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Abstract  

Process Capability Indices (PCI) show that the process conforms to the 

specification limits; when the product quality depends on more than one 

characteristic, Multivariate Process Capability Indices (MCPI) are used. By 

modifying the process capability indices, the process incapability indices are 

created; these indices then provide information about the accuracy and precision of 

the process separately. In the real world, in most cases, the parameters cannot be 

specified precisely; therefore, the use of fuzzy sets can solve this problem in 

statistical quality control. The purpose of this paper is to present, for the first time, 

a Multivariate Process Incapability Index by considering the measurement error in 

a fuzzy environment. The presented index is shown for practical examples solved 

by considering Triangular Fuzzy Numbers; then the capability of the model is 

compared to the time when fuzzy logic is not used. The obtained results emphasize 

that ignoring the measurement error also leads to the incorrect calculation of 

process capability, causing a lot of damage to manufacturing industries, especially 

high-tech ones. 
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Introduction 
 

One of the main factors in determining the customer's satisfaction is the quality of products. Of 

course, the quality of products is also of special importance for manufacturers. One aspect of 

process quality control is the process capability analysis. One method of process capability 

analysis is using process capability indices. By using these indices, the process capability is 

reported as a number indicating the degree to which the manufactured products conform to the 

specification limits. 

Capability indices are divided into univariate and multivariate categories. If the quality of 

the manufactured products depends on one characteristic, the univariate capability indices are 

applied; if the quality of products depends on more than one characteristic and these 

characteristics are dependent on each other, multivariate capability indices are used. To check 

the controllability of processes in which the production sensitivity is high and also, their 

deviations are very low, the process capability indices are not appropriate and the process 

incapability is not well defined. In other words, conventional methods are not appropriate to 

tackle this problem. Therefore, it is necessary to use process incapability indices, because these 

deviations are well detected and the process capability or incapability is determined. 
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Electronic products, for example, have a strict range of tolerance and specification than other 

types of products. Therefore, process performance sensitivity will have a greater impact on 

product quality management. Therefore, it is necessary to use a high-accuracy index. 

The structure of this paper is as follows: In the second part, the research that has been done 

on the process capability and incapability indices in a fuzzy environment is examined. In the 

third part, the concepts of fuzzy logic and how to perform mathematical operations on fuzzy 

numbers will be presented; then mathematical relations will be presented for the first time to 

calculate the multivariate process incapability index by considering the measurement error in a 

fuzzy environment. Then, in Section 4, by solving a real example and applying analyses, the 

performance of the presented index is examined. Finally, some conclusion and suggestions for 

future research are presented in the fifth section. 

 

Literature review 
 

Fuzzy theory was introduced by Prof. Zadeh in 1965 for data with non-statistical uncertainty. 

 

Univariate and multivariate fuzzy process capability indices 

 

There are several articles in the literature on fuzzy univariate and multivariate process capability 

indices; these are such as Yongting [1], Lee et al. [2], Lee [3], Sadeghpour Gildeh [4], Parchami 

et al. [5,6], Parchami and Machinchi [7,8], Hsu and Shu [9], Kahrman and Kaya [10,11], Kaya 

and Kahrman [12-20], Ramezani et al. [21], Sadeghpour Gildeh and Moradi [22], Sadeghpour 

Gildeh and Angoshtari [23], Abbasi Ganji and Sadeghpour Gildeh [24-26], and Hashemian and 

Akbari [27]. 

 

Multivariate process incapability index 

 

Abbasi Ganji [28] first introduced a multivariate process incapability vector including two 

components for processes in which the quality characteristic follows the multivariate normal 

distribution. This index is calculated due to the ratio of the volume of a tolerance region to the 

volume of the process region. 

 

Process incapability index with measurement error 

 

Sadeghpour Gildeh and Abbasi Ganji [29] for the first time, presented the process incapability 

index by taking into account measurement errors and examined its statistical properties and 

obtained its Maximum Likelihood Estimation (MLE). 

 

Fuzzy process incapability indices 

 

However, very few studies have addressed the process incapability index. Kahrman and Kaya 

[30] calculated 𝐶𝑝𝑝 index by using fuzzy set theory and applied it in a piston manufacturer firm. 

Kaya and Baracli [31] calculated 𝐶𝑝𝑝 index with asymmetric tolerances by using fuzzy set 

theory and applied it in a piston manufacturer firm. Kaya [32] calculated 𝐶𝑝𝑝 index by using 

fuzzy set theory and used it in a decision-making process to select the most appropriate supplier. 

Abbasi Ganji and Sadeghpour Gildeh [33] used the Buckley's approach to calculate the fuzzy 

univariate process incapability index, 𝐶𝑝𝑝
″  , and made decisions using the fuzzy critical value to 

decide on that index. 

Table 1 summarizes the research conducted on incapability indices. 
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Table 1. Summary of the research on incapability indices 

Author(s) Year 

Assumptions 

Process 

Incapability Index 
Multivariate Univariate 

Measurement 

Error 

Fuzzy 

Logic 

Kahrman and 

Kaya [30] 
2011      

Kaya and 

Baracli [31] 
2012      

Kaya [32] 2014      

Abbasi Ganji 

and 

Sadeghpour 

Gildeh [33] 

2016      

Sadeghpour 

Gildeh and 

Abbasi Ganji 

[29] 

2019      

Abbasi Ganji 

[28] 
2019      

Current research      

 

According to Table 1, it is clear that so far no article has been presented on the fuzzy 

multivariate incapability index in which measurement error is considered, and this paper 

complements previous research in this field. The innovation of this paper is the combination of 

multivariate parameters, measurement error and fuzzy logic with the process incapability index 

that present for the first time and for high technology manufacturing processes is very useful; 

because In the practical environment, there are several situations that we cannot cluster the 

parameters exactly; so using fuzzy sets is important and in reality, the products depend on 

several quality characteristics and also the measurement error can not be ignored. 

 

Methodology 
 

In this section, first, the assumptions are stated and then some basic definitions regarding the 

concepts of the fuzzy theory are presented; then mathematical relations are provided to calculate 

the multivariate process capability index considering the measurement error in the fuzzy 

environment. 

 

Assumptions 

 

It is assumed that the process under study has a multivariate normal distribution and the process 

is under control. Assume that the quality characteristic X is as a vector 𝑝 × 1 and has a normal 

multivariate distribution with the mean vector, μ, and the variance-covariance matrix, Σ, is as 

𝑁𝑝(𝜇, Σ). The specification limits for the quality characteristic 𝑋𝑖 for i is from 1 to p, from the 

upper and lower limits 𝐿𝑆𝐿𝑖 and 𝑈𝑆𝐿𝑖. Also, T is the target value that for each 𝑋𝑖 is within this 

range. 

Assuming that the measurement error is normal (E), in the multivariate mode, the error is a 

vector 𝑝 × 1 with a normal multivariate distribution and a zero mean vector 𝜇𝐸 = 0, and  the 

variance-covariance matrix Σ𝐸 is as  𝑁𝑝(𝜇𝐸 , Σ𝐸). It should be noted that X and E are independent 

of each other. Considering the measurement error, the quality characteristic is defined as 𝐺 =
𝑋 + 𝐸 in the multivariate mode, with a normal multivariate distribution as 𝑁𝑝(𝜇𝐺 , Σ𝐺  ), which 

is 𝜇𝐺 = 𝜇 and Σ𝐺 = Σ + Σ𝐸. 
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Definitions and concepts 

 

A. Triangular fuzzy number: A fuzzy number is a normal and convex set of R whose 

membership function is Piecewise Continuous. 

B. Left-Right (LR) Fuzzy Numbers: LR fuzzy numbers mean that by using the α cut, any 

fuzzy number can be decomposed into right and left parts. The α level set of the fuzzy number 

�̃� is defined as [𝐴𝐿(𝛼), 𝐴𝑅(𝛼)]. The α cut for a triangular fuzzy number is shown in Fig.1. 

Fuzzy number �̃� = (𝑎, 𝑚, 𝑏) is an LR fuzzy number [34] if  :  

 

(1) 𝜇𝐴(𝑥) = {

𝑥 − 𝑎

𝑚 − 𝑎
          𝑎 ≤ 𝑥 ≤ 𝑚

𝑏 − 𝑥

𝑏 − 𝑚
          𝑚 ≤ 𝑥 ≤ 𝑏

 

(2)  {
𝑥𝐿 = 𝑎 + 𝛼(𝑚 − 𝑎) 

𝑥𝑅 = 𝑏 − 𝛼(𝑏 − 𝑚)
 

 

 

Fig.1. α cut for a triangular fuzzy number 

 

C. Mathematical operations on LR fuzzy numbers: Consider two triangular fuzzy numbers 

�̃� = (𝑎1, 𝑎2, 𝑎3) and �̃� = (𝑏1, 𝑏2, 𝑏3). α cut for these two fuzzy numbers is �̃�(𝛼) =
[𝐴𝐿(𝛼), 𝐴𝑅(𝛼)] and �̃�(𝛼) = [𝐵𝐿(𝛼), 𝐵𝑅(𝛼)], and the mathematical operations for  them are as 

follows [35]. 

 
(3) �̃�(𝛼) ⊕ �̃�(𝛼) = [𝐴𝐿(𝛼) + 𝐵𝐿(𝛼), 𝐴𝑅(𝛼) + 𝐵𝑅(𝛼)] 
(4) �̃�(𝛼) ⊖ �̃�(𝛼) = [𝐴𝐿(𝛼) − 𝐵𝑅(𝛼), 𝐴𝑅(𝛼) − 𝐵𝐿(𝛼)] 

(5) 

�̃�(𝛼) ⊗ �̃�(𝛼) = [𝛼, 𝛽] 

𝛼 = 𝑚𝑖𝑛(𝐴𝐿(𝛼)𝐵𝐿(𝛼), 𝐴𝐿(𝛼)𝐵𝑅(𝛼), 𝐴𝑅(𝛼)𝐵𝐿(𝛼), 𝐴𝑅(𝛼)𝐵𝑅(𝛼)) 

𝛽 = 𝑚𝑎𝑥(𝐴𝐿(𝛼)𝐵𝐿(𝛼), 𝐴𝐿(𝛼)𝐵𝑅(𝛼), 𝐴𝑅(𝛼)𝐵𝐿(𝛼), 𝐴𝑅(𝛼)𝐵𝑅(𝛼)) 

(6) 

�̃�(𝛼) ⊘ �̃�(𝛼) = [𝛾, 𝛿] 

𝛾 = 𝑚𝑖𝑛(𝐴𝐿(𝛼)/𝐵𝐿(𝛼), 𝐴𝐿(𝛼)/𝐵𝑅(𝛼), 𝐴𝑅(𝛼)/𝐵𝐿(𝛼), 𝐴𝑅(𝛼)/𝐵𝑅(𝛼)) 

𝛿 = 𝑚𝑎𝑥(𝐴𝐿(𝛼)/𝐵𝐿(𝛼), 𝐴𝐿(𝛼)/𝐵𝑅(𝛼), 𝐴𝑅(𝛼)/𝐵𝐿(𝛼), 𝐴𝑅(𝛼)/𝐵𝑅(𝛼)) 

(7) {
𝜆 ⊙ �̃�(𝛼) = [𝜆. 𝐴𝐿(𝛼), 𝜆. 𝐴𝑅(𝛼)]          𝑖𝑓𝜆 > 0 

𝜆 ⊙ �̃�(𝛼) = [𝜆. 𝐴𝑅(𝛼), 𝜆. 𝐴𝐿(𝛼)]          𝑖𝑓𝜆 < 0
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D. Fuzzy matrix: A triangular fuzzy matrix with the dimension 𝑚 × 𝑛 is a matrix with the 

dimension 𝑚 × 𝑛, where all its elements are triangular fuzzy numbers,  that is, �̃� = (�̃�𝑖𝑗)
𝑚×𝑛

, 

where �̃�𝑖𝑗 = (𝑎𝑖𝑗, 𝑏𝑖𝑗 , 𝑐𝑖𝑗) [34]. If 𝑚 = 𝑛, it is called a square matrix. It should be noted that 

this paper is presented based on a situation where all the elements of the matrix are symmetric 

Triangular Fuzzy Number; so, 𝑏𝑖𝑗 − 𝑎𝑖𝑗 = 𝑐𝑖𝑗 − 𝑏𝑖𝑗. 

E. Fuzzy determinant: suppose �̃� = (�̃�𝑖𝑗) is a 2×2 square matrix. The fuzzy determinants of 

the matrix �̃� are represented by the symbol 𝑑𝑒𝑡(�̃�) and are defined according to the following 

equation [36]. 

 
(8) 𝑑𝑒𝑡(�̃�) = (�̃�11 ⊗ �̃�22) ⊖ (�̃�12 ⊗ �̃�21) 

 

Ranking function 

 

To determine that the fuzzy number �̃� is greater than, equal to or less than the fuzzy number �̃�, 

we use the ranking function introduced by Fortemps and Roubens [37]. Based on 𝐶(�̃� ≥ �̃�), 

the comparison between �̃� and �̃� is according to the following equations. 

 

(9) 

𝐶(�̃� ≥ �̃�) > 0           𝐼𝐹 �̃� > �̃� 

𝐶(�̃� ≥ �̃�) ≥ 0           𝐼𝐹 �̃� ≥ �̃� 

𝐶(�̃� ≥ �̃�) = 0           𝐼𝐹 �̃� = �̃� 

So: 
(10) 𝐶(�̃� ≥ �̃�) = 𝑅(�̃�) − 𝑅(�̃�) 

(11) 𝑅(�̃�) =
1

2
∫ (�̃�𝐿(𝛼) + �̃�𝑅(𝛼)) 𝑑𝛼

1

0

 

 

It should be noted that for a triangular fuzzy number �̃� = 𝑇(𝑎, 𝑏, 𝑐), Eq. 11 is written as 

𝑅(�̃�) =
𝑎+2𝑏+𝑐

4
,  with the value being equal to the middle number �̃� is. 

 

Multivariate Process incapability index considering the measurement error in certain 

mode 

 

The 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) index was presented by Abbasi Ganji [28]; in the present article, this index is 

shown as 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) in the presence of the measurement error. So, u and v are the weighting 

factors for the deviation of the mean vector from the target vector and the variability of the 

process, and G indicates the measurement error. 

To calculate this index, we use the division of the tolerance region into the process region. 

Because the 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣) index consists of two indices of inaccuracy and imprecision, the effect 

of measurement error on both indices must be considered. The imprecision index is calculated 

by considering the measurement error according to Eq. 12. It should be noted that the following 

equations, which are the basis for fuzzy index calculation, have been developed by the authors. 

The difference between the following equations and the equations presented in Abbasi Ganji's 

research [28] is that Abbasi Ganji did not consider measurement error in her equations and to 

further develop, we added it to her equations. 
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(12) 

𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) = (
𝑣𝑜𝑙. (99.73% 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑛𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 )

𝑣𝑜𝑙. (𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟𝑖)
)

2

= (
|𝚺𝐺|

1
2 (𝜋𝜒0.0027,𝑣

2 )
𝑝
2  (Γ (

𝑝
2

+ 1))
−1

𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢)
)

2

= (
|𝚺 + 𝚺𝐸|

1
2 (𝜋𝜒0.0027,𝑣

2 )
𝑝
2  (Γ (

𝑝
2

+ 1))
−1

𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢)
)

2

;       𝑢 ≥ 0 

 

In Eq. 12, p is the number of qualitative characteristics under consideration. Also, 𝑟𝑖(𝑢) is 

an ellipsoid radius and Γ (
𝑝

2
+ 1) is a gamma function. 𝜆𝑀 is the multivariate gauge capability 

and calculated according to Eq. 13; by adding this relation to the previous equations, a new 

index is created. 

 

(13) 
𝜆𝑀 =

𝑣𝑜𝑙. (99.73% 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑒𝑔𝑖𝑜𝑛)

𝑣𝑜𝑙. (𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟𝑖)
=

|𝚺𝐸|
1
2 (𝜋𝜒0.0027,𝑣

2 )
𝑝
2  (Γ (

𝑝
2

+ 1))
−1

𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢)
 

 

The determinants of the variance-covariance matrix E are obtained according to Eq. 14. 

 

(14) 
|𝚺𝐸|

1
2 =

𝜆𝑀(𝜋𝑟1(𝑢)𝑟2(𝑢) … 𝑟𝑝(𝑢))

(𝜋𝜒0.0027,𝑣
2 )

𝑝
2  (Γ (

𝑝
2

+ 1))
−1 

 

According to the theorem of the sum determinants of two matrices A and B [38], the equation 

|Σ + Σ𝐸| is equal to |Σ + Σ𝐸| = |Σ| + |Σ𝐸| + 𝐶; also, by considering that the equation 
|Σ + Σ𝐸| = |Σ𝐺|, it is established that the value of C will be equal to 𝐶 = |Σ𝐺| − (|Σ| + |Σ𝐸|); 

by placing the above items in Eq. 12, the 𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) index is calculated as follows: 

 

(15) 

𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) = 𝑀𝐶𝑖𝑝
‴(𝑢) × (1 +

(𝜆𝑀)2

𝑀𝐶𝑖𝑝
‴(𝑢)

+
𝐶

|𝚺𝐺 − 𝚺𝐸|
)

= 𝑀𝐶𝑖𝑝
‴(𝑢) × (

(𝜆𝑀)2

𝑀𝐶𝑖𝑝
‴(𝑢)

+
𝐶 + (|𝚺𝐺 − 𝚺𝐸|)

|𝚺𝐺 − 𝚺𝐸|
)

= 𝑀𝐶𝑖𝑝
‴(𝑢) × (

(𝜆𝑀)2

𝑀𝐶𝑖𝑝
‴(𝑢)

+
|𝚺𝐺| − |𝚺| − |𝚺𝐸| + (|𝚺𝐺 − 𝚺𝐸|)

|𝚺𝐺 − 𝚺𝐸|
)

= 𝑀𝐶𝑖𝑝
‴(𝑢) × (

(𝜆𝑀)2

𝑀𝐶𝑖𝑝
‴(𝑢)

+
|𝚺𝐺| − |𝚺𝐸|

|𝚺𝐺 − 𝚺𝐸|
) 

 

Finally, the 𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) index is calculated according to Eq. 16. 

 

(16) 𝑀𝐶𝑖𝑝
‴𝐺

(𝑢) = (𝜆𝑀)2 + (𝑀𝐶𝑖𝑝
‴(𝑢) ×

|𝚺𝐺| − |𝚺𝐸|

|𝚺𝐺 − 𝚺𝐸|
)       𝑢 ≥ 0 

 

Considering that there is no standard deviation, σ, in the inaccuracy index 𝐶𝑖𝑎
‴(𝑢, 𝑣) =

9𝑣𝐴2

(𝑑∗−𝑢𝐴∗)2
 as introduced by Abbasi Ganji [28], measurement error in this part of the process 

incapability index formula has no effect and the inaccuracy index 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) is calculated 

according to Eq. 17. 
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(17) 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) =

9𝑣𝑨′𝑨

𝒓′(𝑢)𝒓(𝑢)
;       𝑢, 𝑣 ≥ 0 

 

In Eq. 17, 𝐴′ represents the transposition of the vector 𝐴 and this vector is calculated 

according to the transpose matrix equations in mathematics. In the above equations, the 

following equations are established. 

 
(18) 𝑑𝑖

∗ = min{𝐷𝑙𝑖
, 𝐷𝑢𝑖

} , 𝐷𝑙𝑖
= 𝑇𝑖 − 𝐿𝑆𝐿𝑖 , 𝐷𝑢𝑖

= 𝑈𝑆𝐿𝑖 − 𝑇𝑖 

(19) 𝑑𝑖 =
𝑈𝑆𝐿𝑖 − 𝐿𝑆𝐿𝑖

2
 

(20) 𝐴𝑖 =
𝑑𝑖(𝜇𝑖 − 𝑇𝑖)

𝐷𝑢𝑖

𝐼{𝜇𝑖 > 𝑇𝑖} +
𝑑𝑖(𝑇𝑖 − 𝜇𝑖)

𝐷𝑙𝑖

𝐼{𝜇𝑖 ≤ 𝑇𝑖} 

(21) 𝐴𝑖
∗ =

(𝜇𝑖 − 𝑇𝑖)
2

𝐷𝑢𝑖

𝐼{𝜇𝑖 > 𝑇𝑖} +
(𝑇𝑖 − 𝜇𝑖)

2

𝐷𝑙𝑖

𝐼{𝜇𝑖 ≤ 𝑇𝑖} 

(22) 𝑟𝑖(𝑢) = |𝑑𝑖
∗ − 𝑢𝐴𝑖

∗| 

(23) 𝒅∗ = (

𝑑1
∗

𝑑2
∗

⋮
𝑑𝑝

∗

), 𝑨 = (

𝐴1

𝐴2

⋮
𝐴𝑝

), 𝑨∗ = (

𝐴1
∗

𝐴2
∗

⋮
𝐴𝑝

∗

), 𝒓(𝑢) = (

𝑟1(𝑢)
𝑟2(𝑢)

⋮
𝑟𝑝(𝑢)

) 

 

In Eqs. 20 and 21, 𝐼{𝑥} is an indicator function defined according to Eq. 24. 

 

(24) 𝐼{𝑥} = {
1;      𝑥 ≥ 0
0;      𝑥 < 0

 

 

To summarize, the error-affected multivariate incapability index 𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) is in 

accordance with Eq. 25. 

 

(25) 

𝑀𝐼𝐶𝑝𝑝
‴𝐺

(𝑢, 𝑣) = 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣) + 𝑀𝐶𝑖𝑝

‴𝐺
(𝑢)

=
9𝑣𝑨′𝑨

𝒓′(𝑢)𝒓(𝑢)
+ (𝜆𝑀)2 + (𝑀𝐶𝑖𝑝

‴(𝑢) ×
|𝚺𝐺| − |𝚺𝐸|

|𝚺𝐺 − 𝚺𝐸|
)        𝑢, 𝑣 ≥ 0 

 

Multivariate process incapability index considering measurement error in fuzzy 

environment 

 

In this section, according to the fuzzy concepts presented at the beginning of Section 3, the 

multivariate process incapability index is calculated by considering the measurement error in 

the fuzzy state, as indicated by the symbol ( , )
G

PPMIC u v


, in accordance with Eq. 26. To 

calculate this index, both inaccuracy and imprecision indices in fuzzy mode must be calculated 

and added up. 

To calculate the index in the fuzzy mode, the α-cut method is used and for each index, its 

LR mode is estimated. 

 

( , ) ( , ) ( , )

( ) ( ), ( ) ( )

L R

G G

PP ia ip

L G R G

ia ip ia ip

MIC u v MC u v MC u v

MC MC MC MC   

  
 

    
   
   

(26) 
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The index ( )iaMC 
 is a fuzzy multivariate inaccuracy index calculated according to Eq. 27. 

It should be noted that as mentioned in the previous section, measurement error has no effect 

on this index. 

 

 ( ) ( ), ( )

9 ( ) ( ) 9 ( ) ( )
,

( ) ( ) ( ) ( )

L R
ia ia ia

L RL R

R LR L

MC MC MC

v v

  

   

   

  

  
    

  
    

A A A A

r r r r
 

(27) 

 

The index ( , )
G

ipMC u v


 is a multivariate imprecision index considering the measurement error 

in the fuzzy mode; it is calculated according to Eq. 28. To obtain the fuzzy variance-covariance 

matrix of the data, mixed with errors, represented by the symbol G
Σ

, the fuzzy variance -

covariance matrix of the original data ( Σ ) must be combined with the fuzzy-covariance matrix 

of the error ( E
Σ

). 

 

 

     

 

     

2 2
1 11 1

2 22 22 2
0.0027, 0.0027,

1 2 1 2

( , ) ( ), ( )

1 1
2 2

,

L R
G G G

ip ip ip

p p
L R

G v G v

R R R L L L

p p

MC u v MC MC

p p

r r r r r r

 

   

       

 

  

 
 
 

                                                  
      

Σ Σ



  

(28) 

 

Eq. 28 is used to calculate the fuzzy variance-covariance matrix determinants of the data, 

mixed with errors, ( GΣ ). For bivariate indices, ( , )
G

ipMC u v


 is calculated according to Eq. 29. 

 

 

    

 

    

2 2

2 2

1 2 1 2

( , ) ( ), ( )

11.829 11.829
,

L R
G G G

ip ip ip

L R

G G

R R L L

MC u v MC MC

r r r r

 

   

  

 
 
 

   
  

   

Σ Σ

 

(29) 

 

The multivariate gauge capability is indicated by the symbol 𝜆𝑀 and is a crisp number. The 

fuzzy variance-covariance error matrix ( E
Σ

) is a diagonal matrix in which the entries outside 

the main diagonal  are zero and the entries of the main diagonal are the square root of the 

determinant of the fuzzy error matrix EΣ  [39-42]; it is calculated according to Eq. 30. 
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      

        

 

        

 

1 2 1 2

1 1

2 22 2
0.0027, 0.0027,

,

,

1 1
2 2

L R

E E E

M L L L M R R R

p p

p p

v v

r r r r r r

p p

  

           

   

 



 
 

      
  

       
                     

Σ Σ Σ

 

(30) 

 

For indices that depend on two qualitative characteristics (bivariate indices), the entries of 

the main diagonal of the fuzzy variance-covariance error matrix are calculated according to Eq. 

31. 

 

      
       1 2 1 2

,

,
11.829 11.829

L R

E E E

M L L M R Rr r r r

  

     



     
  
  

Σ Σ Σ

 

(31) 

 

To calculate the indices presented in Eqs. 27 to 29, the following equations should be used. 

To calculate Eqs. 32, 33, and 34 should be first calculated; finally, their minimum is selected 

according to Eq. 32. 

 

 

 

 

*

* *

min ,

min , , 1,2,...,

min ,
L R

i L U

ii i i

d D D

T LSL USL T i P

d d



 



! !

 

(32) 

 

   * ,
L L R R Ld T LSL T LSL  ! !

 
(33) 

 

   * ,
R L R R Ld USL T USL T  ! !

 
(34) 

 

The α cut of a triangular fuzzy number, id
, is calculated according to Eq. 35. 

 

   ,

,
2 2

L R

i i i

L R R L

d d d

USL LSL USL LSL

 

  
  
  

! !

 

(35) 

 

The set of α-cuts is in the form
      ,L RA A A  

; to calculate it, one of the 

propositions of each of the Eqs. 36 to 38 must be selected. To do this, the ranking function is 

used to determine
 max ,i iX T

. 
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 
 

 
 

;max ,

;max ,

i i i

i i i
ii

i i i

i i i
i i

d X T
X T X

USL T
A

d T X
X T T

T LSL

 
 


 
 
 


!

!

!

!
 

(36) 

 

 

 
 

 
 

;max ,

;max ,

L L R

i i i

i i iR L

iL

L L R

i i i

i i iR L

i

d X T
X T X

USL T
A

d T X
X T T

T LSL



 
 


 





!

!

!

!
 

(37) 

 

 

 
 

 
 

;max ,

;max ,

R R L

i i i

i i iL R

iR

R R L

i i i

i i iL R

i

d X T
X T X

USL T
A

d T X
X T T

T LSL



 
 


 





!

!

!

!
 

(38) 

The set of α-cuts is in the form
      * * *,L RA A A  

; to calculate it, one of the 

propositions of each of the Eqs. 39 to 41 must be selected. To do this, the ranking function is 

used to determine the
 max ,i iX T

. 

 

 
 

 
 

2

*

2

;max ,

;max ,

ii

i i i
i i

i i

i i i
ii

X T
X T X

USL T
A

T X
X T T

T LSL







 

 


!

!

!

!
 

(39) 

 

 

 
 

 
 

2

*

2

;max ,

;max ,

L

L R

i i

i i iR
L

i i

L R

i i

i i iL
R

ii

X T
X T X

USL T
A

T X
X T T

T LSL









 

 



!

!

!

!
 

(40) 

 

 

 
 

 
 

2

*

2

;max ,

;max ,

R

R L

i i

i i iL
R

i i

R L

i i

i i iR
L

ii

X T
X T X

USL T
A

T X
X T T

T LSL









 

 



!

!

!

!
 

(41) 

 

Eq. 42 is used to calculate the ellipsoid radius in the multivariate mode. 
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      

    * * * *

,

,
L R R L

L R

i i i

i i i i

r r r

d u A d u A

  

  ! !
 

(42) 

 

Multivariate Process incapability index without considering measurement error in the 

fuzzy mode 

 

The multivariate imprecision index without considering the measurement error in the fuzzy 

state is indicated by the symbol ( , )ipMC u v


; it is estimated according to Eq. 43. 

 

(43) 

 

 

     

 

     

2 2
1 11 1

2 22 22 2
0.0027, 0.0027,

1 2 1 2

,

1 1
2 2

,

ip ip ip

L R

p p
L R

v v

R R R L L L

p p

MC MC MC

p p

r r r r r r

   

       

 

  

                                                   
        

Σ Σ

 

For bivariate indices, ( , )ipMC u v


 is calculated according to the following equation. 

 

(44) 

 
 

    

 

    

2 2

2 2

1 2 1 2

,

11.829 11.829
,

ip ip ip

L R

L R

R R L L

MC MC MC

r r r r   

  

   
  

   

Σ Σ

 
 

The inaccuracy index ( , )iaMC u v


 is calculated according to Eq. 27; the multivariate process 

incapability index is calculated according to Eq .45 without considering the measurement error 

in the fuzzy mode, ( , )PPMIC u v


, is estimated according to the Eq .45. 

 

( , ) ( , ) ( , )

( ) ( ), ( ) ( )

L R

PP ia ip

L R

ia ip ia ip

MIC u v MC u v MC u v

MC MC MC MC   

  
 

    
   
   

(45) 

 

Practical example 
 

Example 1: Jackson's example 

 

The first example presented in this section is the one provided by Jackson [43]. He studied the 

process of Film-developing solution and examined the two components of Elon (E) and 

Hydroguinone (H). Process information including specification limits and target value for both 

factors are considered as symmetric triangular fuzzy numbers, as shown in Table 2; to solve 

this example, the numbers 𝜆𝑀 = 0.1, u = 1 and v = 1 are used. 
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Table 2. Fuzzy information of the film-developing solution 

 
LSL USL T 

L M R L M R L M R 

E 234 235 236 234 235 236 234 235 236 

H 439 440 441 439 440 441 439 440 441 

 

Based on a random sample of size 75, the fuzzy sample mean vector and the fuzzy sample 

variance-covariance matrix are as follows. 

 

(46) �̃̅� = (
263.32   264.32   265.32

470.48   471.48   472.48
) 

(47) �̃� = (
101.65   102.65   103.65 67.87   68.87   69.87

67.87   68.87   69.87 106.96   107.96   108.96
) 

 

The process incapability index is calculated by considering the measurement error in the 

fuzzy mode using Eq. 26. The value of this index, the approximate value of the fuzzy index and 

the value of the index in the crisp state are presented in Table 3. 

 
Table 3. Process incapability index with measurement error 

Value of the index in crisp 

state 

Approximate value of the 

fuzzy index 
Value of the fuzzy index 

𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣)̂ = 0.0133 𝑀𝐶𝑖𝑎

‴(𝑢, 𝑣)̂ ≅ 0.0732 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣)̂̃ = [0.0072   0.1391] 

𝑀𝐶𝑖𝑝
‴𝐺(𝑢)̂ = 1.3891 𝑀𝐶𝑖𝑝

‴𝐺(𝑢)̂ ≅ 1.5232 𝑀𝐶𝑖𝑝
‴𝐺(𝑢)̂̃ = [0.9879   2.0585] 

𝑀𝐼𝐶𝑝𝑝
‴𝐺(𝑢, 𝑣)̂ = 1.4024 𝑀𝐼𝐶𝑝𝑝

‴𝐺(𝑢, 𝑣)̂ ≅ 1.5964 
𝑀𝐼𝐶𝑝𝑝

‴𝐺(𝑢, 𝑣)̂̃ = 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣)̂̃ + 𝑀𝐶𝑖𝑝

‴𝐺(𝑢)̂̃

= [0.9952   2.1977] 

 

Table 4 shows the process incapability index without considering the measurement error in 

the fuzzy state, the approximate value of the fuzzy index and the value of the index in the crisp 

mode. 

 
Table 4. Process incapability index without considering measurement error 

Value of the index in crisp 

state 

Approximate value of the 

fuzzy index 
Value of the fuzzy index 

𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣)̂ = 0.0133 𝑀𝐶𝑖𝑎

‴(𝑢, 𝑣)̂ ≅ 0.0732 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣)̂̃ = [0.0072   0.1391] 

𝑀𝐶𝑖𝑝
‴(𝑢)̂ = 1.1015 𝑀𝐶𝑖𝑝

‴(𝑢)̂ ≅ 1.2011 𝑀𝐶𝑖𝑝
‴(𝑢)̂̃ = [0.80251   1.5996] 

𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣)̂ = 1.1148 𝑀𝐼𝐶𝑝𝑝

‴ (𝑢, 𝑣)̂ ≅ 1.2743 
𝑀𝐼𝐶𝑝𝑝

‴ (𝑢, 𝑣)̂̃ = 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣)̂̃ + 𝑀𝐶𝑖𝑝

‴(𝑢)̂̃

= [0.8098   1.7388] 

 

To decide on the capability or incapability of the process, the value of the process 

incapability index must be compared to one. Thus, if the value of the index is greater than one, 

the process is incapable; if the value of the index is less than one, the process is capable. In the 

fuzzy mode, the incapability index must be compared by a ranking function with the triangular 

fuzzy number 1̃. 

According to Table 3, 𝑅 (𝑀𝐼𝐶𝑝𝑝
‴𝐺(𝑢, 𝑣)̂ ) = 1.5964, which is greater than 𝑅(1̃) = 1; so, the 

process becomes incapable. If this index were also calculated in the case of crisp data, its value 

would be equal to 𝑀𝐼𝐶𝑝𝑝
‴𝐺(𝑢, 𝑣)̂ = 1.4024; in this case, the process is incapable. The advantage 

of considering the fuzzy mode is that it helps us when the data is crisp and no exact boundary 

can be drawn for it. 
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Also, according to Table 4, 𝑅(𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣)̂ ) = 1.2743, which is greater than 𝑅(1̃) = 1, so 

the process is incapable. If this index is also calculated in the case of crisp data, its value is 

equal to 𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣)̂ = 1.1148; in this case, the process is incapable. 

 

Example 2:  Sultan's example 

 

Sultan [44], in his research on the production process of a type of raw material, examined the 

two characteristics of Brinell hardness (BH) and Tensile strength (TS). The specification limits 

of the triangular fuzzy and the value of the triangular fuzzy target for both factors are shown in 

Table 5. To solve this example, the numbers 𝜆𝑀 = 0.1, u = 1 and v = 1 were used.  

 
Table 5. Fuzzy information the production process of a type of raw material 

 
LSL USL T 

L M R L M R L M R 

BH (no units) 111.7 112.7 113.7 111.7 112.7 113.7 111.7 112.7 113.7 

TS (MPa) 31.7 32.7 33.7 31.7 32.7 33.7 31.7 32.7 33.7 

 

The fuzzy sample mean vector and the fuzzy sample variance-covariance matrix are as 

follows. 

 

(48) �̃̅� = (
176.2  177.2   178.2

51.33   52.33   53.33
) 

(49) �̃� = (
336.8   337.8   338.8 84.3308   85.3308   86.3308

84.3308   85.3308   86.3308 32.6247   33.6247   34.6247
) 

 

The process incapability index is presented in Table 6, taking into account the measurement 

error in the fuzzy state, the approximate value of the fuzzy index and the value of the index in 

the crisp mode. 

 
Table 6. Process incapability index considering measurement error 

Value of the index in crisp 

state 

Approximate value of the 

fuzzy index 
Value of the fuzzy index 

𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣)̂ = 0.0009 𝑀𝐶𝑖𝑎

‴(𝑢, 𝑣)̂ ≅ 0.0200 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣)̂̃ = [0.0078   0.0323] 

𝑀𝐶𝑖𝑝
‴𝐺(𝑢)̂ = 0.6825 𝑀𝐶𝑖𝑝

‴𝐺(𝑢)̂ ≅ 0.7603 𝑀𝐶𝑖𝑝
‴𝐺(𝑢)̂̃ = [0.4582   1.0624] 

𝑀𝐼𝐶𝑝𝑝
‴𝐺(𝑢, 𝑣)̂ = 0.6835 𝑀𝐼𝐶𝑝𝑝

‴𝐺(𝑢, 𝑣)̂ ≅ 0.7804 
𝑀𝐼𝐶𝑝𝑝

‴𝐺(𝑢, 𝑣)̂̃ = 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣)̂̃ + 𝑀𝐶𝑖𝑝

‴𝐺(𝑢)̂̃

= [0.4661   1.0947] 

 

The process incapability index without considering the measurement error in the fuzzy state, 

the approximate value of the fuzzy index and the value of the index in the crisp mode are 

presented in Table 7. 

 
Table 7. Process incapability index without considering measurement error 

Value of the index in crisp 

state 

Approximate value of the 

fuzzy index 
Value of the fuzzy index 

𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣)̂ = 0.0009 𝑀𝐶𝑖𝑎

‴(𝑢, 𝑣)̂ ≅ 0.0200 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣)̂̃ = [0.0078   0.0323] 

𝑀𝐶𝑖𝑝
‴(𝑢)̂ = 0.3355 𝑀𝐶𝑖𝑝

‴(𝑢)̂ ≅ 0.3744 𝑀𝐶𝑖𝑝
‴(𝑢)̂̃ = [0.2282   0.5205] 

𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣)̂ = 0.3365 𝑀𝐼𝐶𝑝𝑝

‴ (𝑢, 𝑣)̂ ≅ 0.3944 
𝑀𝐼𝐶𝑝𝑝

‴ (𝑢, 𝑣)̂̃ = 𝑀𝐶𝑖𝑎
‴(𝑢, 𝑣)̂̃ + 𝑀𝐶𝑖𝑝

‴(𝑢)̂̃

= [0.2360   0.5528] 
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According to Table 6, 𝑅 (𝑀𝐼𝐶𝑝𝑝
‴𝐺(𝑢, 𝑣)̂ ) = 0.7804, which is less than 𝑅(1̃) = 1, the process 

is capable. If this index is also calculated in the case of crisp data, its value is equal to 

𝑀𝐼𝐶𝑝𝑝
‴𝐺(𝑢, 𝑣)̂ = 0.6835 so, in this case, the process is capable. 

Also, according to Table 7, 𝑅(𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣)̂ ) = 0.3944, which is less than 𝑅(1̃) = 1, the 

process is capable. If this index is also calculated in the case of crisp data, its value is equal to 

𝑀𝐼𝐶𝑝𝑝
‴ (𝑢, 𝑣)̂ = 0.3365; so,  in this case, the process is capable. 

According to the description given, the fuzzy index presented in determining the capability 

or incapability of the process acts as in the crisp mode, correctly detecting the incapability. 

According to the above explanations, it is clear that considering the measurement error leads 

to an increase in the value of the fuzzy index, as compared to the case in which the measurement 

error is not considered. It should be noted that this non-consideration of measurement error 

leads to the incorrect estimation of process capability; this is because the process may be 

incapable in reality, but when the measurement error is not taken into account in the 

calculations, the process is considered capable. 
  

Conclusion  
 

For processes in which the production of products is very sensitive and sophisticated, the use 

of process incapability indices is essential. Process incapability indices are numerical criteria 

for determining the degree to which process performance conforms to process specifications. 

In many real-world processes, the measurement of quality characteristics is affected by an error, 

which leads to increased incapability.  

In this research, for the first time, a multivariate process incapability index was presented by 

considering the measurement error in the fuzzy mode; the advantage of considering the fuzzy 

mode was that when the data were not crisp and no precise boundary could be determined for 

them, this method could be helpful. The fuzzy mode also helps managers make better, more 

practical decisions. 

For two practical examples, the index presented in the fuzzy state was calculated and its 

performance was examined to determine the capability and incapability of the process. It was 

shown that the new index presented in the fuzzy environment could determine the capability or 

incapability of the process as done in a crisp state, thus showing a good performance. This 

increases managers' confidence in the fuzzy index and they can trust the results of the fuzzy 

index and make decisions to improve the process. 

Ignoring the measurement error also leads to the incorrect calculation of process capability, 

causing a lot of damage to manufacturing industries, especially high-tech ones. The results of 

this paper showed that not considering the measurement error leads to less estimation of the 

process incapability index and this issue causes managers to make wrong decisions about the 

process. 

 As suggestions for future research, the process distribution may not be considered normal, 

the measurement error distribution may not be assumed to be normal, or Bootstrap can be used 

to estimate the confidence interval of the index. 
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