Baghaian, A., Lotfi, M. M., & Rezapour, S. (2022). Integrated deployment of local urban relief teams in the first hours after mass casualty incidents.
Operational Research,
22(4), 4517-4555.
https://doi.org/10.1007/s12351-022-00689-y
Barbarosoǧlu, G., & Arda, Y. (2004). A two-stage stochastic programming framework for transportation planning in disaster response.
Journal of the Operational Research Society,
55(1), 43-53.
https://doi.org/10.1057/palgrave.jors.2601652
Bayram, V., & Yaman, H. (2017). Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach.
Transportation Science,
52(2), 416-436.
https://doi.org/10.1287/trsc.2017.0762
Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of operations research, 23(4), 769-805.
Bozorgi-Amiri, A., Jabalameli, M. S., & Mirzapour Al-e-Hashem, S. M. J. (2013). A multi-objective robust stochastic programming model for disaster relief logistics under uncertainty.
OR Spectrum,
35(4), 905-933.
https://doi.org/10.1007/s00291-011-0268-x
Chang, K.-H., Chen, T.-L., Yang, F.-H., & Chang, T.-Y. (2023). Simulation Optimization for Stochastic Casualty Collection Point Location and Resource Allocation Problem in a Mass Casualty Incident.
European Journal of Operational Research.
https://doi.org/https://doi.org/10.1016/j.ejor.2023.01.065
CRED (Centre for Research on the Epidemiology of Disasters). (2018). Cred Crunch 52 - Economic Losses, Poverty and Disasters: 1998-2017. Available at www.cred. be/sites/default/files/CredCrunch52.pdf
Dean, M. D., & Nair, S. K. (2014). Mass-casualty triage: Distribution of victims to multiple hospitals using the SAVE model. European Journal of Operational Research, 238(1), 363-373.
Hamidieh, A., Naderi, B., Mohammadi, M., & Fazli-Khalaf, M. (2017). A robust possibilistic programming model for a responsive closed loop supply chain network design.
Cogent Mathematics,
4(1), 1329886.
https://doi.org/10.1080/23311835.2017.1329886
Ibrion, M., Mokhtari, M., & Nadim, F. (2015). Earthquake Disaster Risk Reduction in Iran: Lessons and “Lessons Learned” from Three Large Earthquake Disasters—Tabas 1978, Rudbar 1990, and Bam 2003.
International Journal of Disaster Risk Science,
6(4), 415-427.
https://doi.org/10.1007/s13753-015-0074-1
Li, Y., Zhang, J., & Yu, G. (2020). A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters.
Transportation Research Part E: Logistics and Transportation Review,
141, 102029.
https://doi.org/https://doi.org/10.1016/j.tre.2020.102029
Liberatore, F., Pizarro, C., de Blas, C. S., Ortuño, M. T., & Vitoriano, B. (2013). Uncertainty in Humanitarian Logistics for Disaster Management. A Review. In B. Vitoriano, J. Montero, & D. Ruan (Eds.),
Decision Aid Models for Disaster Management and Emergencies (pp. 45-74). Atlantis Press.
https://doi.org/10.2991/978-94-91216-74-9_3
McGuigan, D. (2002). URBAN SEARCH AND RESCUE AND THE ROLE OF THE ENGINEER.
Olson, R. S., & Olson, R. A. (1987). Urban heavy rescue. Earthquake Spectra, 3(4), 645-658.
Rezaei-Malek, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Bozorgi-Amiri, A. (2016). An interactive approach for designing a robust disaster relief logistics network with perishable commodities.
Computers & Industrial Engineering,
94, 201-215.
https://doi.org/https://doi.org/10.1016/j.cie.2016.01.014
Shishebori, D., & Yousefi Babadi, A. (2015). Robust and reliable medical services network design under uncertain environment and system disruptions.
Transportation Research Part E: Logistics and Transportation Review,
77, 268-288.
https://doi.org/https://doi.org/10.1016/j.tre.2015.02.014
Soyster, A. L. (1973). Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming.
Operations Research,
21(5), 1154-1157.
http://www.jstor.org/stable/168933