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Abstract  

One of the most important topics in system reliability and performance measurements is 

availability analysis. In this paper, the availability of both series and parallel systems is 

addressed considering repair time threshold. A threshold is considered for the repair time, 

and if the repair time is less than the threshold, the system can be considered as working, 

and the repair time can be ignored. On the contrary, if the repair time is longer than the 

threshold, then the system is considered as not working from the beginning of the system 

failure until the repair time exceeds the threshold. Both constant and random repair time 

thresholds are considered. Also, to investigate the instantaneous availability of the series 

and parallel systems, both identical and non-identical components are incorporated. In 

addition, user-observed and perceived systems are incorporated and analyzed. Numerical 

analysis is conducted, and the results suggest an increase in the instantaneous and steady-

state availability, especially in the series systems. Based on the results, neglecting repair 

time threshold can lead to a significant difference in the system's availability, which can 

have a substantial impact on maintenance plans and company costs. 
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Introduction 

 

Due to the importance of system performance and reliability, examining the reliability and 

availability of systems has become a significant concern for researchers. (Sharma and Misra, 

1988; Cui and Xie, 2005). To examine the performance of a system, various modes and 

assumptions will be considered, which can affect the system's availability. One assumption that 

is of interest to researchers is the exclusion of minor system repairs. In this case, a repair time 

threshold is set, and if the repair time is less than the threshold, the repair time can be 

disregarded, and the system can be considered operational. (Qiu and Cui, 2018; Zheng et al., 

2007; Zheng, 2006; Yang et al., 2009) 

The idea of setting a threshold for repair time is based on real-world issues, such as the 

concrete water supply system for an urban area (Zheng et al., 2006; Bao and Cui, 2010). In this 

system, if there is a failure in the water supply, and the repair time is short, the presence of 

water in the tanks ensures an uninterrupted water supply for the city. In this case, despite the 
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failure, the system continues to operate. However, if the repair time is long, the water in the 

tanks will run out, and the system will be considered out of order. Another example is the failure 

in the electrical system of a factory or a hospital (Du et al., 2017). In the event of a minor failure, 

the emergency power system is activated, ensuring no malfunctions. However, if the repair time 

is long, the system will fail. 

In this study, the availability of multi-component systems is investigated in both series and 

parallel configurations, taking into account a repair time threshold. If the repair time is less than 

the threshold, the system is assumed to be operational, but if the repair time exceeds the 

threshold, the system is considered out of order. This assumption is examined under two 

scenarios: a fixed threshold value and a random threshold value. The research aims to answer 

the following questions: 

1- What is the availability of a series and parallel system with similar and dissimilar 

components and a constant repair threshold? 

2- What is the availability of a series and parallel system with similar and dissimilar 

components and a random repair threshold? 

To answer these questions, the reliability and availability formulations for each of the 

scenarios are presented. This research contributes to the literature by considering a general 

distribution for the time to failure (TTF) of components and their repair time, and formulating 

the reliability and availability of series and parallel systems. 

The paper is organized as follows: Section 1 provides an overview of the relevant literature 

on this subject. In Section 3, the proposed models are presented. Section 4 includes a numerical 

example, and finally, conclusion and future research directions are presented in Section 5. 

 

Literature Review 

 

The availability of repairable systems with general failure and repair time distributions has been 

studied extensively in the literature. For example, Cui and Xie (2001) studied two repairable 

systems in which failures were identified only by inspection. Cui et al. (2004) investigated five 

inspection models under periodic inspection rules. In another study, Cui and Li (2004) 

examined a system where the number of allowed inspections was limited. Papageorgiou and 

Kokolakis (2007) and Smidt-Destombes et al. (2007) considered a system with two active 

components, where in case of failure of any component, one of the (n-2) standby components 

was replaced, and examined its availability. They also studied the availability of k out of n 

systems that included N identical and repairable components. 

Some studies have examined the availability of single-component systems, while others have 

focused on series and parallel systems. Yang et al. (2009) calculated the availability of a single-

component system by establishing a threshold for the repair time, with the repair time and time 

to failure (TTF) following a general distribution. In this system, if the repair time exceeds the 

threshold, the entire repair time is considered as downtime. Qiu and Cui (2018) considered a 

one-component system with TTF and repair time following a general distribution and a 

threshold for repair time. In this system, if the repair time is less than the threshold, the system 

is considered to be in a working state; otherwise, the system is considered to be down for the 

time it takes to be repaired. Bao and Cui (2010) analyzed a Markov system in which TTF and 

repair time followed an exponential distribution and had a threshold for repair time. They 

calculated the availability for this system in both series and parallel modes. As mentioned in 

the previous studies, some research has considered a threshold for the repair time, and if the 

repair time is less than this threshold, the system is considered to be working even though it is 

being repaired. Furthermore, this threshold can be either a fixed or a random value (Bao and 

Cui, 2010; Qiu and Cui, 2018). 

Sana's model (2022) extended previous frameworks by addressing lead time shortages and 
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underscoring the importance of proactive maintenance schedules. This approach aims to detect 

issues early, sustaining consistent production, reducing costs, enhancing product quality, and 

ensuring an uninterrupted supply. However, the model's constraints, including fixed production 

rates and key parameter values, highlight opportunities for future iterations exploring stochastic 

or fuzzy variables. Ahmadi et al.'s (2023) delved into a unique maintenance strategy for parallel 

systems, centering on a mean remaining time process (SDMRL) that integrates historical failure 

data. Their approach distinguished itself by relying on the time taken to reach a defective state 

rather than merely on system failures. Su et al. (2022) presented a new strategy for optimizing 

selective maintenance in series-parallel systems. The mathematical model is designed to 

simultaneously enhance system reliability while minimizing overall maintenance expenses. 

Each component in the system offers a diverse array of maintenance actions, ranging from 

minor repairs to complete replacements, encompassing incomplete maintenance 

methodologies. Shivani et al. (2023) concluded that addressing and mitigating the system's 

heightened sensitivity can be achieved through the reduction of failure rates and strategic 

control over service costs. These measures are anticipated to culminate in the development of 

a more profitable system. 

Research on availability can be categorized based on conditions such as the inspection and 

reparability of system components. System components can be either repairable or non-

repairable, and inspections can be either perfect or imperfect. Inspections can occur non-

periodically, where if a component fails, it is immediately detected (Taghipour and Banjevic, 

2012; Hajipour and Taghipour, 2016), or periodically, where failures are detected at 

predetermined times (Peng et al., 2009; Liu et al., 2013). Each type of inspection has its own 

advantages. For instance, non-periodic inspections detect failures faster, while periodic 

inspections impose less cost on the system. Therefore, the choice of inspection type should be 

made based on the system being reviewed (Qiu et al., 2018). 

Some studies have examined the availability of single-component systems, while others have 

focused on series and parallel systems. Yang et al. (2009) calculated the availability of a single-

component system by establishing a threshold for the repair time, with the repair time and time 

to failure (TTF) following a general distribution. In this system, if the repair time exceeds the 

threshold, the entire repair time is considered as downtime. Qiu and Cui (2018) considered a 

one-component system with TTF and repair time following a general distribution and a 

threshold for repair time. In this system, if the repair time is less than the threshold, the system 

is considered to be in a working state; otherwise, the system is considered to be down for the 

time it takes to be repaired. Bao and Cui (2010) analyzed a Markov system in which TTF and 

repair time followed an exponential distribution and had a threshold for repair time. They 

calculated the availability for this system in both series and parallel modes. As mentioned in 

the previous studies, some research has considered a threshold for the repair time, and if the 

repair time is less than this threshold, the system is considered to be working even though it is 

being repaired. Furthermore, this threshold can be either a fixed or a random value (Bao and 

Cui, 2010; Qiu and Cui, 2018). 

Uncertain repair time and repair time thresholds are also investigated in the literature. Kumar 

et al. (2024) discussed queueing modeling of machine repair problems under threshold recovery 

policy (Q), server unreliability and k-type phase repairs. The service facility may experience a 

partial or complete breakdown while providing service and needs to be repaired in required 

phases under the threshold recovery policy. Li et al. (2024) investigated a cold standby 

repairable system in a time-varying environment based on different operational levels and 

maintenance strategies, in which repairman's vacation and maintenance rules vary with 

environments. Tavakoli Kafiabada et al. (2024) proposed a novel approach to embedding 

uncertain repair times of faulty components. A multi-stage stochastic programming model is 

developed for integrated production and workforce planning in such facilities under 



280  Sheikhalishahi et al. 

 

independent random repair time. 

In the landscape of repairable systems and their maintenance times, this paper sets itself 

apart by focusing explicitly on the distinct configurations of parallel and series systems. While 

the existing literature generally addresses repairable systems as a whole, it often overlooks the 

critical differences between these specific configurations. This study pioneers a comparative 

availability analysis by integrating both constant and random downtime thresholds, tailored 

specifically for parallel and series systems. The innovation of this research lies in its ability to 

bridge the identified gap, providing deeper insights into the unique performance dynamics of 

these configurations incorporating user-observed and perceived reliability. This contribution 

not only enhances the theoretical understanding of system availability but also offers practical 

guidance for optimizing maintenance strategies in real-world applications . 

 

Modeling 

 

The following notations are used in the proposed model. 
 

Notations  

𝑋 Lifetime of the system 

𝐹𝑥(𝑥) Distribution function of 𝑋 

𝑅𝑥(𝑥) Survival function of 𝑋 with single component 

𝑅̇𝑥,𝑀(𝑥) Survival function of 𝑋 in the series case with with M components 

𝑅̈𝑥,𝑀(𝑥) Survival function of 𝑋 in the parallel case with M components 

𝑌 Downtime of the system 

𝐹𝑌(𝑦) Distribution function of 𝑌 

𝑅𝑌(𝑦) Survival function of 𝑌 

𝜏 Constant down time threshold 

𝑋0(𝑡) Stochastic process of the user-observed system 

𝐴0(𝑡) Instantaneous availability of the user-observed system 

𝐴̇0,𝑀(𝑡) Instantaneous availability of the series user-observed system with M components 

𝐴̈0,𝑀(𝑡) Instantaneous availability of the parallel user-observed system with M components 

𝑋𝑁(𝑡) Stochastic process of the user-perceived system 

𝐴𝑁(𝑡) Instantaneous availability of the single user-perceived system 

𝐴̇𝑁,𝑀(𝑡) Instantaneous availability of the series user-perceived system with M components 

𝐴̈𝑁,𝑀(𝑡) Instantaneous availability of the parallel user-perceived system with M components 

𝑁(𝑡) Number of renewals in (0,t ( 

𝑆𝑁(𝑡) Time of the last renewal prior to or at time t 

𝑠 A realization of 𝑆𝑁(𝑡) 

𝜔 Duration of a repair since the last failure 

𝑋𝑛 Lifetime of the system in the nth renewal cycle 

𝑌𝑛 Down time of the system in the nth renewal cycle 

𝐹𝑋+𝑌
𝑛 (𝑡) Distribution function of the sum of n 

𝜏̃ Random down time threshold 

𝐴̃(𝑡) Probability that the user-perceived system is in up-state while the user-observed System is in 

down state 

𝐹𝜏̃(𝜏) Distribution function of 𝜏̃ 

𝑅𝜏̃(𝜏) Survival function of 𝜏̃ 
 

In this section, user-perceived system's availability is discussed. In order to formulate user-

perceived system availability, the initial step should be obtaining user-observed system 

availability. We define 𝑋0(𝑡) as follows: 
 

𝑋0(𝑡) = {
0           𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑖𝑛 𝑓𝑎𝑖𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
1        𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑖𝑛 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

 

 

Thus, the user-observed system availability can be formulated as: 
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𝐴0𝑙𝑑(𝑡) = 𝑃(𝑋0(𝑡) = 1) (1) 

 

𝐴0𝑙𝑑(𝑡) in Eq.(1) is defined as follows: 
 

𝐴𝑜𝑙𝑑,𝑖 = 𝑅𝑋,𝑖(𝑡)  + ∑ ∫ 𝑅𝑋,𝑖(𝑡 − 𝑠)𝑑𝐹𝑋+𝑌,𝑖
𝑛

𝑡

0

(𝑠)

∞

𝑛=1

= 𝑅𝑋,𝑖(𝑡) + ∑ 𝐹𝑋+𝑌,𝑖
𝑛 (𝑡) ∗ 𝑅𝑋,𝑖(𝑡) 

∞

𝑛=1

 (2) 

 

Obviously, can be expressed 𝑋𝑁𝑒𝑤(𝑡) as follows:  
 

𝑋𝑁𝑒𝑤(𝑡) = {
0           𝑡ℎ𝑒 𝑛𝑒𝑤 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑖𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
1        𝑡ℎ𝑒 𝑛𝑒𝑤 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑖𝑛 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

 

 

The availability of the new system is formulated as: 
 

𝐴𝑁𝑒𝑤,𝑖 = 𝐴𝑜𝑙𝑑,𝑖(𝑡) + 𝑃(𝑋𝑁𝑒𝑤,𝑖 = 1, 𝑋𝑜𝑙𝑑,𝑖 = 0)  (3) 

 

Obviously, the availability of the new system is higher than the old system due to neglecting 

down time, and the second term of the above formula represents the probability that the user-

perceived system is in working state while the user-observed system is in failure state. 

  

Availability analysis of a series system  

In this section, the availability of the series system is formulated in identical and non-

identical cases. 

 

Identical components case 

Availability of the user-observed system in a series system with m identical components is 

formulated as: 
 

𝐴̇𝑜𝑙𝑑,𝑀(𝑡) =  𝑅̇𝑋,𝑀(𝑡) + (𝑅̇𝑋,𝑀−1(𝑡). ∑ 𝐹𝑋+𝑌,1
𝑛 (𝑡) ∗ 𝑅𝑋,𝑖(𝑡) 

∞

𝑛=1

) (
𝑚
1

)

+ (𝑅̇𝑋,𝑀−2(𝑡). (∑ 𝐹𝑋+𝑌,1
𝑛 (𝑡) ∗ 𝑅𝑋,𝑖(𝑡) )

∞

𝑛=1

2

) (
𝑚
2

) + ⋯

+ (𝑅̇𝑋,1(𝑡). (∑ 𝐹𝑋+𝑌,1
𝑛 (𝑡) ∗ 𝑅𝑋,𝑖(𝑡) )

∞

𝑛=1

𝑚−1

) (
𝑚

𝑚 − 1
)  

(4) 

 

𝐴̇𝑜𝑙𝑑,𝑀(𝑡) in Eq.(4) can be defined as follows: 
 

𝐴̇𝑜𝑙𝑑,𝑀(𝑡) =  ∏ 𝐴𝑜𝑙𝑑,𝑖

𝑚

𝑖=1

= 𝐴𝑜𝑙𝑑,𝑖
𝑚                                                                                                       (5) 

 

Availability of the user-perceived system in series case can be defined as: 
 

𝐴̇𝑁𝑒𝑤,𝑀(𝑡) =  𝐴̇𝑜𝑙𝑑,𝑀(𝑡) + 𝑃(𝑋𝑁𝑒𝑤,𝑖 = 1, 𝑋𝑜𝑙𝑑,𝑖 = 0)𝐴̇𝑜𝑙𝑑,𝑀−1(𝑡). (
𝑚
1

)                                       (6) 

 

Non-identical components case 

When the components of a series system are not identical, the availability of the user-

observed system can be formulated as: 
 

𝐴̇𝑜𝑙𝑑,𝑀(𝑡) =  ∏ 𝐴𝑜𝑙𝑑,𝑖

𝑚

𝑖=1

                                       (7) 
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Also, the availability of the user-perceived system is defined as: 
 

𝐴̇𝑁𝑒𝑤,𝑀(𝑡) =  𝐴̇𝑜𝑙𝑑,𝑀(𝑡) + ∑ 𝑃(𝑋𝑁𝑒𝑤,𝑖 = 1, 𝑋𝑜𝑙𝑑,𝑖 = 0)𝐴̇𝑜𝑙𝑑,𝑀−1( 𝑡)                

𝑚

𝑖=1

                                       (8) 

 

Availability analysis of a parallel system 

In this section, the availability of the parallel system will be formulated in identical and non-

identical cases. 

 

Identical components case 

In the parallel case, it is known that the old system would be in the failure state if all the 

components be in the failure state, thus user-observed system availability can be expressed as: 
 

𝐴̈𝑜𝑙𝑑,𝑀 = 1 −  ∏(1 − 𝐴𝑜𝑙𝑑,𝑖) = 1 −

𝑚

𝑖=1

(1 − 𝐴𝑜𝑙𝑑,𝑖)
𝑚                                       (9) 

 

Let  𝐴̃𝑖(𝑡) = 𝑃(𝑋𝑁𝑒𝑤,𝑖 = 1, 𝑋𝑜𝑙𝑑,𝑖 = 0). 

The availability of the new system is formulated as: 
 

𝐴̈𝑁𝑒𝑤,𝑀 = 𝐴̈𝑜𝑙𝑑,𝑀 + 𝐴̃𝑖(𝑡) (1 − 𝐴̈𝑜𝑙𝑑,𝑀−1)(1 − 𝐴̈𝑁𝑒𝑤,𝑀−1) (
𝑚
1

) + 𝐴̃𝑖(𝑡)2(1 − 𝐴̈𝑜𝑙𝑑,𝑀−2) × (1

− 𝐴̈𝑁𝑒𝑤,𝑀−2) (
𝑚
2

) + ⋯ + 𝐴̃𝑖(𝑡)𝑚−1(1 − 𝐴̈𝑜𝑙𝑑,1)(1 − 𝐴̈𝑁𝑒𝑤,1) (
𝑚

𝑚 − 1
) + 𝐴̃𝑖(𝑡)𝑚 

(10) 

 

Non-identical components case 

The availability of the old system with m non- identical components is given by: 
 

 𝐴̈𝑜𝑙𝑑,𝑀 = 1 − ∏(1 − 𝐴𝑜𝑙𝑑,𝑖)                                                                                        
𝑚

𝑖=1

 (11) 

 

Also, the availability of the new system with m non-identical components is formulated as: 
 

𝐴̈𝑁𝑒𝑤,𝑀 = 𝐴̈𝑜𝑙𝑑,𝑀 + ∑ (𝐴̃𝑖(𝑡) ( ∏ (1 − 𝐴𝑜𝑙𝑑,𝑗)

𝑚

𝑗=1,𝑗≠𝑖

)) (1 − 𝐴̈𝑁𝑒𝑤,𝑀−1)

𝑚

𝑖=1

+ ∑ ∑ (𝐴̃𝑖1
(𝑡). 𝐴̃𝑖2

(𝑡) ( ∏ (1 − 𝐴𝑜𝑙𝑑,𝑗)

𝑚

𝑗=1,𝑗≠𝑖1,𝑖2

)) (1 − 𝐴̈𝑁𝑒𝑤,𝑀−2) + ⋯

𝑚

𝑖2=𝑖1+1

𝑚

𝑖1=1

+ ∑ ∑ …

𝑚

𝑖2=𝑖1+1

∑ (𝐴̃𝑖1
(𝑡). 𝐴̃𝑖2

(𝑡) … 𝐴̃𝑖𝑚−1
(𝑡) ( ∏ (1 − 𝐴𝑜𝑙𝑑,𝑗)

𝑚

𝑗=1,𝑗≠𝑖1,𝑖2,…,𝑖𝑚−1

))(1

𝑚

𝑖𝑚−1=𝑖𝑚−2+1

𝑚

𝑖1=1

− 𝐴̈𝑁𝑒𝑤,1) + ∏ 𝐴̃𝑖(𝑡)

𝑚

𝑖=1

  

(12) 

 

Calculating the instantaneous availability for the user-perceived system 

  Two different scenarios are considered to calculate 𝐴̃𝑖(𝑡). Based on Qui & Cui (2018), 𝐴̃𝑖(𝑡) 

with a constant repair time threshold is given by: 
 

𝐴̃𝑖(𝑡) = {

1 − 𝐴𝑜𝑙𝑑,𝑖 , 𝑡 < 𝜏

∫ 𝑅𝑌(𝑤)𝑑𝐹𝑥(𝑡 − 𝑤) + ∫ ∫ 𝑅𝑌(𝑤)𝑑𝐹𝑥(𝑡 − 𝑠 − 𝑤) ∑ 𝑑𝐹𝑋+𝑌
𝑛 (𝑠)

∞

𝑛=1

(𝑡−𝑤)^𝜏

0

𝑡

0

𝜏

0

, 𝑡 ≥ 𝜏
} (13) 

 

Also, 𝐴̃𝑖(𝑡) with a random repair time threshold is derived as: 
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𝐴̃𝑖(𝑡) = ∫ ∫ 𝑅𝑌(𝑤)𝑑𝐹𝑥(𝑡 − 𝑤)𝑑𝐹𝜏(𝜏) + ∫ 𝑅𝑌(𝑡 − 𝑥)𝑑𝐹𝑥(𝑢)𝑅𝜏(𝑡)
𝑡

0

𝜏

0

𝑡

0

+  ∫ ∫ ∫ 𝑅𝑌(𝑤)𝑑𝐹𝑥(𝑡 − 𝑠 − 𝑤) ∑ 𝑑𝐹𝑋+𝑌
𝑛 (𝑠)𝑑𝐹𝜏(𝜏)

∞

𝑛=1

(𝑡−𝑤)𝜏

0

𝑡

0

𝑡

0

+ ∫ ∫ 𝑅𝑌(𝑤)𝑑𝐹𝑥(𝑡 − 𝑠 − 𝑤) ∑ 𝑑𝐹𝑋+𝑌
𝑛 (𝑠)𝑅𝜏(𝑡)

∞

𝑛=1

𝑡−𝑠

0

𝑡

0

 

(14) 

 

Since the exponential distribution assumes a constant failure and repair rate, its impact on 

system availability is more predictable. The calculations can be simplified by using this 

distribution. However, it is applicable in specific situations where fatigue is not a factor and can 

be utilized in various real-world applications.  

The case is considered when the lifetime of a component and its repair time follow an 

exponential distribution. It is supposed that 𝐹𝑋(𝑥) = 1 − 𝑒−𝜆𝑥 and 𝐹𝑌(𝑦) = 1 − 𝑒−𝜇𝑦, 𝑥, 𝑦 >
0. Based on Qui & Cui (2018), 𝐴̃𝑖(𝑡) with a constant repair time threshold is given by: 

 

𝐴̃𝑖(𝑡) =
𝜆𝑒−𝜆𝑡

𝜇 − 𝜆
(1 − 𝑒(𝜆−𝜇)𝜏) +

𝜆𝑒−𝜆𝑡(1 − 𝑒(𝜆−𝜇)𝜏)[𝜇(𝑒𝜆(𝑡−𝜏) − 1) + 𝜆(𝑒−𝜇(𝑡−𝜏) − 1]

(𝜇 − 𝜆)(𝜇 + 𝜆)

+
(𝜇 − 𝜇𝑒−𝜆𝜏 − 𝜆 + 𝜆𝑒−𝜇𝜏) + 𝑒−(𝜇+𝜆)𝑡(−𝜇 + 𝜇𝑒𝜆𝜏 + 𝜆 − 𝜆𝑒𝜇𝜏)

(𝜆 − 𝜇)(𝜇 + 𝜆)
 

(15) 

 

Also, 𝐴̃𝑖(𝑡) with a random repair time threshold is derived as: 
 

𝐴̃𝑖(𝑡) = ∫
𝜆𝑒−𝜆𝑡

𝜇 − 𝜆
(1 − 𝑒(𝜆−𝜇)𝜏)

𝑡

0

𝑑𝐹𝜏̃(𝜏̃)

+ ∫
𝜆𝑒−𝜆𝑡(1 − 𝑒(𝜆−𝜇)𝜏̃)[𝜇(𝑒𝜆(𝑡−𝜏̃) − 1) + 𝜆(𝑒−𝜇(𝑡−𝜏̃) − 1]

(𝜇 − 𝜆)(𝜇 + 𝜆)

𝑡

0

𝑑𝐹𝜏̃(𝜏̃)

+ ∫
(𝜇 − 𝜇𝑒−𝜆𝜏̃ − 𝜆 + 𝜆𝑒−𝜇𝜏̃) + 𝑒−(𝜇+𝜆)𝑡(−𝜇 + 𝜇𝑒𝜆𝜏̃ + 𝜆 − 𝜆𝑒𝜇𝜏̃)

(𝜆 − 𝜇)(𝜇 + 𝜆)

𝑡

0

𝑑𝐹𝜏̃(𝜏̃) 

(16) 

 

Numerical Example 

 

The role of ventilator systems in ensuring safety in coal mines cannot be overstated. These 

systems are responsible for circulating fresh air in the underground mining sites (Jia, 2004). 

Down time is critical for this system, and therefore the plant management decides that the 

maximum acceptable downtime for the system is 4 hours. This is based on the machine's 

importance to production schedules and the associated costs of downtime. In the event of a 

ventilator failure, it is crucial to allow for a delay period to allow for maintenance while 

ensuring the safety of underground workers (Zhou and Wang, 2013). If the system is repaired 

within a critical value, the ventilation system is still considered to be in the up state, and the 

effect of failure is either neglected or delayed. Therefore, conducting an availability analysis 

on ventilator systems is of significant importance in ensuring the normal production of the coal 

mine industry. This section presents a practical scenario where the neglect or delay of downtime 

in coal mine ventilator systems can have severe consequences, as illustrated in the previous 

sections. If the downtime of the ventilator surpasses τ, the system remains operational within 

the interval τ. It is important to note that if t < τ, the effects of ventilator failures are neglected, 

while t ≥ τ implies that the effects of ventilator failures are delayed. As suggested by Zhou and 

Wang (2013), τ is set at 0.1. 

Let's consider two ventilators operating in both a parallel and series system. The lifetime of 

each ventilator is exponentially distributed, with a failure rate of λ. Any ventilator failure is 

immediately detected, and the corresponding repair time is a non-negative exponential random 
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variable with a parameter of μ. Consistent with the methodology of Zhou and Wang (2013), we 

have chosen the values of λ and μ to be 1 and 2, respectively. It is important to note that prior 

to applying the new settings, the results are compared with those of the study by Zhou and 

Wang (2013) to validate the proposed model. Additionally, to assess the modified version of 

the model in light of the research contributions, a sensitivity analysis will be conducted in the 

following section.  Table 1 presents availability of series and parallel systems with constant 

threshold and identical components. 
 

Table 1: Series and Parallel System Availability with constant threshold and Identical Components (τ =0.1) 

t 𝑨𝑵𝒆𝒘 𝑨𝑶𝒍𝒅(𝒔𝒆𝒓𝒊𝒆𝒔) 𝑨𝑶𝒍𝒅(𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍) 𝑨𝑵𝒆𝒘(𝒔𝒆𝒓𝒊𝒆𝒔) 𝑨𝑵𝒆𝒘(𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍) 

0 1.00000 1.00000 1.00000 1.00000 1.00000 

0.2 0.92926 0.72182 0.97738 0.85719 0.98542 

0.3 0.87686 0.64350 0.96087 0.76331 0.97008 

0.5 0.80928 0.54914 0.93294 0.65029 0.94434 

0.7 0.77220 0.50053 0.91443 0.59210 0.92724 

0.9 0.75184 0.47481 0.90332 0.56133 0.91695 

1 0.74543 0.46684 0.89967 0.55180 0.91356 

1.2 0.73715 0.45667 0.89487 0.53963 0.90910 

1.5 0.73118 0.44939 0.89134 0.53092 0.90581 

1.7 0.72933 0.44715 0.89024 0.52825 0.90479 

1.9 0.72832 0.44593 0.88963 0.52678 0.90422 

2 0.72800 0.44554 0.88943 0.52632 0.90404 

3 0.72713 0.44449 0.88891 0.52507 0.90355 

4 0.72709 0.44444 0.88889 0.52501 0.90353 

5 0.72709 0.44444 0.88888 0.52500 0.90353 

6 0.72709 0.44444 0.88888 0.52500 0.90353 

7 0.72709 0.44444 0.88888 0.52500 0.90353 

8 0.72709 0.44444 0.88888 0.52500 0.90353 

9 0.72709 0.44444 0.88888 0.52500 0.90353 

10 0.72709 0.44444 0.88888 0.52500 0.90353 

 

Based on the figures 1 and 2, in the parallel system, the steady-state availability increases 

from 0.88 to 0.90. Similarly, in the series system, the steady-state availability increases from 

0.44 to 0.52. Therefore, there is an increase of 2.27% and 18.18% in availability in the parallel 

and series systems, respectively. 

In addition to the previous scenario, it is considered a case where the two components are 

non-identical. Again it is considered two ventilators in both a parallel and series system. The 

lifetime of each ventilator follows an exponential distribution with a failure rate of λ. Any 

ventilator failure is immediately detected, and the corresponding repair time is a non-negative 

exponential random variable with a parameter of μ. However, this time the values of λ and μ 

are chosen to be 1 and 2, respectively, for the first ventilator, and 2 and 3, for the second 

ventilator, respectively. The results are presented in Table 2 and Figure 3.  

In addition to the previous scenario, it is considered a case where the two components are 

non-identical. Again it is considered two ventilators in both a parallel and series system. The 

lifetime of each ventilator follows an exponential distribution with a failure rate of λ. Any 

ventilator failure is immediately detected, and the corresponding repair time is a non-negative 

exponential random variable with a parameter of μ. However, this time the values of λ and μ 

are chosen to be 1 and 2, respectively, for the first ventilator, and 2 and 3, for the second 

ventilator, respectively. The results are presented in Table 2 and Figure 3. 
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Figure 1: Parallel System Availability with Constant Threshold and Identical Components (τ =0.1) 

 

 
Figure 2: Series System Availability with Constant Threshold and Identical Components (τ =0.1) 

 
Table 2: Series and Parallel System Availability with constant threshold and Non-Identical Components (τ =0.1) 

t 𝑨𝑶𝒍𝒅(𝒔𝒆𝒓𝒊𝒆𝒔) 𝑨𝑶𝒍𝒅(𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍) 𝑨𝑵𝒆𝒘(𝒔𝒆𝒓𝒊𝒆𝒔) 𝑨𝑵𝒆𝒘(𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍) 

0 1.00000 1.00000 1.00000 1.00000 

0.2 0.72182 0.97738 0.90526 0.98985 

0.3 0.64350 0.96087 0.80243 0.97419 

0.5 0.54914 0.93294 0.68193 0.94860 

0.7 0.50053 0.91443 0.62156 0.93192 

0.9 0.47481 0.90332 0.59019 0.92199 

1 0.46684 0.89967 0.58056 0.91875 

1.2 0.45507 0.89411 0.56645 0.91383 

1.5 0.44939 0.89134 0.55969 0.91137 

1.7 0.44715 0.89024 0.55704 0.91039 

1.9 0.44593 0.88963 0.55559 0.90986 

2 0.44554 0.88943 0.55514 0.90969 

3 0.44449 0.88891 0.55390 0.90923 

4 0.44444 0.88889 0.55384 0.90921 

5 0.44444 0.88888 0.55384 0.90921 

6 0.44444 0.88888 0.55384 0.90921 

7 0.44444 0.88888 0.55384 0.90921 

8 0.44444 0.88888 0.55384 0.90921 

9 0.44444 0.88888 0.55384 0.90921 

10 0.44444 0.88888 0.55384 0.90921 

t 
A 

t 
A 
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From figure 3, it is concluded that in the parallel system, the steady-state availability 

increases from 0.88 to 0.90 and in series system, the steady-state availability increases from 

0.44 to 0.53. Therefore, there is a 2.27% and a 20.45% increase of availability in parallel and 

series system. 

 

 
Figure 3: Series and Parallel System Availability with Constant Threshold and Non-Identical Components (τ 

=0.1) 

 

Table 3 presents availability for series and parallel systems with random threshold and 

identical components. In the case of random repair time threshold, it is supposed that τ is a 

random variable with distribution function 𝐹𝜏(𝜏) = 1 − 𝑒−3𝜏, 𝜏 > 0. Two identical ventilators 

are considered working in parallel and series systems. The values of λ and μ are respectively 

chosen to be 1 and 2. 

 
Table 3: Series and Parallel System Availability with random threshold and Identical Components (τ =0.1) 

t 𝑨𝑶𝒍𝒅(𝒔𝒆𝒓𝒊𝒆𝒔) 𝑨𝑶𝒍𝒅(𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍) 𝑨𝑵𝒆𝒘(𝒔𝒆𝒓𝒊𝒆𝒔) 𝑨𝑵𝒆𝒘(𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍) 

0 1.00000 1.00000 1.00000 1.00000 

0.2 0.83467 0.99253 0.97143 0.99828 

0.3 0.72182 0.97738 0.91628 0.99171 

0.5 0.64350 0.96087 0.85874 0.98224 

0.7 0.54914 0.93294 0.76537 0.96277 

0.9 0.50053 0.91443 0.70525 0.94788 

1 0.47481 0.90332 0.66941 0.93816 

1.2 0.46684 0.89967 0.65762 0.93483 

1.5 0.45348 0.89334 0.63700 0.92884 

1.7 0.44939 0.89134 0.63042 0.92689 

1.9 0.44715 0.89024 0.62675 0.92580 

2 0.44593 0.88963 0.62472 0.92519 

3 0.44554 0.88943 0.62407 0.92500 

4 0.44449 0.88891 0.62231 0.92447 

5 0.44444 0.88889 0.62222 0.92444 

6 0.44444 0.88888 0.62222 0.92444 

7 0.44444 0.88888 0.62222 0.92444 

8 0.44444 0.88888 0.62222 0.92444 

9 0.44444 0.88888 0.62222 0.92444 

10 0.44444 0.88888 0.62222 0.92444 

t 

A 



Advances in Industrial Engineering, December 2024, 58(2): 277-290 

 287 

 

From the figures 4 and 5, it can be seen that similar to the foregoing case, the user-

perceived availability is higher than the user-observed availability in the case of random 

repair time threshold for both series and parallel cases. 

A sensitivity analysis was performed to assess the impact of model parameters on the 

availability of the user-perceived system and the results are presented in Table 4. When the 

critical repair time is larger than τ = 0.1, i.e., τ = 0.2, the availability of the user-perceived 

system increases. This is because the probability of completing the repair procedure within time 

τ increases. For instance, in the case of identical components and a constant repair time, when 

τ increases from 0.1 to 0.5, the corresponding steady-state availability in the parallel system 

increases from 0.88 to 0.95, indicating an 8.23% increase. Similarly, in the series system, the 

steady-state availability increases from 0.44 to 0.72, a 63.63% increase. 

Based on the figure 6, it can be seen that in the parallel system, the steady-state availability 

increases from 0.88 to 0.92. Similarly, in the series system, the steady-state availability 

increases from 0.44 to 0.62. Therefore, there is an increase of 4.54% and 40.9% in availability 

in the parallel and series systems, respectively. 

 

 
Figure 4: Parallel System Availability with Random Threshold and Identical Components (τ =0.1) 

 

 
Figure 5: Series System Availability with Random Threshold and Identical Components (τ =0.1) 

t 

A 

t 

A 
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Table 4: Series and Parallel System Availability with Constant Threshold and Identical Components (τ =0.2) 

t 𝑨𝑶𝒍𝒅(𝒔𝒆𝒓𝒊𝒆𝒔) 𝑨𝑶𝒍𝒅(𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍) 𝑨𝑵𝒆𝒘(𝒔𝒆𝒓𝒊𝒆𝒔) 𝑨𝑵𝒆𝒘(𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍) 

0 1.00000 1.00000 1.00000 1.00000 

0.2 0.72182 0.97738 1.28151 1.06814 

0.3 0.64350 0.96087 1.12261 1.03813 

0.5 0.54914 0.93294 0.93294 1.00000 

0.7 0.50053 0.91443 0.83614 0.97837 

0.9 0.47481 0.90332 0.78522 0.96605 

1 0.46684 0.89967 0.76949 0.96209 

1.2 0.45667 0.89487 0.74943 0.95691 

1.5 0.44939 0.89134 0.73511 0.95313 

1.7 0.44715 0.89024 0.73072 0.95195 

1.9 0.44593 0.88963 0.72831 0.95130 

2 0.44554 0.88943 0.72755 0.95109 

3 0.44449 0.88891 0.72549 0.95054 

4 0.44444 0.88889 0.72539 0.95051 

5 0.44444 0.88888 0.72538 0.95051 

6 0.44444 0.88888 0.72538 0.95051 

7 0.44444 0.88888 0.72538 0.95051 

8 0.44444 0.88888 0.72538 0.95051 

9 0.44444 0.88888 0.72538 0.95051 

10 0.44444 0.88888 0.72538 0.95051 

 

It is important to note that increasing the critical repair time threshold (τ) significantly 

enhances the availability of systems with identical components, particularly in parallel 

configurations. As τ rises from 0.1 to 0.5, parallel systems see an availability boost of 8.23%, 

while series systems experience a notable 63.63% increase. This underscores the importance of 

minimizing repair time variability and considering system design, as parallel systems offer 

greater resilience against failures. Managers should strategically invest in maintenance and 

repair processes to improve operational efficiency, leveraging the quantifiable gains in 

availability to justify resource allocation and prioritization of initiatives. 

 

 
Figure 6: Series and Parallel System Availability with Constant Threshold and Identical Components (τ =0.2) 

 

Conclusion 

 

This research conducted an availability analysis for repairable systems in both series and 

parallel configurations, taking into account the threshold for repair time and the potential 

neglect or delay of downtime. Both constant and random downtime thresholds were considered, 

A 

t 
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and analytical results were derived for system availability. The results indicate that this model 

is more effective for series systems, as the increase in availability was higher in series systems 

in all cases. Additionally, the value of τ is of critical importance for evaluating the user-

perceived availability. As τ increases, the user-perceived availability also increases. 

It is essential for managers and decision-makers who rely on repairable systems with a repair 

threshold, such as air distribution systems, water pumps, and emergency power systems, to 

analyze their system's availability while taking into account the neglected time caused by the 

repair threshold. Neglecting this factor can lead to a significant difference in the system's 

availability, which can have a substantial impact on maintenance plans and company costs. In 

fact, the availability of the system may be higher than what the manager assumes. Therefore, 

by calculating the threshold correctly, a better understanding of the system's performance can 

be achieved, leading to more accurate decision making. The results underscore the importance 

of considering repair time thresholds in real-world systems such as urban water supplies and 

industrial electrical systems. By integrating repair time thresholds into maintenance planning, 

organizations can achieve higher availability and optimize costs. Future research should focus 

on developing practical tools for implementing these thresholds and exploring additional factors 

affecting system reliability. 

It should be noted the results are so far limited to the series-parallel cases where: 

1- Failures are detected immediately. 

2- Standby systems were not considered. 

3- The down time caused by preventive maintenance and corrective maintenance were not 

considered. 

4- The failure mode of the system is assumed to be single in this research. 

Addressing these limitations can be considered as an interesting direction for the future 

studies. 
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