Armendariz-Lopez, J. F., Arena-Granados, A. P., Gonzalez-Trevizo, M. E., Luna-Leon, A., & Bojorquez-Morales, G. (2018). Energy payback time and Greenhouse Gas emissions: Studying the international energy agency guidelines architecture.
Journal of Cleaner Production,
196, 1566-1575.
https://doi.org/https://doi.org/10.1016/j.jclepro.2018.06.134
Dai, M., Tang, D., Giret, A., & Salido, M. A. (2019). Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints.
Robotics and Computer-Integrated Manufacturing,
59, 143-157.
https://doi.org/https://doi.org/10.1016/j.rcim.2019.04.006
Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm.
Robotics and Computer-Integrated Manufacturing,
29(5), 418-429.
https://doi.org/https://doi.org/10.1016/j.rcim.2013.04.001
Delaram, J., Fatahi Valilai, O., Houshamand, M., & Ashtiani, F. (2021). A matching mechanism for public cloud manufacturing platforms using intuitionistic Fuzzy VIKOR and deferred acceptance algorithm.
International Journal of Management Science and Engineering Management, 1-16.
https://doi.org/https://doi.org/10.1080/17509653.2021.1892549
Fan, J., Shen, W., Gao, L., Zhang, C., & Zhang, Z. (2021). A hybrid Jaya algorithm for solving flexible job shop scheduling problem considering multiple critical paths.
Journal of Manufacturing Systems,
60, 298-311.
https://doi.org/https://doi.org/10.1016/j.jmsy.2021.05.018
Gong, G., Deng, Q., Gong, X., Liu, W., & Ren, Q. (2018). A new double flexible job-shop scheduling problem integrating processing time, green production, and human factor indicators.
Journal of Cleaner Production,
174, 560-576.
https://doi.org/https://doi.org/10.1016/j.jclepro.2017.10.188
Harjunkoski, I., Maravelias, C. T., Bongers, P., Castro, P. M., Engell, S., Grossmann, I. E., Hooker, J., Méndez, C., Sand, G., & Wassick, J. (2014). Scope for industrial applications of production scheduling models and solution methods.
Computers & Chemical Engineering,
62, 161-193.
https://doi.org/https://doi.org/10.1016/j.compchemeng.2013.12.001
Liu, M., Lv, J., Du, S., Deng, Y., Shen, X., & Zhou, Y. (2024). Multi-resource constrained flexible job shop scheduling problem with fixture-pallet combinatorial optimisation.
Computers & Industrial Engineering,
188, 109903.
https://doi.org/https://doi.org/10.1016/j.cie.2024.109903
Liu, Y., Zhang, L., Tao, F., & Wang, L. (2017). Resource service sharing in cloud manufacturing based on the Gale–Shapley algorithm: advantages and challenge.
International Journal of Computer Integrated Manufacturing,
30(4-5), 420-432.
https://doi.org/10.1080/0951192X.2015.1067916
Liu, Z., Wang, J., Zhang, C., Chu, H., Ding, G., & Zhang, L. (2021). A hybrid genetic-particle swarm algorithm based on multilevel neighbourhood structure for flexible job shop scheduling problem.
Computers & Operations Research, 105431.
https://doi.org/https://doi.org/10.1016/j.cor.2021.105431
Meng, L., Zhang, C., Zhang, B., Gao, K., Ren, Y., & Sang, H. (2023). MILP modeling and optimization of multi-objective flexible job shop scheduling problem with controllable processing times.
Swarm and Evolutionary Computation,
82, 101374.
https://doi.org/https://doi.org/10.1016/j.swevo.2023.101374
Pinedo, M. L. (2012). Scheduling (Vol. 29). Springer.
Raileanu, S., Anton, F., Iatan, A., Borangiu, T., Anton, S., & Morariu, O. (2017). Resource scheduling based on energy consumption for sustainable manufacturing.
Journal of Intelligent Manufacturing,
28(7), 1519-1530.
https://doi.org/10.1007/s10845-015-1142-5
Vital-Soto, A., Azab, A., & Baki, M. F. (2020). Mathematical modeling and a hybridized bacterial foraging optimization algorithm for the flexible job-shop scheduling problem with sequencing flexibility.
Journal of Manufacturing Systems,
54, 74-93.
https://doi.org/https://doi.org/10.1016/j.jmsy.2019.11.010
Wang, J., Liu, Y., Ren, S., Wang, C., & Wang, W. (2021). Evolutionary game based real-time scheduling for energy-efficient distributed and flexible job shop.
Journal of Cleaner Production,
293, 126093.
https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126093
Wang, L., Wang, S., Xu, Y., Zhou, G., & Liu, M. (2012). A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem.
Computers & Industrial Engineering,
62(4), 917-926.
https://doi.org/https://doi.org/10.1016/j.cie.2011.12.014
Xin, X., Jiang, Q., Li, S., Gong, S., & Chen, K. (2021). Energy-efficient scheduling for a permutation flow shop with variable transportation time using an improved discrete whale swarm optimization.
Journal of Cleaner Production,
293, 126121.
https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126121
Zhang, Y., Wang, J., Liu, S., & Qian, C. (2017). Game Theory Based Real-Time Shop Floor Scheduling Strategy and Method for Cloud Manufacturing.
International Journal of Intelligent Systems,
32(4), 437-463.
https://doi.org/https://doi.org/10.1002/int.21868