of scheduling, the energy 

management model is formulated as an adjustable robust optimization problem by 

incorporating wait-and-see decision variables. The results show that compared to 

conventional robust optimization models, the proposed model is more effective in 

dealing with uncertainty and can ensure the robustness of scheduling decisions at a 

lower cost. 
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Introduction  
 

In traditional power systems, electricity is generated in large-scale power plants using fossil 

fuels and distributed over long distances to meet load demands. The result of this is increased 

environmental pollution, rapid depletion of fossil fuel resources, and loss of significant amounts 

of energy during transmission and distribution [1]. This motivates the development of 

microgrids (MGs), which are an interconnected network of dispatchable fossil-fuel-based 

generators (such as microturbines, diesel engines, and fuel cells), non-dispatchable renewable 

energy resources (such as wind turbines and photovoltaic systems) and energy storage systems 

with the purpose of serving residential, commercial, and industrial loads within a small 

geographical area [2]. The increasing use of renewable energy has spawned the concept of 

networked MGs or multi-MGs, referring to a cluster of multiple self-governed MGs that are 

geographically close to each other. The networking strategy enables MGs to exchange power 

with one another, thus increasing the reliability of individual MGs and allowing them to meet 

their power needs with renewable, cheaper energy sources [3]. Moreover, it reduces reliance on 

the main power grid and provides improved power supply reliability for critical loads during 

emergencies [4]. 
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Despite the above advantages, it is difficult to achieve the reliable and stable operation of 

networked MGs due to several reasons. First, the optimal scheduling and planning of networked 

MGs is challenging because it requires both the local energy management of multiple energy 

generation resources with different characteristics within MGs and the coordination of energy 

sharing between MGs [5]. Second, the intermittent nature of renewable energy generation and 

the time-variability of consumer demands make it difficult to maintain dynamic supply-demand 

balances. Unless these uncertainty sources are handled properly inside each of the MGs, they 

can propagate throughout the network and adversely affect overall performance [6].  

As a result of the challenges mentioned above, researchers have been driven to develop 

diverse energy management and optimization models that can be applied to a wide array of 

conditions. In energy management models, the main function is to optimize energy generated 

by dispatchable generators, consumed by controllable loads, transferred between MGs, and 

charged or discharged by storage units. With a well-designed energy management model, 

microgrids can optimally coordinate and manage their internal resources while effectively 

interacting with the main grid and other MGs. It offers multiple benefits such as (1) reducing 

the overall costs of operation, (2) maintaining supply and demand balances, (3) providing 

customers with reliable power supplies, and  (4) utilizing renewable energy resources more 

efficiently [5]. 

To capture uncertainty in the energy management models of networked MGs, three main 

paradigms have been used in the literature: stochastic programming, robust optimization, and 

data-driven robust optimization (DDRO). Stochastic programming quantifies uncertainty using 

probability distributions that are assumed to be exactly known. This approach requires the exact 

distribution of uncertainty, which is difficult or even impossible to accurately estimate based 

on available historical data. To cope with this problem, probability distributions are 

approximated by a set of discrete scenarios. A scenario reduction approach is usually needed 

due to the exponential growth of scenarios with the increase in the number of uncertain 

parameters [7]. Even though removing scenarios could reduce computational complexity, it 

might put system security at risk because of power imbalance in case of unseen scenarios [8]. 

By contrast, robust optimization assumes little information concerning the lower and upper 

bounds of uncertain parameters when modeling uncertainty. Conventional robust optimization 

approaches utilize fixed-shaped uncertainty sets without being able to capture the distributional 

structure of underlying uncertainty data, which leads to over-conservative robust scheduling 

decisions with a high cost of robustness. Motivated by the shortcomings of robust optimization 

and stochastic programming, DDRO emerges as an intermediate approach that bridges the gap 

between these two approaches. In DDRO, an ambiguity set is constructed as a family of 

probability distributions that share the same statistical metrics, and the solution is immunized 

against the worst-case distribution within the ambiguity set [9]. Since DDRO considers a set of 

probability distributions rather than a single distribution, it outperforms stochastic 

programming in terms of robustness against distribution errors resulting from raw and 

incomplete historical data. Moreover, DDRO provides less conservative results than robust 

optimization due to the fact that it captures partial stochastic information that robust 

optimization ignores. Several approaches have been developed in the literature for the 

extraction of probability distributions from uncertainty data and the construction of data-driven 

uncertainty sets, for example, statistical distance and moment-based methods [10], Dirichlet 

process mixture modeling [11], and support vector clustering [12]. Even with the attractive 

features of these approaches, most existing DDRO models are unable to effectively reduce 

distribution estimation errors, especially when dealing with complex uncertainty data. 

In order to ensure the optimal and reliable performance of multi-MG systems, this paper 

develops a data-driven energy management model that optimizes two different kinds of 

operations simultaneously: internal decisions on how MGs will interact with each other and 
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external decisions on how energy supply and demand will be coordinated within MGs. The 

external and internal decisions are coupled together since energy sharing between MGs affects 

the amount of energy needed by every MG to meet local demands. Due to its location-dependent 

and time-varying nature, renewable power generation is subject to a high level of uncertainty. 

An adaptive DDRO model empowered with machine learning is developed to cope with 

uncertainty. The merits of the developed DDRO model lie in the following two aspects. First, 

compared to static robust optimization making all scheduling decisions at once, the proposed 

model is cast as an adaptive optimization problem that allows corrective actions after observing 

the realization of uncertainty. This feature mitigates the cost of robustness and results in less 

conservative solutions. Second, the robust kernel density estimation (RKDE) is employed to 

construct an uncertainty set that is self-adaptive to the intrinsic structure of uncertainty data. 

Moreover, the RKDE can extract distributional information even from messy data, which 

improves the accuracy of the resulting robust solution.  

This paper helps practitioners and researchers to form a cluster of MGs for efficient 

utilization of dispatchable energy generators (such as diesel generators and microturbines), non-

dispatchable generators (such as wind turbines and photovoltaic systems), and energy storage 

units within a geographical area. Networking multiple MGs is a viable solution to not only 

enhance the overall performance of MGs but also provide each individual MG with enhanced 

security, increased stability, and reduced costs by cooperating with other MGs. 

 

Literature Review  

 

Robust optimization has been extensively used in previous studies to handle the uncertainties 

associated with the energy management problems of MGs. Ref. [13] optimizes the day-ahead 

planning of a multi-MG system by a two-layer framework, where the upper level minimizes the 

total system cost and determines the price and quantity of the exchanged energy between MGs, 

and the lower level deals with the uncertainties resulting from renewable energy sources and 

loads using a two-stage robust optimization model under the box uncertainty set. By integrating 

non-cooperative game theory and box-set-induced robust optimization, Ref. [14] coordinates 

energy trading between MGs while suppressing the impact of uncertainty on the optimal 

performance of market players. To address the over-conservatism caused by the box uncertainty 

set, a large number of studies utilize the polyhedral uncertainty set that can control the degree 

of robustness and its cost. For example, Ref. [15] develops a polyhedral set-based adaptive 

robust optimization model to guarantee the collaborative and economic operation of networked 

MGs under the worst-case scenarios of photovoltaic output. In Ref. [16], the optimal design 

and scheduling scheme for multiple interconnected MGs is determined using a two-stage robust 

optimization model, where the first stage focuses on the deployment of distributed energy 

resources in MGs and the second stage minimizes the system cost while ensuring robustness 

against all possible realizations of renewable energy uncertainty within a polyhedral uncertainty 

set. Using the same uncertainty set, Ref. [17] proposes a robust bilevel programming model to 

determine interactive strategies and energy transaction prices under the uncertainties of energy 

demand and renewable energy resources. To improve the robustness of scheduling decisions 

against the uncertainty of loads and renewable generation in an MG, Ref. [18] designs a 

transactive energy-sharing scheme with a decentralized robust optimization model formulated 

using the polyhedral uncertainty set. Ref. [19] minimizes the operation cost of renewable energy 

resources, conventional generators, load shifting and shedding, and energy storage units in an 

islanded MG while ensuring solution robustness under the worst situation of uncertainty 

described using a time-dependent polyhedral uncertainty set. Despite its ability to make a trade-

off between the cost of robustness and the degree of conservatism, the polyhedral uncertainty 

set is not capable of extracting useful information from available data. To overcome this 
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problem, Ref. [20] employs the Imprecise Dirichlet Model for the construction of an ambiguity 

set based on information extraction from electric vehicles and wind power generation in a single 

MG. To manage the uncertainty of renewable energy generation and the integrated demand 

response, Ref. [21] develops a distributionally robust scheduling model under an ambiguity set 

with a confidence interval based on the 1-norm and the ∞-norm of uncertainty data. Ref. [22] 

constructs a data-driven multi-ellipsoidal uncertainty set to capture the temporal correlation and 

conditional correlation of forecast errors associated with the power output of wind turbines in 

a single MG. For the resilient operation of an integrated energy system against extreme weather 

events, Ref. [23] develops a DDRO model under an ambiguity set formed by incorporating the 

Wasserstein metric and moment information of uncertainty. A data-driven economic dispatch 

model for a distribution system with multiple MGs is proposed in Ref. [24], where the ∞-norm 

and 1-norm are adopted to build the ambiguity set based on the probability distributions of 

uncertain renewable power generation. Ref. [25] optimizes network operation and power 

trading for a multi-MG system and employs the Wasserstein metric to formulate a data-driven 

distributionally robust model that effectively deals with the uncertainty of renewable generation 

and load.  

In spite of strenuous efforts, there are still several important research gaps in existing studies. 

First, a large number of robust energy management models use box and polyhedral uncertainty 

sets. These classical sets have a fixed shape without sufficient flexibility in adapting to the 

structure of uncertainty data, which undermines the quality of the resulting robust solution. 

Second, most existing DDRO-based energy management models are designed for one MG due 

to computational tractability. In practice, MGs that operate independently face a number of 

problems, including frequent exchange of power with the main grid, limited use of local 

renewable power generation, and high operation costs [15]. Third, several studies rely on a 

static robust formulation that assumes all scheduling decisions must be made at once prior to 

observing the realization of uncertainty.  In general, this leads to over-conservative solutions 

because many decisions can be adjusted based on the actual values of uncertain parameters. 

The goal of this paper is to fill these gaps by developing a DDRO model for co-optimizing 

internal network operation within MGs and external power sharing between MGs. By 

employing the RKDE, the proposed model integrates robust optimization and machine learning 

to form a self-adjustable uncertainty set that accurately extracts uncertainty information from 

historical data and greatly reduces the unnecessary conservatism of robust scheduling decisions. 

Moreover, this approach can handle noisy and large-scale historical data, yielding a 

computationally tractable counterpart formulation [26]. The proposed model is formulated as 

an adaptive robust optimization problem to allow the adjustments of a subset of decisions after 

uncertainty is realized. Table 1 provides an overview of robust optimization models for the 

energy management of MGs. 

 

Problem Statement 

 

As shown in Fig. 1, this paper considers a common architecture for a network of multiple 

interconnected MGs, indexed by ℳ = {1, … , 𝑀}. In addition to being connected to the main 

power grid, these MGs are connected with each other, exchanging information and power using 

a communication network and a power bus. Each MG incorporates the following components: 

dispatchable distributed generators (DDGs), energy storage systems (ESSs), renewable energy 

generates (REGs), and local loads (both non-controllable and controllable loads). DDGs (e.g., 

microturbines) are capable of providing stable energy to meet the energy needs of MGs, and 

REGs (e.g., wind turbines and photovoltaic systems) generate sustainable and clean energy. 

With ESSs, intermittent renewable energy generation can be smoothed out and the power load 

can be flattened by charging during low-load periods and discharging during peak-load periods. 
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Moreover, the controllable loads can contribute to maintaining power balance because their 

schedules can flexibly be adjusted over time according to demand response programs. 

 
Table 1. An overview of robust energy management models for MGs 
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[13]  *  *  *      

[14]  * *  *       

[15]  *  *  *      

[16]  *  *  *      

[17]  * *   *      

[18] *   *  *      

[19] *  *   *   *   

[20] *   *        

[21] *   *   *     

[22] *  *       *  

[23] *   *   * *    

[24]  * *    *     

[25]  *  *    *    

This 

work 
 *  *       * 

   

The optimal and reliable operation of the system described above is ensured by developing 

a two-stage adaptive DDRO model, where the first-stage decisions have to be made before 

observing the realizations of uncertainty and the second-stage decisions can be adjusted after 

uncertainty is realized. The first stage determines the day-ahead scheduling decisions about the 

power output of DDGs and ESSs, the upward/downward reserve of DDGs, the 

charging/discharging status of ESSs, and the exchanged power between MGs. The second stage 

focuses on the power adjustment of DDGs in real-time operation and minimizes the power 

imbalance that may be caused due to the difference between the actual and scheduled outputs 

of REGs.  
 

 
Fig. 1. A basic structure of multiple networked MGs 
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Mathematical Formulation 

 

This section presents a two-stage adaptive DDRO model to determine the optimal energy 

scheduling and sharing strategy of networked MGs. A list of indices/sets, decision variables, 

and parameters is provided in the Nomenclature.  
  

Nomenclature 

Indices and Sets 
ℳ Set of MGs 

𝑚/𝑡  Index of MGs/periods 

Parameters 
𝑎, 𝑏, 𝑐 DDG’s cost function coefficients  

𝐶𝑅 DDG’s reserve cost per unit  

𝑝𝑟𝑡
𝑏  Power buying price from the main grid at time 𝑡 

𝑝𝑟𝑡
𝑠 Power selling price to the main grid at time 𝑡 

𝑝𝑟𝑡
𝑒𝑥 Power exchange price between MGs at time 𝑡 

𝜌𝑙 Penalty cost for power shortage 

𝜌𝑟 Penalty cost for power surplus 

𝒩𝑚
𝑟  Set of buses of REGs in MG 𝑚 

𝒩𝑚
𝑔

 Set of buses of DDGs in MG 𝑚 

𝑃
𝑐
 Charging capacity at each period 

𝑃
𝑑𝑐

 Discharging capacity at each period 

𝐸 Upper bound on power storage 

𝐸 Lower bound on power storage 

𝜂𝑐 ESS’s charging efficiency   

𝜂𝑑𝑐 ESS’s discharging efficiency   

𝐷𝑚
𝑐   The aggregate controllable load in MG 𝑚  

𝑑𝑚,𝑡
𝑐  Controllable load in MG 𝑚 at time 𝑡 

𝑑𝑚,𝑡
𝑛𝑐  Non-controllable load in MG 𝑚 at time 𝑡 

𝐷𝑚,𝑡
𝑐  Lower bound of controllable load in MG 𝑚 at time 𝑡 

𝑃𝑚,𝑡
𝑟  REG’s predicted output in MG 𝑚 at time 𝑡 

𝐷𝑚,𝑡

𝑐
 Upper bound of controllable load in MG 𝑚 at time 𝑡 

𝑃𝑚
𝑔

 DDG’s minimum generation capacity in MG 𝑚 

𝑃𝑚

𝑔
 DDG’s maximum generation capacity in MG 𝑚 

𝑅𝑎𝑔  DDG’s ramping up limit 

𝑅𝑎
𝑔

 DDG’s ramping down limit 

Variables 
𝑃𝑚,𝑡

𝑔
 DDG’s power generation in MG 𝑚 at time 𝑡 

𝑅𝑚,𝑡

𝑔
 DDG’s upward reserve in MG 𝑚 at time 𝑡 

𝑅𝑚,𝑡
𝑔

 DDG’s downward reserve in MG 𝑚 at time 𝑡 

𝑃𝑚,𝑡
𝑠  Power sold to the main grid by MG 𝑚 at time 𝑡 

𝑃𝑚,𝑡
𝑏  Power bought from the main grid by MG 𝑚 at time 𝑡 

𝑃𝑚,𝑛,𝑡
𝑒𝑥  Power exchanged from MG 𝑚 to MG 𝑛  at time 𝑡 

∆𝑃𝑚,𝑡
𝑔

 DDG’s real-time power adjustment in MG 𝑚 at time 𝑡 

∆𝑃𝑚,𝑡
+  Power surplus in MG 𝑚 at time 𝑡 

∆𝑃𝑚,𝑡
−  Power shortage in MG 𝑚 at time 𝑡 

𝐸𝑚,𝑡
𝑒𝑠  Power storage in MG 𝑚 at time 𝑡 

𝑃𝑚,𝑡
𝑐  Power charging in MG 𝑚 at time 𝑡 

𝑃𝑚,𝑡
𝑑𝑐  Power discharging in MG 𝑚 at time 𝑡 

𝑑𝑚,𝑡
𝑐  Actual controllable load in MG 𝑚 at time 𝑡 

𝜉𝑚,𝑡 REG’s predicted error in MG 𝑚 at time 𝑡 

Binary variables 
𝛼𝑚,𝑡

𝑐  ESS’s charging status in MG 𝑚 at time 𝑡 

𝛼𝑚,𝑡
𝑑𝑐  ESS’s charging status in MG 𝑚 at time 𝑡 
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Objective function 

Objective function (1) minimizes the total system cost that consists of five parts: the first 

three parts are associated with day-ahead scheduling costs and are independent of uncertainty, 

the last part is associated with real-time power adjustment costs and is influenced by 

uncertainty.  

 

min
𝑥

∑ ∑ {𝑓𝑚,𝑡
𝑔 (𝒙) − 𝑓𝑚,𝑡

𝑚 (𝒙) − 𝑓𝑚,𝑡
𝑒𝑥 (𝒙)+𝑓𝑚,𝑡

𝑑 (𝒙) + max
𝛏∈𝑈

  min
𝒚∈Ω(𝑥,𝛏)

𝑓𝑚,𝑡
𝑎𝑑(𝒚, 𝛏)}

𝑡∈𝒯𝑚∈ℳ 

 (1) 

 

here, 𝒙 and 𝒚 are the vectors of first-stage (here-and-now) and second-stage (wait-and-see) 

decision variables, respectively, Ω is the feasible region of second-stage variables, and δ is the 

vector of random variables whose realizations belong to uncertainty set 𝑈. 𝑓𝑚,𝑡
𝑔

 is the power 

generation cost of DDGs and is approximated using a quadratic function as follows: 

 

𝑓𝑚,𝑡
𝑔

= (𝑎. 𝑃𝑚,𝑡
𝑔 2

+ 𝑏. 𝑃𝑚,𝑡
𝑔

+ 𝑐) + 𝐶𝑅 (𝑅𝑚,𝑡

𝑔
+𝑅𝑚,𝑡

𝑔
) (2) 

 

as represented by (3), 𝑓𝑚,𝑡
𝑚  is the revenue (cost) of each MG from selling (buying) power to 

(from) the main grid. Similarly, 𝑓𝑚,𝑡
𝑒𝑥  is the revenue (cost) of each MG from power trading and 

is expressed in (4). If MG m buys power from MG n in time t, then 𝑃𝑚,𝑛,𝑡
𝑒𝑥 < 0; otherwise, MG 

m sells power MG n and 𝑃𝑚,𝑛,𝑡
𝑒𝑥 > 0. Eq. (5) indicates discomfort costs that occur when actual 

power consumption deviates from the desired power consumption. As expressed in (6), the last 

part of the objective function is the cost of power adjustment at the real-time stage and is 

associated with possible power surplus or shortage after uncertainty realization. 

 
𝑓𝑚,𝑡

𝑚 =  𝑝𝑟𝑡
𝑠𝑃𝑚,𝑡

𝑠 −𝑝𝑟𝑡
𝑏𝑃𝑚,𝑡

𝑏     (3) 

𝑓𝑚,𝑡
𝑒𝑥 = ∑ 𝑝𝑟𝑡

𝑒𝑥𝑃𝑚,𝑛,𝑡
𝑒𝑥

𝑛∈ℳ\𝑚

 (4) 

𝑓𝑚,𝑡
𝑑 = (𝑃𝑚,𝑡

𝑖𝑙 − 𝑃𝑚,𝑡
𝑑𝑙 )

2
 (5) 

𝑓𝑚,𝑡
𝑎𝑑 = 𝜌𝑙∆𝑃𝑚,𝑡

− + 𝜌𝑟∆𝑃𝑚,𝑡
+  (6) 

 

Constraints 

 

Eq. (7) shows the dynamics of power storage in MG m based on net power injection and losses 

during the process of charging and discharging. The upper and lower limits on the power stored 

in each MG are expressed by constraint (8). The amount of the power charged and discharged 

at each period is limited by constraints (9) and (10), respectively. Constraint (11) guarantees 

that each ESS cannot charge and discharge at the same time.  

 
𝐸𝑚,𝑡

𝑒𝑠 = 𝐸𝑚,𝑡−1
𝑒𝑠 + 𝜂𝑐𝑃𝑚,𝑡

𝑐 − 𝑃𝑚,𝑡
𝑑𝑐 /𝜂𝑑𝑐     ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯  (7) 

𝐸 ≤ 𝐸𝑚,𝑡
𝑒𝑠 ≤ 𝐸   ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯  (8) 

0 ≤ 𝑃𝑚,𝑡
𝑐 ≤ 𝛼𝑚,𝑡

𝑐 𝑃
𝑐
     ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯  (9) 

0 ≤ 𝑃𝑚,𝑡
𝑑𝑐 ≤ 𝛼𝑚,𝑡

𝑑𝑐 𝑃
𝑑𝑐

     ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯  (10) 

𝛼𝑚,𝑡
𝑐 + 𝛼𝑚,𝑡

𝑑𝑐 ≤ 1     ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯    (11) 

 

Demand response constraints 

While non-controllable loads cannot be shifted over time, controllable loads can be arranged 

flexibly in accordance with the constraints of the demand response program. Constraint (12) 

states that the sum of controllable loads over the entire scheduling horizon should be equal to 

the total power demand. Constraint (13) imposes the upper and lower bound on the amount of 
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controllable loads at each period. 

 

∑ 𝑑𝑚,𝑡
𝑐

𝑡∈𝒯

= 𝐷𝑚
𝑐      ∀𝑚 ∈ ℳ  (12) 

𝐷𝑚,𝑡
𝑐 ≤ 𝑑𝑚,𝑡

𝑐 ≤ 𝐷𝑚,𝑡

𝑐
     ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯    (13) 

 

Power generation constraints 

Constraint (14) states that the power output of each DDG minus its downward reserve cannot 

come below the minimum generation capacity. The power output of each DDG plus its upward 

reserve cannot exceed the maximum generation capacity, as enforced by constraint (15). 

Constraint (16) ensures that variations in the power output of each DDG do not violate its 

upward and downward reserves. Constraints (17) and (18) impose the upper and lower bounds 

on the ramp rate of DDGs. 

 
𝑃𝑚,𝑡

𝑔
− 𝑅𝑚,𝑡

𝑔
≥ 𝑃𝑚

𝑔
     ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯 (14) 

𝑃𝑚,𝑡
𝑔

+ 𝑅𝑚,𝑡

𝑔
≤ 𝑃𝑚

𝑔
     ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯 (15) 

𝑅𝑚,𝑡
𝑔

≤ ∆𝑃𝑚,𝑡
𝑔

≤ 𝑅𝑚,𝑡

𝑔
     ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯   (16) 

𝑃𝑚,𝑡
𝑔

+ ∆𝑃𝑚,𝑡
𝑔

− 𝑃𝑚,𝑡−1
𝑔

− ∆𝑃𝑚,𝑡−1
𝑔

≤ 𝑅𝑎
𝑔

     ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯        (17) 

𝑃𝑚,𝑡−1
𝑔

+ ∆𝑃𝑚,𝑡−1
𝑔

− 𝑃𝑚,𝑡
𝑔

− ∆𝑃𝑚,𝑡
𝑔

≤ 𝑅𝑎𝑔       ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯  (18) 

 

Power balance constraints 

It is assumed that MGs are near each other, so there is no significant loss of power exchange. 

The power balance constraint for each MG at the day-ahead stage is expressed by Eq. (19). The 

power output of REGs is subject to uncertainty and is modeled as the sum of the predicted 

output 𝑃𝑚,𝑡
𝑟  and the prediction error 𝜉𝑚,𝑡. To keep the power balance in each MG, DDGs 

compensate for the prediction error of REGs in the real-time stage. Possible power shortage 

and surplus are measured by constraint (20) and penalized in the objective function.  

 
𝑃𝑚,𝑡

𝑔
+ 𝑃𝑚,𝑡

𝑟 + 𝑃𝑚,𝑡
𝑏 + 𝑃𝑚,𝑡

𝑑𝑐 = 𝑃𝑚,𝑡
𝑠 + 𝑃𝑚,𝑡

𝑐 + 𝑑𝑚,𝑡
𝑐 + 𝑑𝑚,𝑡

𝑛𝑐     ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯        (19) 

∆𝑃𝑚,𝑡
𝑔

+ 𝜉𝑚,𝑡 ≤ ∆𝑃𝑚,𝑡
+ − ∆𝑃𝑚,𝑡

−      ∀𝑚 ∈ ℳ, 𝑡 ∈ 𝒯  (20) 

 

Uncertainty set construction 

Let 𝜉(1), … , 𝜉(𝑁) be a set of N data samples, each of which is an uncertainty realization in Rd. 

A probability density function for 𝜉 can be estimated using the kernel density estimation (KDE) 

method, which is formulated as follows:  

 

𝑓𝐾𝐷𝐸(𝜉) =
1

𝑁
∑ 𝐾𝛽(𝜉, 𝜉(𝑁))

𝑁

𝑖=1

  (21) 

 

where 𝐾𝛽 is a kernel function whose bandwidth is denoted by the parameter 𝛽. Since there is 

no noticeable difference in density estimation between various kernel functions [26], the 

Gaussian kernel function is adopted in this study. 

 

𝐾𝛽(𝜉, 𝜉(𝑖)) = (1 √2𝜋𝛽⁄ )𝑒𝑥𝑝 (− ‖𝜉 − 𝜉(𝑖)‖
2

2𝛽2⁄ )  (22) 

 

in a positive semi-definite kernel like the Gaussian kernel, there exists a mapping Ω from Rd to 

the Hilbert space H as 𝐾𝛽(𝜉, 𝜉(𝑖)) = 〈Ω(𝜉), Ω(𝜉(𝑖))〉. It is proved that 𝑓𝐾𝐷𝐸(𝜉) equals an 

optimal solution of the following optimization problem: 
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min
𝑆∈H

∑‖Ω(𝜉(𝑖)) − 𝑆‖
2

𝑁

𝑖=1

 (23) 

 

where 𝑆 is an arbitrary function in the space 𝐻. Due to the high sensitivity of the quadratic loss 

function in (23) to outliers, the RKDE method has been proposed to estimate 𝑆 as follows: 

 

min
𝑆∈H

𝐽(𝑆) = ∑ 𝜗(‖Ω(𝜉(𝑖)) − 𝑆‖)

𝑁

𝑖=1

  (24) 

 

here, 𝜗(. ) denote a robust loss function such as the Huber loss function. Problem (24) cannot 

be directly solved with conventional optimizers since its solution is a function of probability 

densities. In order to solve the above, we use the kernelized reweighted least squares algorithm 

whose pseudocode is provided in Algorithm 1 [27]. This algorithm has been shown to be 

efficient at solving the above problem and ensures the convergence to the global optimum for 

the Huber function [28]. In Algorithm 1, 𝜂 is the first-order derivative of 𝜗 and ‖Ω(𝜉(𝑖)) − 𝑆(𝑘)‖ 

is calculated by, 

 

‖Ω(𝜉(𝑖)) − 𝑆(𝑘)‖ = √〈Ω(𝜉(𝑖)), Ω(𝜉(𝑖))〉 − 2〈Ω(𝜉(𝑖)), 𝑆(𝑘)〉 + 〈𝑆(𝑘), 𝑆(𝑘)〉  (25) 

 

where the right-hand side terms can be computed using the kernel trick as follows: 

 
〈Ω(𝜉(𝑖)), Ω(𝜉(𝑖))〉 = 𝐾𝛽(𝜉(𝑖), 𝜉(𝑖))  (26) 

〈Ω(𝜉(𝑖)), 𝜉(𝑟)〉 = ∑ w𝑗
(𝑘−1)

𝐾𝛽(𝜉(𝑖), 𝜉(𝑗))

𝑁

𝑗=1

  (27) 

〈𝑆(𝑘), 𝑆(𝑘)〉 = ∑ ∑ w𝑛
(𝑘−1)

w𝑧
(𝑘−1)

𝐾𝛽(𝜉(𝑛), 𝜉(𝑧))

𝑁

𝑧=1

𝑁

𝑛=1

  (28) 

 

Algorithm 1 

Input: Initial guesses w𝑖
(0)

≥ 0 such that ∑ w𝑖
(0)

= 1𝑛
𝑖=1 , and tolerance 𝜖 

while |[𝐽(𝑆(𝑘)) − 𝐽(𝑆(𝑘−1))] 𝐽(𝑆(𝑘−1))⁄ | > 𝜖 do 

1: update 𝑆(𝑘) ← ∑ w𝑖
(𝑘−1)

Ω(𝜉(𝑖))𝑁
𝑖=1  

2: update 𝐿(𝑆(𝑘)) ← ∑ 𝜗(‖Ω(𝜉(𝑖)) − 𝑆(𝑘)‖)𝑁
𝑖=1  

3: update w𝑖
(𝑘)

← 𝜂(‖Ω(𝜉(𝑖)) − 𝑆(𝑘)‖) ∑ 𝜂(‖Ω(𝜉(𝑖)) − 𝑆(𝑘)‖)𝑁
𝑗=1⁄  

4: 𝑘 ← 𝑘 + 1 

end while 

return 𝑓𝑅𝐾𝐷𝐸 = 𝑆(𝑘) 

 

After estimating the density function 𝑓𝑅𝐾𝐷𝐸, the cumulative density function �̂�𝑅𝐾𝐷𝐸
(𝑖) (𝜉𝑖) for 

the i-th component of uncertainty vector 𝝃 is constructed. In order to determine the confidence 

region of 𝜉𝑖 given a predetermined confidence level, the quantile function is defined as follows: 

 

�̂�𝑅𝐾𝐷𝐸
(𝑖) −1(𝛾) = min{𝜉𝑖 ∈ ℝ|�̂�𝑅𝐾𝐷𝐸

(𝑖) (𝜉𝑖) ≥ 𝛾}  (29) 

 

where the confidence level is set at 1 − 2𝛾. Using the function estimated above, the data-driven 

uncertainty set is formulated as follows: 



178  Mohseni and Pishvaee 

 

𝑈 = {𝝃|
�̂�𝑅𝐾𝐷𝐸

(𝑖) −1(𝛾) ≤ 𝜉𝑖 ≤ �̂�𝑅𝐾𝐷𝐸
(𝑖) −1(1 − 𝛾)   ∀𝑖

∑ (1 − 𝜔𝑖𝜙)𝜉𝑖
0

𝑖 ≤ ∑ 𝜉𝑖𝑖 ≤ ∑ (1 + 𝜔𝑖𝜙)𝜉𝑖
0

𝑖

}  (30) 

 

where 𝜙 denotes the normalized uncertainty parameter introduced to adjust the level of 

conservatism. 𝜉𝑖
0 and 𝜔𝑖 are the center of the uncertainty set and its variation range, 

respectively, which can be computed as follows: 

 

𝜉𝑖
0 = [�̂�𝑅𝐾𝐷𝐸

(𝑖) −1(𝛾) + �̂�𝑅𝐾𝐷𝐸
(𝑖) −1(1 − 𝛾)] 2⁄  (32) 

𝜔𝑖 = [�̂�𝑅𝐾𝐷𝐸
(𝑖) −1(1 − 𝛾) − 𝜉𝑖

0] 𝜉𝑖
0⁄  (33) 

 

Robust counterpart model 

This subsection discusses how to derive the tractable robust counterpart of the data-driven 

energy management model (1)-(20) under the uncertainty set (30). The vector representation of 

the model is presented first in order to simplify the notation:  

 

min
𝑥

𝐜′𝐱 + max
𝛏∈𝑈

  min
𝒚∈Ω(𝑥,𝛏)

∑ 𝐝t
′

𝑡∈𝒯

𝐲t(𝛏) 

(34) 
𝑠. 𝑡.  𝐖𝒎

′ 𝐱 + ∑ 𝐕𝑡𝒎
′ 𝐲𝑡(𝛏)

𝑡∈𝒯

≤ 𝐡𝒎
′ (𝛏)       ∀𝛏 ∈ 𝑈, 𝑚 ∈ ℳ 

over {
𝐱 = 𝑃𝑚,𝑡

𝑔
𝑅𝑚,𝑡

𝑔
𝑅𝑚,𝑡

𝑔
𝑃𝑚,𝑡

𝑠 𝑃𝑚,𝑡
𝑏 𝑃𝑚,𝑛,𝑡

𝑒𝑥 𝐸𝑚,𝑡
𝑒𝑠 𝑃𝑚,𝑡

𝑐 𝑃𝑚,𝑡
𝑑𝑐 𝛼𝑚,𝑡

𝑐 𝛼𝑚,𝑡
𝑑𝑐

𝐲 =  ∆𝑃𝑚,𝑡
𝑔

∆𝑃𝑚,𝑡
+  ∆𝑃𝑚,𝑡

−
} 

 

here, 𝐱 and 𝐲 are the vectors of the second-stage and the second-stage decisions, respectively, 

and h(𝛏) denotes uncertainty 𝜉𝑚,𝑡 moved from the left to the right-hand side of constraint (20). 

Problem (34) involves enumerating uncertainty retaliations within the uncertainty set 𝑈, making 

it computationally intractable. It is possible to solve this problem by adopting the affine decision 

rule approximation, which assumes the second-stage decisions are affinely affected by 

uncertainty: 
 

𝐲𝑡(𝛏) = 𝐐𝑡𝛏 + 𝐞𝑡 (35) 

 

where 𝐐 and 𝐞 are continuous decision variables that are optimized by the model, and 𝛏 =
[𝛏1

′ , … , 𝛏𝑇
′ ]. Moreover, it is assumed that the right-hand-side vector 𝐡 affinely responds to 

uncertainty. By plugging the decision rules into the model (34) and transforming the uncertainty 

in the objective function into a constraint, we arrive at the following optimization problem:    
 

min
𝑥,𝑄,𝑒,𝑅

  𝑅  (36a) 

𝐜′𝐱 + ∑ 𝐝t
′

𝑡∈𝒯

(𝐐𝑡𝛏 + 𝐞𝑡) ≤ 𝑅    ∀𝛏 ∈ 𝑈   (36b) 

𝑠. 𝑡.  𝐖𝒎
′ 𝐱 + ∑ 𝐕𝑡𝒎

′ (𝐐𝑡𝛏 + 𝐞𝑡)

𝑡∈𝒯

≤ 𝐡𝒎
′ 𝛏 + h𝑚

0      ∀𝛏 ∈ 𝑈, 𝑚 ∈ ℳ (36c) 

 

To ensure the feasibility of constraints (36b) and (36c) for all realizations of uncertainty 

within 𝑈, the worst-case realization of 𝛏 is considered by reformulating (36) as follows: 
 

min
𝑥,𝑄,𝑒,𝑅

  𝑅  (37a) 

𝑠. 𝑡.  max
𝛏∈𝑈

 {(∑ 𝐝𝑡
′ 𝐐𝑡

𝑡∈𝒯

) . 𝛏} ≤ 𝑅 − 𝐜′𝐱 − ∑ 𝐝𝑡
′ 𝐞𝑡

𝑡∈𝒯

   (37b) 

         max
𝛏∈𝑈

{(∑ 𝐕𝑡𝑚
′ 𝐐𝑡 − 𝐡𝑚

′

𝑡∈𝒯

) . 𝛏} ≤ h𝑚
0 − 𝐖𝒎

′ 𝐱 − ∑ 𝐕𝑡
′𝐞𝑡

𝑡∈𝒯

   ∀𝑚 ∈ ℳ  (37c) 
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where the inner maximization problems in (37b) and (37c) involve the following constraints: 

 

𝜉𝑖𝑡 ≤  �̂�𝑅𝐾𝐷𝐸
(𝑖𝑡) −1(1 − 𝛾) (38) 

−𝜉𝑖𝑡 ≤ − �̂�𝑅𝐾𝐷𝐸
(𝑖𝑡) −1(𝛾) (39) 

∑ ∑ 𝜉𝑖𝑡

𝑡𝑖

≤ ∑ ∑(1 + 𝜔𝑖𝑡𝜙)𝜉𝑖𝑡
0

𝑡𝑖

 (40) 

− ∑ ∑ 𝜉𝑖𝑡

𝑡𝑖

≤ − ∑ ∑(1 − 𝜔𝑖𝑡𝜙)𝜉𝑖𝑡
0

𝑡𝑖

 (41) 

 

here, 𝜉𝑖𝑡 is the i-th component of 𝝃𝑡. The inner maximization problems are linear with respect 

to variable 𝛏 and can equivalently be replaced with its dual form, resulting in the following 

robust counterpart model:   

 
min

𝑥,𝑄,𝑒,𝑅,𝜃,𝜆
  𝑅     (42a) 

𝑠. 𝑡.  �̅�𝑖𝑡�̂�𝑅𝐾𝐷𝐸
(𝑖𝑡) −1(1 − 𝛾) − 𝜆𝑖𝑡�̂�𝑅𝐾𝐷𝐸

(𝑖𝑡) −1(𝛾) + 𝜆
0

∑ ∑(1 + 𝜔𝑖𝑡𝜙)𝜉𝑖𝑡
0

𝑡𝑖

− 𝜆0 ∑ ∑(1 − 𝜔𝑖𝑡𝜙)𝜉𝑖𝑡
0

𝑡𝑖

≤ 𝑅 − 𝐜′𝐱 − ∑ 𝐝𝑡
′ 𝐞𝑡

𝑡

 
(42b) 

𝜆̅
𝑖𝑡 − 𝜆𝑖𝑡 + 𝜆

0
− 𝜆0 = [∑ 𝐝𝑘

′ 𝐐𝑘

𝑘

]

𝑖+(𝑡−1).𝑙

 ∀𝑖, 𝑡 (42c) 

�̅�𝑖𝑡�̂�𝑅𝐾𝐷𝐸
(𝑖𝑡) −1(1 − 𝛾) − 𝜃𝑖𝑡�̂�𝑅𝐾𝐷𝐸

(𝑖𝑡) −1(𝛾) + �̅�0 ∑ ∑(1 + 𝜔𝑖𝑡𝜙)𝜉𝑖𝑡
0

𝑡𝑖

− 𝜃0 ∑ ∑(1 − 𝜔𝑖𝑡𝜙)𝜉𝑖𝑡
0

𝑡𝑖

≤ h𝑚
0 − 𝐖𝑚

′ 𝐱 − ∑ 𝐕𝑡
′𝐞𝑡

𝑡

     ∀𝑚 ∈ ℳ 
(42d) 

�̅�𝑖𝑡 − 𝜃𝑖𝑡 + �̅�0 − 𝜃0 = [∑ 𝐐𝒌
′ 𝐕𝑘 − 𝐡𝒎

𝑘

]

𝑖+(𝑡−1).𝑙

∀𝑚, 𝑖, 𝑡 (42e) 

 

where 𝝀 and 𝜽 are the vectors of positive dual variables associated with constraints (38)-(41), 
[𝐱] returns the i-component of the vector 𝐱 and 𝑙 denotes the dimension of 𝝃𝑡. 
 

Case Study 

 

To evaluate its performance, the proposed data-driven robust energy management model is 

tested on a multi-MG system with three interconnected MGs [29]. This system has a radial 

topology similar to that represented in Fig. 1. MGs accommodate REGs, DDGs, ESSs, and 

internal loads. Each MG is responsible for determining its scheduling decisions as an 

independent entity. MGs can compensate for possible deviations between their generation and 

demand by exchanging energy between themselves. At the same time, they are allowed to 

sell/purchase energy to/from the main grid. Due to the fact that the scheduling decisions of MGs 

are correlated with each other, they must be coordinated so that the entire system operates 

efficiently. 

By employing this common benchmark test system, we will be able to compare the results 

of the proposed model with previous models and confirm its suitability for use in future MG 

community applications that are more complex. In addition to non-controllable loads, every 

MG includes controllable loads with the lower and upper bounds of 0 and 20%, respectively. 

Table 2 summarizes the parameters of ESSs and DDGs used in MG1, MG2, and MG3. Fig.2 

illustrates the day-ahead prediction for electricity price, renewable power generation, and loads 

on a typical day. The prediction error of REGs is represented by generating random samples 

from Gaussian distributions with zero mean and standard deviation of 10% [25]. All 
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optimization problems are solved using GAMS on a PC with an Intel Core i5 CPU and 8 GB 

RAM.  

 
Table 2. Parameters of ESS and DDG 

Unit parameter MG1 MG1 MG1 Ref. 

E
S

S
 𝑃

𝑐
𝑃

𝑑𝑐
(𝑘𝑊)⁄  150 125 160 [29] 

𝐸 𝐸⁄  80%, 20% 80%, 20% 80%, 20% [29] 

𝜂𝑐 𝜂𝑑𝑐⁄  0.97, 0.95 0.96, 0.98 0.95, 0.95 [29] 

D
D

G
 

𝑎 ($/𝑘𝑊ℎ2) 0.00003 0.00003 0.00003 [30] 

𝑏 ($/𝑘𝑊ℎ) 0.30 0.30 0.30 [30] 

𝑐 ($) 0 0 0 [30] 

𝑃𝑚

𝑔
𝑃𝑚

𝑔
⁄  200, 0 180, 0 160, 0 [29] 

𝑅𝑎𝑔 𝑅𝑎
𝑔

⁄  85, 80 75, 75 80, 70 [29] 

 

 
Fig. 2. Forecasted data of renewable energy, load, and electricity price 

 

Comparison of economic performance 

To analyze the economic results of the proposed DDRO model, two alternative models are 

utilized for comparison: (1) the deterministic model that ignores random fluctuations in the 

output power of renewable generators energy or assumes them to be fixed values, and (2) the 

polyhedral set-based robust optimization (PRO) model that is commonly used for uncertainty 

treatment in the energy management of networked MGs due to its ability to adjust the 

conservatism of the resulting robust solution [31]. To make a fair comparison, the reliability 

level of both robust optimization models is set at the same value (about 90%). The cost of 

robustness (CR) is used as an index to measure how much optimality is sacrificed to guarantee 
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solution robustness. This index is calculated as 𝐶𝑅 = (𝑂𝑅 − 𝑂𝐷) 𝑂𝐷⁄ , where OR and OD are 

the optimal costs of the robust and deterministic models, respectively. It is preferred to have a 

lower value of CR since it means less cost must be paid for robustness.  

It can be seen from Fig. 3 (a) that the deterministic model has the lowest operational cost, 

but it does not provide a hedge against uncertainty and leads to solutions that may become 

infeasible by small variations in renewable power generation. The power imbalance caused by 

the determinist solution increases real-time adjustment costs because the price of selling 

(buying) energy in the day-ahead market is usually higher (lower) than that in the real-time 

market. On the other hand, the robust models reduce the probability of violation of the real-

time power balance constraints and subsequently avoid renewable generation curtailment and 

load shedding for almost all possible uncertainty realizations. Based on the comparison of the 

costs of the robust models, the proposed DDRO model demonstrates superiority over the PRO 

model by providing robust scheduling solutions at a lower cost. To be more specific, the CR of 

the proposed model for MG1, MG2, and MG3 are 12%, 11%, and 7%, respectively, which are 

about half the CR returned by the PRO model.  

 

 

 

Fig. 3. The cost of MGs with/without power-sharing based on different optimization approaches 

 

To evaluate the merits of power trading between MGs, we also solve the energy management 

models while setting the variables of  𝑃𝑚,𝑛,𝑡
𝑒𝑥  equal to zero. Fig. 3 (b) shows that every MG can 

benefit from power trading. For example, the cost of MG1 is reduced by more than 14%, 15%, 

and 16% after allowing MG-to-MG power exchange in the deterministic, DDRO, and PRO 
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models. Table 2 summarizes the computational time of different energy management models. 

From the table, the deterministic optimization problem takes much less time to solve than the 

others due to a much smaller problem size. The computational time of the DDRO model with 

trading is about 245 s, which is slightly higher than that of the PRO model. The results also 

show that the case without trading has a shorter computational time compared to the case with 

trading. This is expected because power trading between MGs makes a connection between the 

optimization problems of individual MGs and increases the number of variables and constraints 

involved in the energy management problem. 

 
Table 3. The computational time of different energy management models 

 Mode Deterministic model DDRO model PRO model 

CPU time (s) 
With trading 12.5 245.9 235.5 

Without trading 6.2 196.6 185.9 

  

Optimal energy scheduling 

This subsection compares optimal scheduling schemes determined by the DDRO and PRO 

models. Fig. 4 shows the scheduling results of power trading and the power generation and 

reserve of DDGs for MG1. In this figure, negative values indicate that MG1 sells excess power 

to the main grid or other MGs, while positive values indicate that it buys power to compensate 

for power shortages. In comparison with the PRO model, the DDRO model reduces the amount 

of power generated and reserved by DDGs. It can also be seen that with the DDRO model, 

MG1 needs to buy less power from other entities or has more excess power to sell. The reason 

is that the polyhedral set used by the PRO model has a fixed structure and may include the 

worst-case outputs of REGs that have little or no chance of being realized. This requires MG1 

to generate more power from DDGs, buy more power from others, or make up for the deviation 

of REGs from their predicted output. On the other hand, the DDRO employs an uncertainty set 

that is self-adaptive to the uncertainty data of REGs and hedges against those worst-case power 

generation scenarios that are likely to happen in practice. As a result of incorporating realistic 

uncertainty realizations in the DDRO model, MG1 more efficiently utilizes REGs and needs 

less power to buy or generate from DDGs.  
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Fig. 4. Optimal scheduling of DDGs and power-sharing based on the DDRO and PRO models 

 

Robustness verification 

In this subsection, a quantitative evaluation is performed using Monte Carlo simulations to 

investigate how much the robustness ensured by the DDRO and PRO models will be achieved 

in practice [32]. This simulation evaluates the quality of different robust solutions obtained by 

changing the conservatism level of the DDRO and PRO models. The conservatism level of the 

PRO model is adjusted by a parameter named the budget of uncertainty that controls the number 

of uncertain parameters taking their worst-case values. For the DDRO model, the resulting 

solution becomes less conservative when the normalized uncertainty parameter 𝜙 of the 

confidence level 1 − 2𝛾 decreases. Each robust solution is evaluated individually using the 

following procedure: 

Stage 1: 1000 samples are randomly generated from Gaussian distribution to represent the 

prediction error of REGs (i.e.,  𝜉𝑚,𝑡) [25]. 

Stage 2: Using the generated samples, the DDRO and PRO model are respectively solved, and 

their first-stage decisions are fixed as parameters because they cannot change after the actual 

value of uncertain parameters becomes known. 

Stage 3: An additional 500 samples are generated for the evaluation of the out-of-sample 

performance.  

Stage 4: The optimization problem (42) with fixed first-stage decisions is solved for each 

random sample collected in stage 3 and the objective function value (total system cost) is 

calculated.  

Stage 5: The mean value of the total system costs calculated over all samples is computed. 

Moreover, the reliability level is calculated based on the probability of violation of real-time 

power adjustment constraints.  

The results of the above simulation for solutions with different conservatism levels are 

summarized in Fig. 5. Under the same reliability level, lower system costs indicate that less cost 

is incurred to ensure the robustness of scheduling decisions. Therefore, the DDRO model 

significantly outperforms the PRO model in terms of robustness cost. For example, the cost of 

the DRO model is 16% lower than that of the PRO model when the reliability level is around 

95%. This superiority is due to the fact that the DDRO model uses a compact uncertainty set 

constructed based on the distributional structure captured from uncertainty data, while the PRO 

model uses a fixed-shape uncertainty set without considering the geometry of uncertainty data. 

This means the PRO model must choose a large uncertainty set with a high robustness cost to 

achieve the same level of reliability as the DDRO model. The results also show that both models 
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have almost the same performance when the reliability level decreases. This is expected because 

in such cases, the uncertainty set of the DDRO model is not large enough to encapsulate all data 

samples and its performance becomes similar to the polyhedral set that only utilizes the lower 

and upper bounds of data samples. 

 

 
Fig. 5. Comparison of total system cost and reliability level of two robust optimization models 

 

Conclusions 

 

This paper develops a data-driven robust energy management model for co-optimizing the 

system operation and energy trading of multiple interconnected MGs. The proposed model 

determines robust scheduling decisions about the power generation and reserve of DDGs, the 

charging/discharging of ESSs, the sharing of power between MGs and the output of REGs while 

taking into account the uncertainties of wind turbines and photovoltaic systems simultaneously. 

These uncertainties are handled by a DDRO model under a data-driven uncertainty set 

constructed using the RKDE approach. Different from conventional uncertainty sets whose 

structure is fixed and has little or no connection with the probability distribution of uncertainty 

data, the constructed set accurately captures the region where uncertainty realizations may be 

located. To account for the multi-level and sequential decision-making process of scheduling, 

the energy management model is formulated as an adjustable robust optimization problem by 

incorporating wait-and-see decision variables, and the corresponding tractable formulation is 

obtained by adopting the affine decision rule approximation. 

 The managerial insights obtained from testing the proposed model on a system with three 

interconnected MGs are summarized as follows. Using the proposed DDRO model, the 

decision-maker can ensure the robust performance of MGs against possible variations in 

renewable power generation without having to pay a high robustness cost. To be more specific, 

the total cost of the DDRO model is about 10% lower than that of its deterministic counterpart. 

Comparing the performance of different uncertainty sets shows that the RKDE-based set 

outperforms the polyhedral set especially when the reliability level increases. This indicates 

that the RKDE-based set more effectively handles the uncertainty of renewable power 

generation in MGs and makes a reasonable trade-off between system robustness and economic 

performance. Therefore, the RKDE-based set is more appropriate for risk-averse decision-

makers who want to enhance the robust performance of MGs with a smaller increment of the 

total system cost. There are a number of future research directions that can be considered. First, 

the robust performance of MGs can be improved by hedging against the abrupt outage of power 
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generation caused by extreme weather conditions. Second, the proposed DDRO model could 

be integrated with principal component analysis (PCA) as a dimension reduction method to 

handle high-dimensional uncertainty more efficiently. Third, the robust energy management 

models can be solved in a distributed manner to protect the privacy of MGs.  
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