
Advances in Industrial Engineering, June 2024, 58(1): 197-217 

DOI: 10.22059/aie.2024.371468.1887 

 

RESEARCH PAPER   

  

 

Optimization of a Multi-Item Inventory Model 

Considering Partial Backordering and Imperfect 

Products Using Interior-Point, SA and WCA 

Monireh Babazadeh1, Abolfazl Mirzazadeh2* 

 
1Ph.D. Candidate, Department of Industrial Engineering, Engineering Faculty, Kharazmi University, 

Tehran, Iran. 
2Professor, Department of Industrial Engineering, Engineering Faculty, Kharazmi University, Tehran, 

Iran.  

Received: 22 January 2024, Revised: 29 June 2024, Accepted: 29 June 2024 

© University of Tehran 2024 

Abstract  

Developing and optimizing effective inventory systems considering realistic constraints 

and practical assumptions can help managers remarkably decrease inventory and 

consequently supply chain costs. In this research, we propose a new variant of the multi-

item inventory model taking into account warehouse capacity, on-hand budget constraints, 

imperfect products in supply deliveries and partial backordering where the products can 

be converted into perfect products by a local repair shop. To deal with the proposed model, 

three solution approaches, including interior-point technique, as an exact method, and two 

metaheuristics based on Simulated Annealing (SA) and Water Cycle Algorithm (WCA), 

are proposed. Extensive computational experiments are conducted on different sets of 

instances. Using different measures such as RPD, PRE, and computational time, the 

performance of the solution approaches is evaluated within different test instances. The 

results show that the WCA outperforms the two other approaches and leads to the best 

solutions in the proposed problem. 
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Introduction 

 

In real-world inventory systems, supply deliveries may contain defective items, leading to 

additional costs and reduced customer satisfaction. Traditional deterministic models often fail 

to address the complexities introduced by such defects adequately. This study aims to develop 

a more sophisticated inventory model that considers partial backordering and imperfect 

products, extending the existing single-item models to a multi-item formulation. This extension 

is crucial because it more accurately reflects the complexities of real-world inventory systems, 

where multiple items with varying defect rates and backordering policies must be managed 

simultaneously. 

The specific problem addressed in this manuscript closely aligns with the issues studied by 

Khalilpourazari et al. (2019a). However, our research introduces significant new contributions 

by extending the single-item problem to a multi-item context. While Khalilpourazari et al. 

(2019b) addressed a multi-item economic order quantity model with imperfect items, our study 
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further enhances this by considering partial backordering and the interactions between multiple 

items, which introduces additional layers of complexity. This multi-item approach, coupled 

with partial backordering, has not been comprehensively studied in the literature, making our 

study a novel contribution. 

In previous studies, the complexities of this multi-item inventory model, we utilize a 

combination of Simulated Annealing (SA) and the Water Cycle Algorithm (WCA). 

Khalilpourazari et al. (2019b) utilized the interior-point method, Grey Wolf Optimizer (GWO), 

and Moth-Flame Optimization (MFO) for solving their problem. In contrast, our research 

leverages the complementary strengths of SA and WCA to tackle the optimization challenges 

effectively. The hybrid application of these methods to a multi-item inventory model 

considering partial backordering and imperfect products is novel and offers new perspectives 

on solving such complex problems. 

Furthermore, we have introduced modifications to the standard implementations of SA and 

WCA to enhance their performance specifically for our problem. These modifications include 

customized cooling schedules in SA and adaptive runoff coefficients in WCA, tailored to better 

handle the non-linear and multi-modal nature of the multi-item inventory optimization problem. 

These enhancements ensure more robust and faster convergence to near-optimal solutions 

compared to traditional implementations. Unlike Khalilpourazari et al. (2019b), who focused 

on the efficiency of MFO and GWO, our study emphasizes the balance between exploration 

and exploitation in SA and WCA, making them particularly suited for high-dimensional and 

complex optimization problems. 

The main contributions of this study can be summarized as follows: 

1. New Problem Formulation: We present a novel multi-item inventory model that integrates 

partial backordering and imperfect products, expanding the scope of existing single-item 

models. 

2. Hybrid Optimization Approach: We propose a unique combination of SA and WCA, along 

with specific modifications to these algorithms, to effectively solve the complex 

optimization problem. 

3. Performance Improvement: Our customized SA and WCA implementations demonstrate 

superior performance in terms of solution quality and computational efficiency compared to 

traditional methods. 

Comparison with the research of Khalilpourazari et al. (2019b): 

In contrast to the work by Khalilpourazari et al. (2019b), which used stochastic operational 

constraints and focused on exact and meta-heuristic methods like GWO and MFO, our study 

focuses on the practical implications of partial backordering and defective items in a multi-item 

setting. While their study performed well in small to medium-sized problems, our research aims 

to extend this to larger, more complex inventory systems by using the hybrid SA and WCA 

approach, which provides robust and scalable solutions. 

By addressing these new dimensions, our research provides a comprehensive framework for 

inventory management that better mirrors real-world conditions and offers practical solutions 

for businesses dealing with multiple items and imperfect supplies. These contributions not only 

extend the current body of knowledge but also pave the way for further research and practical 

applications in inventory optimization. 

In summary, this study contributes to the literature by not only addressing the complexities 

of inventory models with partial backordering and imperfect products but also by demonstrating 

the practical utility of SA and WCA in solving such problems. We believe that the insights 

gained from this research will pave the way for future studies and practical applications in 

inventory management, leading to more efficient and cost-effective operations. 
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Literature Review 

 

Khan et al. (2011) presented an inventory model with defective products, taking into account 

the imperfectness of the inspection process [4]. They assumed that the operator may commit 

type I and II errors during the inspection process. They also proposed that the imperfect items 

have been classified as perfect ones and used to meet the customers’ demand, would be 

immediately returned to the inventory system by the customers. Hsu and Hsu (2013) improved 

the formulation presented by Khan et al. (2011) by considering the allowability of backorders 

in the EOQ model [5]. They showed the convexity of the total profit function and presented 

simple approaches to solve the model. Skouri et al. (2014) extended an inventory model 

considering imperfect supply lots [6]. They proposed that the supply deliveries are checked 

upon arrival, and if any defective item is found, the entire lot will be rejected. The rejected 

batch would be sent back to the supplier, and the supplier should deliver the perfect supply 

batch in the next period. Taleizadeh et al. (2016) studied the EOQ model in the presence of 

defective items. They supposed that the defective items could be converted into perfect products 

by sending them to a local repair shop. They have considered defective products and partial 

backordering [7]. Khalilpourazari et al. (2019a) developed a new mathematical model for multi-

item model considering defective supply batches and partial backordering under uncertainity. 

The model aims at minimizing the total inventory costs by determining optimal values of the 

decision variables including time interval between successive perfect supply deliveries. Basic 

Chance Constraint Programming (BCCP) and Robust Fuzzy Chance Constraint programming 

(RFCCP) approaches have been utilized to deal with the uncertain parameters of the 

mathematical model [8]. In another work, Khalilpourazari et al. (2019b) proposed a new version 

of multi-item EOQ model with imperfect items in supply deliveries and uncertain warehouse 

capacity and budget constraints. They assumed that the inspection process to classify the items 

is not perfect and may contain two types of error: Type-I and Type-II. Their proposed model 

determined the optimal order and back order sizes of the items to achieve maximum total profit. 

Three different solution methods including the interior-point and two meta-heuristics named 

grey wolf optimizer (GWO) and moth-flame optimization (MFO) algorithms were utilized to 

solve the developed constrained nonlinear problem [9]. 

Taheri-Tolgari et al.  (2019) addressed a production system with the defective quality process 

considering partial backlogging under uncertainiy, inspection errors and preventive 

maintenance. They considered input parameters as a triangular fuzzy environment, and the 

output parameters of the model have been solved by the Zadeh's extension principle and 

nonlinear parametric programming [10]. 

Nobil et al. (2020) generalized the inventory model presented by Salameh and Jaber (2000) 

by proposing the optimal reorder point, based on the specifications such that inventory systems 

do not suffer from shortage. Their model helps managers and researchers to design the 

inventory systems considering certain rates of imperfect production, lead-time, and system 

costs to maximize system efficiency and profit [11]. Taheri-Tolgari and Mirzazadeh (2021) 

represented a multi-item single source production quantity model for random imperfect items 

with repair failure, inspection errors, sales return, scraps, and backordering. Their study aimed 

at determining the optimum cycle length and the optimal backordered quantity for each item to 

minimize the total expected value cost [12]. 

Table 1 shows some  researches focusing on the EOQ models with inperfect products and 

indicates the place where our research stands in the related literature. In this paper, we introduce 

a multi-item inventory model with defective products in deliveries  considering some realistic 

operational constraints such as partial backordering, warehouse capacity and on-hand budget 

constraints. 

Many industries face different types of products in real applications. Therefore, considering 
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different items in the mathematical model can significantly improve the model’s applicability, 

which has been considered in this research. Also, inventory systems face many operational and 

physical constraints, in practice, which can meaningfully reduce the model solution space. 

Ignoring such constraints may lead to an unrealistic model, and consequently infeasible 

solutions in real-life cases. This research proposes two significant operational constraints in 

inventory systems. The first one is the limited capacity of warehouse to keep products in stock. 

The second one is the on-hand budget constraint where the retailer has a limited budget to 

purchase items at the beginning of the planning period. 

This study is an extension of the work presented by Taleizadeh et al. (2016), in which a 

multi-item EOQ model is developed with the presence of defective items in supply deliveries, 

partial backordering, warehouse capacity and on-hand budget constraints [7]. The interior-point 

technique, as an exact method, and two metaheuristics based on Simulated Annealing (SA) and 

Water Cycle Algorithm (WCA) have been used. The proposed mathematical model aims at 

determining the optimal order and back order sizes of the items in order to maximize the total 

profit. 
 

Table 1 A review of the literature of inventory models 
Publicati

on 
Author Multi-Item Constraint 

Back 

Orders 

Inspectio

n errors 
Inspection Remark(s) 

[1] Salameh(2000) No No No No Yes 
Random defective 

rate 

[22] 
Papachristos 

(2006) 
No No No No Yes Defective items 

[23] Chung(2006) No No No No Yes Delay in payments 

[24] Wee(2007) No No Yes No Yes Screening cost 

[3] Eroglu(2007) No No Yes No Yes Scrap items 

[25] 
Konstantaras 

(2007) 
No No No No Yes In-house inspection 

[26] Maddah (2008) No No No No Yes 
Several batches in a 

lot 

[27] Chung(2009) No No No No Yes Two warehouses 

[28] Lin(2010) No No No No Yes Discount 
[29] Khan(2010) No No No No Yes Learning effect 

[30] Roy(2011) No No No No Yes Partial backordering 

[4] Khan(2011) No No No Yes Yes Returns 

[31] Ouyang(2012) No No No No Yes 
Permissible delay in 

payments 

[5] Hsu(2013) No No Yes Yes Yes Returns 

[6] Skouri(2014) No No Yes No Yes 
Rejection of 

imperfect lots 

[7] Taleizadeh(2016) No No Yes No Yes Repair 

[8] 
Khalilpourazari 

(2019) 
Yes Yes No No No Disruption 

[9] 
Khalilpourazari 

(2019) 
Yes Yes Yes Yes Yes optimization 

[39] Taheri(2019) No No Yes Yes Yes 
preventive 

maintenance 

[10] Taheri(2019) No No No No No 
Uncertain known 

price 
[32] Tahami(2019) No No No No No Lead time 

[11] Nobil(2020) No No No No No Reordering 

[33] De(2021) No No No No No Fuzzy reasoning 
[34] Li(2021) No No No No No Customer credit 

[35] Çalışkan(2021) No No No No No Deteriorating items 

[36] Paul(2021) No No No No Yes 
Selling price-

dependent demand 

[12] Taheri(2021) Yes No Yes Yes Yes rework failure 

[37] Taheri(2022) No No No Yes Yes 
crisp and fuzzy 

approach 

[38] Masoudi(2022) No Yes No No No 
Evidence reasoning 

 
[40] Alamri(2022) No No No Yes Yes Learning Effect 

[41] Asadkhani(2022) No No No Yes Yes Learning Effect 

[42] Kishore(2022) No No No Yes Yes 
Two-stage credit 

financing 

Current 

Research 
2024 Yes Yes Yes No Yes 

Repair and partial 

backlogging 
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The mathematical model presented in this research can be applied in any industries dealing 

with a different number of various products while ensuring the perfectness of the supply 

deliveries. This paper is organized as follows. The proposed problem is described and 

formulated in Sections 2. In Section 3, we provide efficient solution methodologies to address 

the problem. The computational results are represented in Section 4. Finally, the paper ends 

with conclusions and interesting future research suggestions in Section 5. 

 

Problem definition  

 

Let us consider a buyer who purchases some items from a supplier. The supplied batch (lot) 

may contain defective products because of quality inspection errors, inappropriate 

transportation, etc. The buyer inspects the whole lot upon arrival to detect the defective items 

which should be replaced by perfect ones.  Since the supplier is far from the buyer, and due to 

high ordering costs and lead time, it is impossible to make a new order. Instead of making a 

new order, the buyer prefers to repair the defective products. In this research, it is assumed that 

all the defective items can be repaired. The defective items are removed from the batch and sent 

to a local repair facility. After the reparation period, the buyer will receive the repaired products 

as a single batch.  Also, multiple items and several operational constraints including warehouse 

capacity and on-hand budget constraints have been considered. 

 

Mathematical modeling   

In this section, we present the research methodology employed to address the complexities 

of multi-item inventory optimization considering defective products and repair processes. 

Additionally, we provide a detailed description of the mathematical model developed to 

formulate the problem. 

Our research focuses on a scenario where a buyer purchases items from a supplier, and the 

supplied batch may contain defective products due to various factors such as quality inspection 

errors and inappropriate transportation. Upon the arrival of the batch, the buyer conducts a 

thorough inspection to identify defective items, which are then sent to a local repair facility for 

necessary repairs. It is assumed that all defective items can be repaired, and after the reparation 

period, the repaired products are returned to the buyer as a single batch. 

In addition to defective products and repair processes, our model considers multiple items 

and several operational constraints, including warehouse capacity and on-hand budget 

constraints. The inspection process, characterized by a rate denoted as x, is conducted upon 

arrival by the buyer to identify defective products. The inspection period is determined by 
1

𝑥
, 

and defective goods are subsequently returned to the repair facility. After repair and 

transportation, the restored products become available to meet customer demands. It is 

noteworthy that the inspection rate x surpasses the demand rate. 

The mathematical model developed to address this scenario incorporates decision variables 

to represent ordering and backordering quantities for each item, along with binary variables to 

indicate the presence of defective items. Constraints are formulated to ensure adherence to 

inventory levels, warehouse capacities, and budget constraints throughout the planning horizon. 

The objective function aims to maximize total profit, considering costs associated with 

ordering, holding, repairing defective items, and potential lost sales due to backordering. 

To solve the formulated mathematical model, we introduce modifications to the standard 

implementations of Simulated Annealing (SA) and the Water Cycle Algorithm (WCA). These 

modifications include customized cooling schedules in SA and adaptive runoff coefficients in 

WCA, tailored to better handle the non-linear and multi-modal nature of the multi-item 

inventory optimization problem. By emphasizing the balance between exploration and 

exploitation in SA and WCA, our study ensures more robust and faster convergence to near-
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optimal solutions compared to traditional implementations. Figure 1 shows the inventory level 

over time. 
 

 
Fig. 1 The inventory level over time Taleizadeh et al. (2016) 

 

Let us introduce the following parameters and decision variables: 

 

Parameters:  

it   : inspection time 

Rt  : repair time 

Tt   : transportation time of defective items 

D   : demand rate  

R   : reparation rate  

x    : inspection rate   

   : the fraction of imperfect products  

A    : fixed transportation cost  

k    : buyer's ordering cost  

s    : repair setup cost  

h    : holding cost  
'h    : holding cost at the repair 

Rh   : holding cost of a renovated item  

ic    : unit inspection cost  

uc   : unit cost  

lc    : material and labor cost to repair a product  

tc    : unit transportation cost  

Rc   : unit repair cost charged to the buyer  

g    : cost of lost sales  

    : backorder cost  

P    : unit price  

m    : markup percentage by the repair shop  

    : fraction of backordered demand  

( )f   : probability density function of imperfect products (  )  

𝐸[𝑥]    : expected value of a random variable 
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Decision variables:  

T  : cycle time (time unit)  

F  : percentage of duration in which inventory level is positive (%)  

 

First, the calculation of the total inventory profit function is presented. At the beginning of 

the inventory cycle, the maximum inventory level is accrued, which is equal to FTD. In the 

beginning, the buyer inspects the supplied batch upon arrival at rate x. Thus, the inspection time 

is equal to /it FTD x= . After the inspection process, FTD  items are found as defective ones. 

The defective items are then sent to the reparation site. The repair time can be calculated as 

/R Tt FTD R t= + . Therefore, the repair cost is equal to '2
(1 ) ( 2 .l t R

s A
m c c h t

FTD

  +
+ + + +  

  
 

Based on the inventory behavior figure, the total holding and backordering costs can be 

calculated as follows: 

 

( ) ( ) ( )
2 2 22

1

2 2
R

F TD T FD F DT
HC h h

x

  −
= + +

 
 
 

 (1) 

( )
( )( )

2

1
1 1

2

F TD
SC g F D


 

−
= + − −  (2) 

 

Based on the above-mentioned formulations, the maximization of the total inventory profit 

is as follows: 

 
𝐸𝑇𝑃(𝑇, 𝐹) = 𝑃𝐷(𝐹 + 𝛽(1 − 𝐹))

−

[
 
 
 
 
 
 
𝑘

𝑇
+ 𝑐𝑢(𝐹𝐷 + 𝛽(1 − 𝐹)𝐷) + 𝑐𝑖𝐹𝐷 + ℎ [

𝐸((1 − 𝜌)2)𝐹2𝑇𝐷

2
+

𝐸(𝜌)𝐷2𝐹2𝑇2

𝑥
]

+(1 + 𝑚) (
𝑠 + 2𝐴

𝑇
+ 𝐸(𝜌)𝐹𝐷(𝑐𝑖 + 2𝑐𝑡 + ℎ′𝑡𝑇) +

𝐸(𝜌2)ℎ′𝐷2𝐹2𝑇

𝑥
)

ℎ𝑅

𝐸(𝜌2)𝐷𝐹2𝑇

2
+ 𝜋

𝛽(1 − 𝐹)2𝑇𝐷

2
+ 𝑔(1 − 𝛽)(1 − 𝐹)𝐷 ]

 
 
 
 
 
 

 
(3) 

 

Although the above mathematical model is applicable in many industries, it still includes 

some unrealistic assumptions that can significantly restrict the model’s applicability. First, the 

model considers the single-item EOQ model. However, many industries face different types of 

products in real applications. Therefore, considering different items in the mathematical model 

can significantly improve the model’s applicability. Second, the presented model did not 

consider any constraints such as warehouse capacity and economic constraints. For instance, 

the warehouse capacity is limited in the industry to keep products in stock. Therefore, it is 

needed to consider the warehouse capacity constraint as an operational constraint in the model. 

Since these constraints significantly affect the space model, the solutions provided by the model 

presented by Taleizadeh et al. (2016) may be infeasible in real cases [7]. The second important 

constraint which highly influences the total order quantity is the on-hand budget constraint. In 

real-world applications, the retailer has a limited budget to purchase items at the beginning of 

the planning period. Thus, it is required to reflect this constraint in the formulation to represent 

a more realistic situation. 

In the following, we try to extend the model presented by Taleizadeh et al. (2016) to a multi-

item inventory system, which considers defective items in the supply batches and repair options 

[7]. In this regard, the objective function is modified as: 
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𝐸𝑇𝑃(𝑇𝑗 , 𝐹𝑗)

= ∑𝑃𝑗𝐷𝑗 (𝐹𝑗 + 𝛽𝑗(1 − 𝐹𝑗))

𝑛

𝑗=1

−

[
 
 
 
 
 
 
 
 
 
∑

𝑘𝑗

𝑇𝑗

𝑛

𝑗=1

+ ∑𝑐𝑢𝑗(𝐹𝑗𝐷𝑗 + 𝛽𝑗(1 − 𝐹𝑗)𝐷𝑗)

𝑛

𝑗=1

+ ∑𝑐𝑖𝑗𝐹𝑗𝐷𝑗

𝑛

𝑗=1

+ ∑ℎ𝑗 [
𝐸𝑗 ((1 − 𝜌𝑗)

2
) 𝐹𝑗

2𝑇𝑗𝐷𝑗

2
+

𝐸𝑗(𝜌𝑗)𝐷𝑗
2𝐹𝑗

2𝑇𝑗
2

𝑥𝑗

]

𝑛

𝑗=1

+∑(1 + 𝑚𝑗) (
𝑠𝑗 + 2𝐴𝑗

𝑇𝑗

+ 𝐸𝑗(𝜌𝑗)𝐹𝑗𝐷𝑗(𝑐𝑖𝑗 + 2𝑐𝑡𝑗 + ℎ′
𝑗𝑡𝑇𝑗) +

𝐸𝑗(𝜌𝑗
2)ℎ𝑗

′𝐷𝑗
2𝐹𝑗

2𝑇𝑗

𝑥𝑗

)

𝑛

𝑗=1

+∑ ℎ𝑅𝑗

𝐸𝑗(𝜌𝑗
2)𝐷𝑗𝐹𝑗

2𝑇𝑗

2

𝑛

𝑗=1

+ ∑𝜋
𝛽𝑗(1 − 𝐹𝑗)

2
𝑇𝑗𝐷𝑗

2

𝑛

𝑗=1

+ ∑𝑔(1 − 𝛽𝑗)(1 − 𝐹𝑗)𝐷𝑗

𝑛

𝑗=1 ]
 
 
 
 
 
 
 
 
 

 

 (4) 

 

where index 𝑗 is related to different items and 𝑛 indicates the total number of items.  

To consider the operational constraints, we need to derive the warehouse capacity constraint. 

As it is clear from Figure 1, the maximum inventory level for each product is equal to j j jF D T . 

Let suppose that each item requires j units of warehouse space for keeping the product in 

stock. Therefore, the total warehouse capacity constraint can be presented as follows: 
 

1

n

j j j j

j

F D T Cap
=

  (5) 

 

where Cap  indicates the total existing warehouse capacity. 

The second operational constraint is the on-hand budget constraint. From Figure 1, it is clear 

that the retailer receives a single batch for each item, including (1 )j j j j j j jF D T F D T+ −  units. 

Therefore, considering the price uic  for each item-unit, the total on-hand budget constraint can 

be formulated as follows. 
 

∑𝑐𝑢𝑖(𝐹𝑗𝐷𝑗𝑇𝑗 + 𝛽𝑗(1 − 𝐹𝑗)𝐷𝑗𝑇𝑗) ≤ 𝐵

𝑛

𝑗=1

 (6) 

 

where the parameter Budget  presents the total on-hand budget amount to purchase items at the 

beginning of the planning cycle. The developed multi-item EOQ model with defective items 

and repair options in a multi-item inventory system with the proposed operational constraints 

can be presented as follows: 
 

( )( )

( )( )

( )( ) ( )

( ) ( ) ( )
( )

( )

1 1 1

2 2
2 2 2

1

2 ' 2 21

'

1

2 2

1

1

2
   1

2
1 2

n n n
j

uj j j j j j ij j j

j j jj

n
j j j j j

j j j j j

j

n j j

j j j j j

j n
j j j j j jj j

j j j j j ij tj j Tj

j j j

j j j j j

R j

k
c F D F D c F D

T

E F T D E D F T
h

x
Max z P D F F

E h D F Ts A
m E F D c c h t

T x

E D F T
h



 








= = =

=

=

=

+ + − +

−
+ +

= + − −

+
+ + + + + +

+

 
 
 
 

 
 
 

  







( )
( )( )

2

1 1 1

1
1 1

2 2

n n n
j j j j

j j j

j j j

F T D
g F D


 

= = =

−
+ + − −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
(7) 

 

Subject to 
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1

n

j j j j

j

F D T Cap
=

  (8) 

∑𝑐𝑢𝑖(𝐹𝑗𝐷𝑗𝑇𝑗 + 𝛽𝑗(1 − 𝐹𝑗)𝐷𝑗𝑇𝑗) ≤ 𝐵

𝑛

𝑗=1

 (9) 

0 ≤ 𝐹𝑗 ≤ 1 (10) 

𝑇 ≥ 0 (11) 

 

Solution methods 

 

Interior-Point method 

To optimally solve the proposed problem, an exact solution approach, called the interior-

point technique, is applied. This method is one of the most frequent solution approaches in 

resolving challenging Non-Linear Programming (NLP) models (Byrd et al. (2000), Byrd et al. 

(1999) and Waltz et al. (2006) [13-15]). 

 

Simulated annealing   

Simulated annealing (SA), proposed by Kirkpatrick et al. (1983), is an eminent metaheuristic 

algorithm to solve challenging optimization problems [16]. Tang (2004) and Yang (2010) 

claimed that SA achieves excellent solutions for many problems [17,18]. The pseudo-code of 

the SA is as follows: 

 
Algorithm 1 Simulated Annealing algorithm 

 1:  Set the parameters of Simulated Annealing 

 2:  Create an initial solution 

 3:  it current iteration 

 4:  Maxitmaximum number of iterations 

 5:  CtCurrent temperature 

 6:  FtFinal temperature 

 7:  while Ct>Ft and it<Maxit 

 8:         Update the position using Neighborhood 

 9:         C=Calculate the change in objective function value 

10:         if the new solution is better 

11:                  Accept the new solution 

12:         end if 

13:          p = exp[−C
Ct⁄ ] > rand(0,1) 

14:          if p > rand(0,1) 

15:                Accept the new solution 

16:          end if 

17:          Update the best solution 

18:          Iteration=iteration+1 

19:  end while 

 

Water cycle algorithm 

Eskandar et al. (2012), for the first time, suggested the Water cycle algorithm (WCA) which 

inspires the water cycle and the flow of streams and rivers to the sea [19]. This approach starts 

by creating an initial population. Each solution in the WCA is called a stream or raindrop. In 

this research, a raindrop is defined as 
1 1

[ ,..., , ,..., ]
n n

Raindrop T T F F= . 

After creating the initial population, the WCA sorts the raindrops according to their fitness 

value. Then, the best solution is considered as the sea. The (Nsr-1) of the sorted population are 

regarded as rivers and streams. We note that Nsr is a parameter of the WCA. The WCA updates 

the location of the solutions to the position of rivers and the sea, respectively. To perform 

updating, the WCA uses the following operator.  
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𝑥𝑠𝑡𝑟
𝑖+1 = 𝑥𝑠𝑡𝑟

𝑖 + 𝑅 × 𝐶 × (𝑥𝑟𝑖𝑣
𝑖 − 𝑥𝑠𝑡𝑟

𝑖 ) (12) 

 

where 𝑅 and C are coefficients and 𝑥𝑠𝑡𝑟
𝑖  and 𝑥𝑠𝑡𝑟

𝑖+1 show the location of the stream before and 

after the update, respectively. Eskandar et al. (2012), Sadollah et al. (2015) showed that the 

WCA could achieve better solutions than the other algorithms in various unconstraint and 

constrained optimization problems [19, 20]. The pseudo-code of the utilized WCA of this paper 

to solve the problem at hand is as follows. 

 
Algorithm 2 Water cycle algorithm (WCA) 

 1:  set the parameters of WCA 

 2:  for i=1:number of raindrops 

 3:        Create a raindrop 

 4:        Calculate the objective function  

 5:  end for 

 6:  sort the raindrops in non-decreasing order of fitness 

 7:  Sea  the first raindrop 

 8:  Rivers  srn  - 1 

 9:  Stream  popn - srn  

10:  Determine the flow intensity of streams to rivers 

11:  While   iteration < max it 

12:              Updating process 

13:              Fval-stream=obj_new stream 

14:              for each raindrop 

15:                      if    Fval-stream < Fval-river 

16:                             River= the new stream 

17:                             if    Fval-stream < Fval-sea 

18:                                    Sea= the new stream 

19:                             end if 

20:                      end if 

21:                      if    Fval-river < Fval-sea 

22:                               Sea=river 

23:                     end if 

24:              end for 

25:             for   each river 

26:                     if    the distance between the sea and river < maxd  

27:                             create new streams 

28:                     end if 

29:             end for 

30:             Decrease the  maxd  

31: end while 

 

In response to the insightful suggestion by the reviewer, we recognize the potential value in 

reframing the problem as a stochastic optimization problem. This approach allows for the 

integration of probabilistic elements such as demand variability and lead time uncertainty into 

the decision-making process, thereby enhancing the robustness and adaptability of inventory 

management policies. 

To address the stochastic nature of the problem, we propose to extend the current 

deterministic optimization framework to incorporate probabilistic constraints and objectives. 

Specifically, we intend to model demand fluctuations and lead time uncertainties using 

probability distributions, such as normal or exponential distributions, to capture the inherent 

variability in real-world inventory systems. 

Building upon existing optimization methods, both exact and approximate, we aim to adapt 

these techniques to solve the stochastic optimization problem effectively. For instance, by 
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relaxing capacity or budget constraints, we can explore the application of Chance-constrained 

approaches or Lagrangian dual relaxation methods. These methods offer systematic ways to 

handle uncertainty while optimizing inventory policies, leveraging the rich literature on 

stochastic optimization techniques. 

The proposed extension of the problem to a stochastic optimization framework represents a 

significant research contribution to the Inventory and Operations Management (OM) literature. 

By investigating new solution methodologies tailored to stochastic environments, we can 

provide practical insights and tools for decision-makers to optimize inventory policies under 

uncertainty. Furthermore, this research direction aligns with the growing demand for robust and 

adaptive inventory management strategies in dynamic and unpredictable business 

environments. 

In conclusion, the integration of stochastic optimization techniques into our research 

framework offers a promising avenue for future exploration and contribution to the field. By 

leveraging probabilistic models and innovative solution methods, we can address the inherent 

uncertainties in inventory systems and enhance decision-making capabilities for practitioners 

in various industries. 

 

Performance evaluation and numerical examples 

 

In this paper, we consider three criteria utilized to assess the efficiency of the proposed 

algorithms. For small-size instances, the best solution is determined using the interior-point 

method. In this case, the Percentage Relative Error (PRE) shows the gap between the solutions 

obtained by metaheuristics and the exact method as follows [21]: 

 

𝑃𝑅𝐸 =
𝐴𝑙𝑔𝑠𝑜𝑙−𝑂

𝑂
× 100, (13) 

 

where 𝐴𝑙𝑔𝑠𝑜𝑙 is the solution of the metaheuristic algorithms, and O is the optimal solution. 

Since the interior-point method is not able to obtain the optimal solution in a practical 

computational time for large-size instances, the Relative Percentage Deviation measure (RPD) 

is used to compare the efficiency of the algorithms. 

 

𝑅𝑃𝐷 =
𝐴𝑠𝑜𝑙−𝑀𝑖𝑛𝑠𝑜𝑙

𝑀𝑖𝑛𝑠𝑜𝑙
× 100, (14) 

 

where 𝐴𝑠𝑜𝑙 is the solution obtained by WCA and SA, and  𝑀𝑖𝑛𝑠𝑜𝑙 is the best solution determined 

among these two algorithms.  

The other important measure to evaluate the effectiveness of the proposed approaches is the 

computational time (CPU-Time). In the next section, various test problems with different sizes 

are solved to evaluate the performance of the algorithms using the above-mentioned measures. 

 

Small-size test problems 

In the following, a different number of products are considered. In each problem (with a 

specific number of products), four randomly generated test problems are considered. Then, each 

problem is resolved by interior point to find the optimal solution. Also, each problem is resolved 

ten times (repetition) using WCA and SA. Table 2 presents the computational results. 

As it can be seen in Table 2, the two meta-heuristic algorithms find near-optimal solutions. 

Although the results show that the two algorithms can efficiently solve the problem, more 

examination is required to draw a consistent conclusion. First, by increasing the number of 

products in the problem, the interior-point method needs more computation time. It means that 

solving the constrained non-linear model of the problem using this method becomes too hard 

for large sizes. 
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Table 2 Computational results of the small instances 
# of 
item

s 

Run 

Interior-Point SA WCA 

Opt 

Sol 
CT 

PREAv

g 
Best worst 

Std 

Dev 

CTAv

g 

PREAv

g 
Best worst 

Std 

Dev 
CTAvg 

5 

1 

26901

330.1 
 

19.664 
1.31E-

01 

-7.43E-

09 

6.74E-

01 
0.253 

0.41

5 

1.34E-

01 

-

7.43E-
09 

6.71E-

01 

0.26

854 
0.422 

2 
22092

182.4 
27.248 

3.79E-

01 

-1.69E-

14 

1.27E

+00 
0.577 

0.40

8 

-

1.69E-
14 

-

1.69E-
14 

-

1.69E-
14 

3.16

E-30 
0.413 

3 
25664
638.3 

23.813 
1.76E-

01 
-2.90E-

14 
1.51E
+00 

0.447 
0.41

0 

-

2.90E-

14 

-

2.90E-

14 

-

2.90E-

14 

0 0.412 

4 
24370
478.8 

22.478 
6.17E-

01 
-3.06E-

14 
2.80E
+00 

0.928 
0.41

4 

-

3.06E-

14 

-

3.06E-

14 

-

3.06E-

14 

0 0.412 

10 

1 
49545

409 
35.382 

1.30E

+00 
2.36E-02 

3.58E

+00 
0.990 

0.88

6 

8.65E-

0 

-

1.61E-

09 

1.87E

+00 

0.63

5492 
0.789 

2 
59493

183 
63.512 

-
4.92E-

01 

-
1.04E+0

0 

3.15E-

01 
0.389 

0.81

6 

-
6.80E-

01 

-
1.01E

+00 

1.01E-

01 

0.37

7833 
0.751 

3 
51172

780 
60.305 

-

1.42E
+00 

-

2.06E+0
0 

-

5.90E-
01 

0.401 
0.83

5 

-

1.36E
+00 

-

2.20E
+00 

-

2.13E-
01 

0.72

0938 
0.748 

4 
48695

794 
28.502 

1.98E

+00 
6.79E-01 

4.38E

+00 
1.206 

0.80

9 

1.11E

+00 

4.90E-

01 

2.37E

+00 

0.55

198 
0.736 

15 

1 
74103

921 
26.805 

2.45E
+00 

-2.07E-
01 

3.99E
+00 

1.303 
1.50

5 

-

7.26E-

01 

-

1.13E

+00 

3.62E-
01 

0.42
9634 

1.137 

2 
61731

276 
94.001 

3.00E

+00 
5.70E-01 

5.54E

+00 
1.396 

1.44

4 

6.78E-

01 

-
2.49E-

01 

1.28E

+00 

0.43

4238 
1.119 

3 
79856

807 
82.591 

1.97E-

01 

-
1.23E+0

0 

8.74E-

01 
0.643 

1.43

4 

7.63E-

01 

-
7.47E-

01 

2.93E

+00 

0.91

9529 
1.093 

4 
75098

433 
67.516 

1.12E

+00 

-7.44E-

01 

3.01E

+00 
1.283 

1.52

3 

-

8.62E-
01 

-

1.95E
+00 

6.83E-

01 

0.87

6919 
1.144 

20 

1 
84562

497 
339.25 

1.23E

+00 
1.02E-01 

2.06E

+00 
0.587 

2.08

3 

8.96E-

01 

-

5.57E-
01 

1.68E

+00 

0.65

8868 
1.558 

2 
93604

784 
354.80 

8.98E-

01 
5.56E-01 

1.43E

+00 
0.253 

1.95

3 

6.39E-

01 

1.53E-

01 

1.09E

+00 

0.29

1159 
1.484 

3 
83432

678 
104.23 

1.91E

+00 
5.98E-02 

3.76E

+00 
1.367 

1.93

1 

2.50E-

01 

-
5.14E-

01 

8.59E-

01 

0.43

5 
1.456 

4 
1.09E

+08 
248.30 

9.79E-

01 
5.99E-01 

1.40E

+00 
0.259 

2.00

6 

6.35E-

01 

9.02E-

02 

1.01E

+00 

0.30

8 
1.494 

25 

1 
1.21E

+08 
385.61 

7.46E-

01 
4.81E-01 

1.04E

+00 
0.171 

2.95

1 

7.06E-

01 

4.79E-

02 

1.29E

+00 

0.35

0 
1.875 

2 
1.2E+

08 
817.52 

1.56E

+00 
9.98E-01 

2.42E

+00 
0.473 

2.84

7 

9.39E-

01 

4.97E-

01 

1.56E

+00 

0.28

5 
1.833 

3 
1.21E
+08 

410.74 
8.26E-

01 
2.25E-01 

1.45E
+00 

0.403 
2.86

0 
5.19E-

01 

-

2.72E-

02 

1.02E
+00 

0.30
2 

1.823 

4 
1.43E
+08 

476.04 
3.51E-

01 
1.48E-02 

8.25E-
01 

0.254 
2.89

1 
1.76E-

01 

-

3.11E-

01 

5.54E-
01 

0.27
5 

1.841 

30 

1 
1.48E
+08 

397.74 
1.09E
+00 

4.95E-01 
2.85E
+00 

0.618 
3.55

2 
8.43E-

01 
1.46E-

01 
1.23E
+00 

0.29
8 

2.229 

2 
1.54E

+08 
1101.8 

3.89E-

01 
1.05E-02 

7.34E-

01 
0.228 

3.47

0 

2.99E-

01 

-

9.08E-
02 

8.63E-

01 

0.29

3 
2.200 

3 
1.38E
+08 

721.70 
1.37E
+00 

2.53E-01 
3.42E
+00 

1.353 
3.44

9 
3.54E-

01 

-

9.04E-

02 

7.29E-
01 

0.20
1 

2.196 

4 
1.63E
+08 

689.83 
7.10E-

01 
1.60E-01 

1.11E
+00 

0.328 
3.53

2 

-

8.20E-

02 

-

3.88E-

01 

4.25E-
01 

0.25
4 

2.242 

35 
1 

1.83E

+08 
2337.3 

1.53E

+00 
2.85E-01 

2.08E

+00 
0.545 

4.30

8 

3.32E-

01 

-
1.83E-

01 

8.70E-

01 

0.33

8 
2.645 

2 1.89E 2228.2 5.13E- 2.73E-01 7.79E- 0.163 4.06 2.65E- - 6.23E- 0.17 2.554 
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+08 01 01 3 01 7.07E-
02 

01 7 

3 
1.45E

+08 
2228.2 

1.31E

+00 
5.03E-01 

3.26E

+00 
1.016 

4.04

7 

7.64E-

01 

1.20E-

01 

1.65E

+00 

0.39

7 
2.554 

4 
1.83E
+08 

1339.8 
9.50E-

01 
3.42E-01 

1.12E
+00 

0.252 
4.08

8 
2.65E-

01 
6.14E-

02 
4.97E-

01 
0.12

4 
2.521 

 

To make the results more comprehensible, the schematic view of the performance of the 

algorithms is presented in figures 2-5.    
 

 
Fig. 2 CPU-Time of the solution methods 

 

 
Fig. 3 Average PRE of the SA and WCA 

 

 
Fig. 4  Best PRE of the SA and WCA 



210  Babazadeh & Mirzazadeh 

 

 
Fig. 5 Worst PRE of the SA and WCA 

 

One of the most commonly used approaches to find a significant difference between 

metaheuristics and exact methods is to use single-factor ANOVA. Therefore, in this research, 

single-factor ANOVA is employed to disclose significant variances among algorithms. For this 

purpose, first, the CPU-Time measure is considered, and the ANOVA test is carried out to 

compare the average computation times. Table 3 shows the outcomes of the ANOVA for the 

CPU-Time measure. 
 

Table 3 Results of ANOVA for CPU-Time measure 

Groups Count Sum Average Variance   

Interior-Point 280 147333.5 526.191 479149.9   

SA 280 609.4477 2.176599 1.656705   

WCA 280 416.9529 1.489117 0.524729   

Source of Variation SS df MS F P-value F crit 

Between Groups 51324335 2 25662167 160.6724 8.8E-60 3.00648 

Within Groups 1.34E+08 837 159717.4    

Total 1.85E+08 839     

 

Since the p-value is smaller than 0.05, there is an essential variance between the utilized 

methods considering computation time measure with a 95% confidence level. Since there are 

more than two groups in the test, a post hoc analysis is needed to find out which algorithms are 

performing significantly different. For this purpose, Tukey’s multiple comparison test is 

utilized to find significant differences. Table 4 presents the results of Tukey’s HSD. 
 

Table 4 Results of Tukey’s HSD test for CPU-Time measure 

Difference of 

Levels 

Difference of 

Means 

SE of 

Difference 
95% CI T-Value Adjusted P-Value 

SA - Interior-Poi -524.0 33.8 (-603.1, -445.0) -15.51 0.000 

WCA - Interior-Poi -524.7 33.8 (-603.8, -445.6) -15.53 0.000 

WCA - SA -0.7 33.8 ( -79.7, 78.4) -0.02 1.000 

 

From Table 4, it is evident that the interior-point method performs meaningfully diverse 

from SA and WCA in terms of computation time measure. Considering the average 

computation time of the algorithms from Table 3, it is clear that the SA and WCA can perform 

significantly better than the interior-point method in the resolution of the complex mathematical 

model in less computational time. Also, the WCA with less average and variance computation 

time performs slightly better than the SA since there is no significant difference between SA 

and WCA (refer to Table 4). Figures (6-7) show detailed information about Tukey’s HSD test. 
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Fig. 6 Boxplot of the CPU-Times 

 

 
Fig. 7 Results of the Tukey’s HSD for CPU-Times 

 

The other important measure that shows the SA and WCA's efficiency and effectiveness 

compared to the interior point is the PRE measure. It is essential to mention that in some cases, 

the average and best PRE of the SA and WCA are negative. In these cases, the SA and WCA 

were able to find a better solution than the interior-point method. This is due to the complexity 

and existence of many local optima’s in the problem, which significantly decrease the efficiency 

of the interior-point method. In this section, single-factor ANOVA is applied to discover 

important variances between SA and WCA at a 95 percent confidence level considering the 

average PRE measure. Table 5 presents the results. 
 

Table 5 Outcomes of ANOVA for PRE 

Groups Count Sum Average Variance   

Average PRE SA 280 258.0277 0.921528 1.332824   

Average PRE WCA 280 77.17516 0.275626 0.531715   

Source of Variation SS df MS F P-value F crit 

Between Groups 58.4065 1 58.4065 62.6498 1.34E-14 3.858178 

Within Groups 520.2064 558 0.932269    

Total 578.6129 559     

 

From the results, it is evident that the WCA performs significantly better than the SA in 

solving the problem and finding a very near-optimal solution since the p-value of the AVONA 

test is less than 0.05, which shows a significant difference between algorithms. The WCA with 

an average of 0.275 and a variance of 0.531 performs significantly better than SA. Although 

the above-mentioned results show the superiority of the WCA in solving the problem, it is 

worthwhile to consider the best and worst-case analyses of the algorithms. In this regard, single-

factor ANOVA is used to find significant differences considering the best and worst PRE. Table 

6 presents the results. 
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Table 6: Results of ANOVA for best and worst PRE measures 

Groups Count Sum Average Variance P-value 

Worst PRE SA 28 57.091 2.038964 2.043585 
0.000584 

Worst PRE WCA 28 26.004 0.928714 0.540294 

Best PRE SA 28 1.3487 0.048168 0.406541 
0.056304 

Best PRE WCA 28 -7.9126 -0.28259 0.398565 

 

In the best-case analysis, the p-value of the test is higher than 0.05; thus, there is no 

significant difference between SA and WCA. However, the WCA with a better average 

performs slightly better. In the worst-case analysis, the value of the p-value in the ANOVA test 

reveals that the WCA achieves better solutions compared to the SA in obtaining near-optimal 

solutions. This shows that the WCA can avoid trapping in local optima. 

 

Large-size test problems 

In this section, we consider large-size test problems (more than 40 products). In each 

problem (with a specific number of products), four randomly generated test problems are 

considered. Then, each test problem is solved using SA and WCA algorithms ten times 

(repetition). Table 7 presents the computational results. 
 

Table 7 Computational results of large instances 

# of 

items 
Run 

SA WCA 

RPD

Avg 
Best 

wors

t 

Std 

Dev 
CTAvg RPDAvg Best worst 

Std 

Dev 
CTAvg 

40 

1 0.385 0 0.903 0.269 6.823 0.017 0 0.169 0.051 3.638 

2 0.602 0 0.963 0.316 6.475 0.007 0 0.075 0.022 3.624 

3 0.316 0 0.749 0.237 6.425 0.006 0 0.061 0.018 3.499 

4 0.455 0 0.841 0.236 6.372 0.007 0 0.074 0.022 3.48 

45 

1 0.145 0 0.409 0.156 7.179 0.118 0 0.31 0.098 3.848 

2 0.118 0 0.401 0.157 7.013 0.057 0 0.201 0.072 3.797 

3 0.697 0.176 1.119 0.338 7.035 0 0 0 0 3.753 

4 0.596 0.205 1.156 0.264 7.136 0 0 0 0 3.859 

50 

1 0.127 0 0.468 0.167 8.179 0.079 0 0.386 0.119 4.332 

2 0.097 0 0.445 0.148 7.819 0.072 0 0.212 0.076 4.192 

3 0.04 0 0.172 0.058 7.738 0.039 0 0.123 0.045 4.11 

4 0.278 0 0.532 0.189 7.851 0.015 0 0.153 0.046 4.243 

55 

1 0.144 0 0.373 0.147 9.795 0.065 0 0.377 0.13 5.128 

2 0.057 0 0.21 0.063 8.515 0.116 0 0.755 0.233 4.554 

3 0.071 0 0.337 0.103 8.562 0.025 0 0.102 0.039 4.618 

4 0.179 0 0.453 0.188 8.81 0.053 0 0.239 0.081 4.726 

60 

1 0.07 0 0.227 0.074 10.103 0.034 0 0.221 0.068 5.273 

2 0.221 0 0.515 0.186 9.307 0.022 0 0.101 0.037 4.909 

3 0.213 0.014 0.496 0.159 9.303 0 0 0 0 5.005 

4 0.057 0 0.153 0.058 9.481 0.005 0 0.033 0.01 5.036 

65 

1 0.076 0 0.249 0.077 10.94 0.047 0 0.241 0.079 5.724 

2 0.026 0 0.079 0.03 10.038 0.02 0 0.078 0.031 5.299 

3 0.139 0 0.325 0.124 10.225 0.034 0 0.209 0.062 5.438 

4 0.119 0 0.439 0.127 10.121 0.018 0 0.127 0.038 5.416 

70 

1 0.008 0 0.062 0.019 11.434 0.039 0 0.114 0.034 5.917 

2 0.053 0 0.221 0.069 10.922 0.041 0 0.162 0.055 5.805 

3 0.017 0 0.064 0.021 10.88 0.036 0 0.168 0.062 5.776 

4 0.123 0 0.285 0.115 11.01 0.013 0 0.123 0.037 5.864 

 

From Table 7, we can infer that the two algorithms perform very competitively. In other 

words, in some cases, the SA can find a better solution, and in some cases, WCA outperforms. 

To present a graphical representation of the outcomes, the following figures are presented. 

 



Advances in Industrial Engineering, June 2024, 58(1): 197-217 

 213 

 

 
Fig. 8 Average RPD of the SA and WCA 

 

 
Fig. 9 Best RPD of the SA and WCA 

 

 
Fig. 10 Worst RPD of the SA and WCA 
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Fig. 11 CPU-Time of the solution methods 

 

Since the performance of the two algorithms is competitive, more analyses are needed. As 

in the previous section, the ANOVA test on average is performed for each measure at a 95 

percent confidence level to find significant differences among algorithms. Table 8 presents the 

results of the ANOVA test of different measures. 

Meanwhile, the p-value on average RPD is smaller than 0.05 which means a substantial 

difference between SA and WCA in solving the composite model. Considering the average and 

variance of the average RPD measure, it is clear that the WCA can discover better solutions 

than SA. In the best RPD measure, the p-value is higher than 0.05, which shows that both 

algorithms can find near-optimal solutions to the problem. Considering the results, the WCA 

achieves better solutions compared to SA. In addition to the above criteria, it is vital to assess 

the robustness of the algorithms. For this purpose, we consider the worst RPD and std of the 

RPD measures. These measures show which algorithm can obtain near-optimal solutions in all 

the repetitions. Based on the results, the p-value of the ANOVA test of both measures shows 

significant differences among algorithms. Therefore, we can infer that the WCA is significantly 

more robust than the SA in avoiding trapping in local optima. The results show that the WCA 

uses updating operators to update the particles' position in the solution space, which enables the 

WCA to perform very well in both exploration and exploitation phrases. Based on the results, 

the WCA is the best approach to solve the problem in near optimality in small and large test 

problems. In addition to the measures mentioned above, the CPU-Time measure has its 

importance. The ANOVA test results reveal that the WCA can solve the problem in large sizes 

significantly better than the SA. Based on the results, the WCA with less average and variance 

of the CPU-Time criterion achieves better results than SA in terms of computation time. 
 

Table 8: Results of ANOVA for different measures 

Measure Groups Sum Average Variance P-value 

Average RPD 
Ave RPD SA 5.429 0.193892857 0.035811581 

5.5752E-05 
Ave RPD WCA 0.985 0.035178571 0.001024152 

Worst RPD 
worst RPD SA 12.646 0.451642857 0.094022238 

6.73346E-05 
worst RPD WCA 4.814 0.171928571 0.02337318 

Best RPD 
Best RPD SA 0.395 0.014107143 0.002504618 

0.141627752 
Best RPD WCA 0 0 0 

Std RPD 
Std RPD SA 4.095 0.14625 0.007568935 

1.25569E-05 
Std RPD WCA 1.565 0.055892857 0.002316099 

CPU-Time RPD 
CPU-Time SA 245.491 8.767535714 2.601514925 

7.34746E-17 
CPU-Time WCA 130.86 4.673678571 0.657857634 
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Conclusion 

 

The conclusion of the research highlights the development of a novel formulation of the 

Economic Order Quantity (EOQ) model to address the presence of defective products in supply 

deliveries and partial backordering, where defective items can be repaired locally. This study 

aimed to address gaps in the literature by incorporating realistic assumptions into the 

mathematical model. By extending the model to a multi-item inventory system and considering 

various operational constraints such as warehouse capacity and on-hand budget constraints, the 

research enhances the model's applicability. 

The first significant contribution lies in extending the EOQ model to accommodate imperfect 

products and partial backordering, which is crucial given the prevalence of such scenarios in 

inventory management. The inclusion of these factors results in a Constrained Non-Linear 

Programming (CNLP) model, reflecting the complexity of real-world inventory systems. 

To effectively solve the developed mathematical model, three solution approaches were 

proposed: an exact method and two meta-heuristics. The performance of these approaches was 

evaluated using various measures, including Relative Percentage Deviation (RPD), Percentage 

Relative Error (PRE), and computational time, across different test instances. 

The findings indicate that the Water Cycle Algorithm (WCA) outperforms the other two 

approaches, demonstrating superior efficiency in addressing the complexities of the proposed 

problem. This underscores the potential of meta-heuristic algorithms, particularly the WCA, in 

optimizing multi-item inventory systems with imperfect products and partial backordering. 

In conclusion, this research contributes to the advancement of inventory management by 

introducing a comprehensive EOQ model capable of handling real-world complexities. The 

findings provide valuable insights for practitioners in optimizing inventory systems and lay the 

groundwork for future research directions in this domain. 

Based on the results obtained from the research, a promising avenue for future investigation 

could be the development and validation of hybrid optimization techniques for multi-item 

inventory systems with imperfect products and partial backordering. 

Firstly, hybridization involves combining different optimization algorithms or techniques to 

leverage their respective strengths and mitigate their weaknesses. In the context of inventory 

management, hybrid meta-heuristic algorithms could be developed by integrating the Water 

Cycle Algorithm (WCA) with other efficient optimization methods, such as Genetic Algorithms 

(GA), Particle Swarm Optimization (PSO), or Simulated Annealing (SA).  

Secondly, the performance of these hybrid algorithms could be evaluated using a 

comprehensive set of test instances representing diverse real-world scenarios. This evaluation 

process should consider various performance metrics, including solution quality, convergence 

speed, computational efficiency, and robustness. 

Furthermore, the impact of different problem parameters and constraints on the performance 

of the hybrid algorithms could be investigated through sensitivity analysis. This analysis would 

provide valuable insights into the behavior of the algorithms under different operating 

conditions and help identify critical factors influencing their performance. 

Additionally, future research could explore the application of machine learning techniques, 

such as reinforcement learning or deep learning, in optimizing multi-item inventory systems. 

These techniques have shown promise in solving complex optimization problems and could 

potentially enhance the efficiency and effectiveness of inventory management strategies. 

Overall, the proposed research direction aims to advance the state-of-the-art in inventory 

management by developing innovative optimization approaches tailored to address the 

challenges associated with imperfect products and partial backordering. By combining insights 

from operations research, optimization theory, and machine learning, researchers can contribute 

to the development of more robust and adaptive inventory management systems capable of 
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meeting the demands of modern supply chain environments. 
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