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Abstract  

Equipment failure leads to non-conforming products and there is usually a direct relation 

between the failure rates and the amount of the non-conforming products. Inventory is 

another issue for production managers and so, they should provide an optimum condition 

between these related issues. This paper aims to investigate the policies of maintenance, 

quality control, and inventory in a single machine production system simultaneously with 

the aim of minimizing total costs. To close the problem to practical condition, machine 

failures are considered under uncertainty with a known distribution probability. The 

maintenance time is assumed dependent on the maximum non-conforming products 

produced per unit and the amount of buffer stock. Moreover, the non-conforming products 

can be reworked in an additional work station. The problem is formulated and modeled 

under different various scenarios considering three kinds of cost including quality control, 

inventory, and maintenance. To test the proposed model, four scenarios are investigated 

for a numerical example consists of: production period without shortage, production 

period with compensable shortage, production period before the buffer stock with 

compensable shortage, and time-based cost analysis. Finally, result analysis has been 

presented that demonstrates proper efficiency of the proposed model in cost reduction. 
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Introduction 

 

The economic production model is used to reduce production and inventory costs of production-

inventory systems. In this model, it is assumed that the machines will never be damaged during 

production, but in practice, this assumption is not always correct, and the machines are faced 

with a decline in quality and eventually failure. Therefore, maintenance is a key operation in 

production systems [1]. A set of inspection and maintenance activities of production systems 

that help reduce the system deterioration and change the system condition to a mode where it 

can perform the proper operations is called maintenance operations [2, 3]. Although these 

operations can improve production performance, over-performing them may reduce production. 

Therefore, production control and maintenance management are interrelated to meet ideal 
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goals. Quality control is considered as the third aspect (production, maintenance, and quality 

control) of production systems [1]. Despite the hidden interactions and commonalities of these 

three aspects, most of the existing integrated models consider only two aspects simultaneously, 

and have examined the pairwise interactions of these three aspects (such as[4-6]). Integrated 

production and maintenance control models have been proposed since the 1980s [7, 8], and 

have attracted the attention of many researchers in recent years (such as [3],[9-11]). Kuo and 

Chang (2007) integrated preventive maintenance planning and production planning for a 

machine under the process of cumulative failure, and examined how interactive maintenance 

programs and production programs communicate [12]. The integration of production and 

quality control policies dates back to the 1970s and 1980s [13], [14].  

In a small number of studies, the simultaneous integration of quality, inventory, and 

maintenance aspects have been considered. For instance, Lin et al. (2011) developed an 

integrated model of production, maintenance, and quality by considering the probabilities of 

inspection errors, preventive maintenance errors, and minimal repairs for an imperfect 

production system at an increasing rate of failure. In this study, preventive maintenance is 

incomplete, and the system cannot be improved as much as the new mode, and may be out of 

control with a certain probability [15]. Kang and Subramaniam (2018) examined an integrated 

model of production control and preventive maintenance for a production system with a 

machine. The machine is subject to accidental damage and loss of quality, maintenance and 

preventive maintenance performed to maintain the reliability of the machine, while previous 

studies have generally considered preventive maintenance periodically, which were done only 

for a certain period of time [11]. Cheng, Zhou, and Li (2018) examined an integrated model of 

production, quality control, and maintenance and condition-based repairs with respect to quality 

loss and reliability for an imperfect production system. This system produces a type of product 

to meet constant demand. Production policy is used to store inventory to protect against 

uncertainty. Condition-based maintenance policy means inspecting and assessing the condition 

of the system at the end of the production period. 

If the defective rate is detected too high, maintenance is performed. In this case, to determine 

the proportion of defects, quality control is performed with a 100% inspection policy. Based on 

qualitative feedback, complete repairs are performed when the ratio of defects during 

production has reached a certain level. The purpose of this paper is to optimize the batch size, 

the amount of inventory, preventive maintenance, and the amount of repairs, so that the total 

cost per time unit is minimized [1]. In fact, in production systems, poor quality products may 

be produced, some of these products may be modified by reprocessing, hence, the reprocessing 

can eliminate waste and affect production costs [16]. Chen and Lin (2010) developed an 

integrated model for determining the amount of economic output, taking into account the deficit 

and incomplete reprocessing in a production process, which is an increasing rate of failure, and 

even with periodic preventive maintenance, this production system cannot be improved as much 

as the original state. Also, a percentage of defective items are discarded and the rest are 

recycled, and a percentage of recycled items are discarded in the reprocessing process [17]. 

Wang (2013) developed an integrated model of the amount of economic production and 

preventive maintenance, to integrate the possibility of minimum repair and rework, which 

simultaneously determines the number and frequency of inspections, the amount of economic 

production and the level of preventive maintenance [8]. Chen (2013) considered an integrated 

model of production, inspection, preventive maintenance, inventory, and determined the 

optimal period of inspection, inspection frequency, and production value in such a way that the 

expected profit in an incomplete production process is maximized taking into account the time 

of inspection and rework. In this model, when the process gets out of control, a percentage of 

the items are produced defective, which assumes that there is rework [18].  

Some new efforts dealt with the integrated optimization problem of production systems 
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considering quality, inventory, maintenance, and scheduling considering operational 

conditions. Tambe and Kulkarni proposed an integrated procedure considering three core 

functions of shop floor management including maintenance, production scheduling, and quality 

with the aim of minimizing the total expected cost of the production system [19]. Pinciroli et 

al., reviewed integrated optimization approaches considering maintenance within the Industry 

4.0 paradigm published until 2020. They also discussed the possible objectives of the 

optimization, together with the maintenance features to be optimized, such as maintenance 

periods and degradation thresholds [20]. Shi et al., proposed a new model to optimise 

production, maintenance, and quality control considering timely replenishment to optimize the 

production cycle, maintenance frequency, quality inspection cycle, and number of inspections 

considering the expectation unit cost of the system as the objective function [21]. Finally, Tasias 

developed an integrated production, quality, and condition-based maintenance model for 

imperfect processes with multiple out-of-control operating states. The production system is 

subject to multiple quality disruptions in their study, which affect both the process mean and 

variance, and failures. The quality of the production process output is monitored by a fully 

adaptive control scheme, and the state of deterioration is estimated through periodic sampling 

inspection. The proposed control scheme’s operation is modeled through a Markov chain, and 

the optimal quality control, maintenance, and inventory policy are defined based on an expected 

total cost minimization criterion [22]. 

As the summary of the literature review indicates, several works have dealt with the 

integrated optimization problem of quality, scheduling, maintenance, and inventory. However, 

none of them have investigated rework condition and shortage costs in their studies. In this way, 

this study aims to develop the integrated model of quality control, preventive maintenance and 

production presented by Rezg et al. (2014) under four scenarios in a single machine production 

system [23]. These scenarios are: production period without shortage, production period with 

compensable shortage, production period before reaching the buffer stock and without shortage, 

production period before reaching the buffer stock and with compensable shortage. Inventory 

cost is calculated according to the scenario, and finally, by minimizing the total cost per time 

unit, the optimal values of buffer stock (ℎ∗) and the limit value of non-conforming units rate 

(𝑙𝑚
∗ ) are determined simultaneously. 

The outline of the paper is as follows. Section 1 provided an introduction of the considered 

problem and a complete survey of works related to this article.  Section 2 describes the problem 

and provides main assumptions. Mathematical modeling of the problem is presented in Section 

3 and the cost of inventory under different scenarios has been calculated. Section 4 presents the 

solution approach of this study. The computational results are presented in Section 5 and at 

finally, conclusions and suggestions for future studies are presented in Section 6. 

 

Problem Definition 

 

The considered production system includes a machine that must meet demand at a fixed rate. 

This machine is exposed to breakdown with an incremental rate. Manufactured products may 

be approved or rejected by the quality control unit. The rate of defective items observed in each 

batch is compared with a limit value (𝑙𝑚𝑎𝑥), and based on this, a decision is made whether or 

not to perform maintenance operations as below: 

 

{

𝑙𝑚 ≤ 𝑙 ≤ 𝑙𝑚𝑎𝑥 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑢𝑣𝑒 𝑟𝑒𝑝𝑎𝑖𝑟𝑠
𝑙 ≥ 𝑙𝑚𝑎𝑥 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑝𝑎𝑖𝑟𝑠

0 < 𝑙 < 𝑙𝑚 𝑛𝑜 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑟𝑒𝑝𝑎𝑖𝑟𝑠
 

 

Therefore, the need for preventive maintenance is determined as equation (1) and the 

probability of the need for major repairs is calculated as equation (2). 
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(1) p(lmax) − p(lm) 

(2) 1 − p(lm) 

 

In this system, the possibility of rework is considered once (according to Figure 1). In order 

to deal with the disruption caused by the cessation of production (during maintenance or 

correction), there is some buffer stock (h). In addition, it is assumed that rework is allowed 

once. Items that are found to be defective will be reworked.  

 

 
Figure 1. Production system considering one rework stage 

 

To more clarification, the assumptions of the considered problem are presented as below: 

1) The function of cumulative life distribution of the production unit is unknown. 

2) Cumulative distribution functions related to the time of maintenance operations (both of 

preventive and corrective actions) are normal. 

3) In case of shortage, the demand will be compensated with a delay. 

4) Rework is allowed for once. 

5) The cost of rework is known. 

6) Inspection is done periodically. 

7) The batch size is determined and fixed under qualitative inspections. 

8) The costs of maintenance, quality, and inventory are known and fixed. 

9) The cost of inspection of the quality control unit can be neglected. 

10) After maintenance, the system will be as well as a new system. 

 

Mathematical Modeling 

 

As was evident in the problem definition, this study aims to determine the optimal value of 

buffer stock (ℎ∗) and the limit value of non-conforming units rate (𝑙𝑚
∗ ) simultaneously in order 

to minimize total costs of the system. The following analysis expresses the determination of the 

amount of this cost by considering different scenarios. The total costs consist of a total of three 

cost including maintenance, inventory, and quality, and finally, the total cost per unit of time is 

obtained by dividing the total cost by the average production period, which is equal to the 

average time between two consecutive major repairs. For a production period, according to the 

occurrence or non-occurrence of deficiency, and the position of the buffer stock, four scenarios 
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are defined. The cost of inventory depends on the scenario that may occur. In all scenarios, it is 

assumed that the level of the buffer stock is equal to ℎ at the beginning of each period. 

 

Notations: 
𝐶𝑠 Holding cost of each unit of product per unit time; 

𝐶𝑝 Cost of shortage per unit of product (cost of delivery delay); 

𝐶𝑛𝑐 Cost of unapproved products per time unit; 

ℎ Size of buffer stock; 

𝑀𝑝 Cost of preventive maintenance action; 

𝑀𝑐 Overhaul costs; 

𝜇𝑝 Average duration of preventive maintenance action; 

𝜇𝑐 Average duration of overhaul; 

𝛿𝑞 Total cost of quality; 

𝛿𝐼 Total cost of inventory; 

𝑑𝑚 Total cost of maintenance; 

𝑑 Demand per time unit; 

𝑝(𝑙) probability distribution function related to rejection rate (l); 

𝑙𝑚 Threshold level of non-conforming units’ rate; 

𝑔𝑝 Probability density function related to the duration preventive maintenance actions; 

𝑢𝑚𝑎𝑥 Maximum production rate; 

(ℎ, 𝑙𝑚) average total cost of the operation per unit of time; 

 

The total probability of acceptance and the probability of rejection are obtained through 

relationships (3) and (4), respectively. 
 

(3) 𝑝(𝑙) + 𝑝(𝑙)(1 − 𝑝(𝑙)) 

(4) (1 − p(l))2 

 

The average rejection rate per time unit during the  T1 period is equal to the rate of production 

of non-conforming products in  T1 and is calculated according to Equation (5). 

 

(5) α̅R1 = umax ∫ (1 − p(l)2
1

0

)dl 

 

 T1 is the time required to create a buffer stock during which the machine produces in the highest 

rate (umax). α̅R1 is the average rejection rate per time unit during the  T2 period, which is 

equivalent to the rate of production of non-conforming products in  T2, and is calculated 

according to Equation (6).  T2 is a time when the machine only produces to meet demand. Its 

production rate is equal to (𝑑 + α̅R2) in which: (𝑑 + α̅R2) ≤ umax. The production rate is 

calculated as relation (7). 

 

(6) α̅R2 =
d ∫ (1 − p(l))2dl

1

0

1 − ∫ (1 − p(l))2dl
1

0

 

(7) {

umax S(t) < k
d

1 − ∫ (1 − p(l))dl
1

0

S(t) = k 

 

Calculating the Average Cost of Inventory in Scenarios 

 

Scenario (1): Production Period without Shortage 

In this scenario, the buffer stock is provided before the maintenance operation, and the 

maintenance operation are completed before the shortage occurs. That is, interruption of service 
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time (Dk) does not exceed the consumable time of the buffer stock, so the shortage does not 

occur in this scenario as shown in Figure 2. 

 

 
Figure 2. The first scenario without any shortage during the production period 

 

In this case, the average cost of inventory (ΓNL) is calculated as Equation (8). 

 

(8) ΓNL = Cs[h(Wk + Dk) − (
Dk

2d

2
) +

Dk
2d2

2(α̅R1
+ d − umax)

] 

 

Scenario (2): Production Period with Compensable Shortage 

In this scenario, the buffer stock is provided before the maintenance operations. The 

maintenance time is longer than the first scenario in which the buffer stock is finished before 

the maintenance completion time. Moreover, it is assumed that the shortage should be 

compensated after completing the maintenance operation as shown in Figure 3. 

 

 
Figure 3. The second scenario with compensable shortage during the production period 

  

In this case, the average cost of inventory (ΓWL) is calculated as Equation (9). 
 

(9) 

ΓWL = Cs[h(Wk +
h

(α̅R1
+ d − umax)

−
(h − Dkd)

d2(α̅R1
+ 2d − umax)

) −
(h2)

2(α̅R1
+ d − umax)

+
(dh2)

2
]

−
Cp(h − Dkd)2

2d4(α̅R1
+ 2d − umax)
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Scenario (3): Production Period with Compensable Shortage and Not Reaching the Buffer 

Stock 

In this scenario, also the system shutdown time is longer than the period of consumption of 

the buffer stock, and a shortage occurs, which is compensable, and before the replenishment of 

the buffer stock, failure occurs again (as shown in Figure 4). 

 

 
Figure 4. The third scenario: Production period before reaching to buffer stock with compensable shortage 

 

In this scenario, Wk
′′ indicates the time period after providing shortages, followed by meeting 

demands and buffer stock. This time period is calculated as the Equation (10) and the related 

inventory level will be determined as (11). Moreover, the cost average of inventory (ΓVL) is 

calculated as Equation (12) in this case. 

 

(10) Wk
′′ = Wk −

Dkd − h

(umax − 2d − α̅R1
)d2

 

(11) S(Wk
′′) =

d2Wk(umax − 2d − α̅R1
) − (Dkd − h)

d2(umax − d − α̅R1
)(umax − 2d − α̅R1

)
 

(12) ΓVL =  
Csdh2

2
− Cs(

Wkd2(α̅R1
+ 2d − umax)

2
− (h − Dkd)

2d4(α̅R1
+ d − umax)

3
(α̅R1

+ 2d − umax)
2) −

Cp(h − Dkd)2

2d4(α̅R1
+ 2d − umax)

 

 

Scenario (4): Production Period Without Shortage and Not Reaching to Buffer Stock 

In this case, the breakdown time is less than the consumption period time of the buffer stock 

and so, the shortage does not occur. However, after restarting, maintenance is required before 

the buffer stock level reaches to amount of ℎh (as shown in Figure 5). 
 

 
Figure 5: The fourth scenario: Production period before reaching to buffer stock without shortage 

  

In this scenario, the level of inventory recovery between the two intervals of maintenance 

operations is calculated as Equation (13). Furthermore, the cost average of inventory (ΓSW) is 
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calculated as (14). 

Furthermore, the average of total cost of inventory according to four aforementioned 

scenarios is determined as (15-18). Meanwhile, equations (15) through (17) show how the total 

inventory cost is obtained. Finally, the average of inventory cost is calculated as (18). 

 
(13) S(Wk) = Wk(umax − α̅R1

− d) 

(14) ΓSW = Cs [Dkh − Wk
2(α̅R1

+ d − umax) −
Dk

2d

2
− [

Wk (h + Dkd + Wk(α̅R1
+ d − umax))

2α̅R1
+ 2d − 2umax

]] 

(15) Γ = (ΓNL + ΓSW)(1 − RD(h d⁄ )) + (ΓWL + ΓVL)RD(h d⁄ ) 

(16) RD(h d⁄ ) = ∫ gD(x)dx
∞

h/d

 

(17) gD(x) = gD(x)(1 − P(lmax)) + gp(x)(P(lmax) − P(lm)) 

(18) 

Γ = RD(h d⁄ ) (CshWk +
Csh2

2(α̅R1
+ d − umax)

−
Csh(h − Dkd)

d2(α̅R1
+ 2d − umax)

−
Cp(h − Dkd)2

d4(α̅R1
+ 2d − umax)

+ Csdh2 − Cs (
Wkd2(α̅R1

+ 2d − umax)
2

− (h − Dkd)

2d4(α̅R1
+ d − umax)

3
(α̅R1

+ 2d − umax)
2))

+ ((CshWk + CshDk) − Cs (
Dk

2d

2
) +

CshDk
2d2

2(α̅R1
+ d − umax)

+ CsDkh

− CsWk
2(α̅R1

+ d − umax) −
CsDk

2d

2
−

CsWk (h + Dkd + Wk(α̅R1
+ d − umax))

2α̅R1
+ 2d − 2umax

)

− (RD(h d⁄ )) (CshWk + 2CshDk − CsDk
2d +

CsDk
2d2

2(α̅R1
+ d − umax)

− CsWk
2(α̅R1

+ d − umax) − [
CsWk (h + Dkd + Wk(α̅R1

+ d − umax))

2α̅R1
+ 2d − 2umax

]) 

 

In this case, the average cost of inventory per unit time (𝛿𝐼) is obtained as Equation (19). 
 

𝛿𝐼 =
1

E(Tk)
[∫ (

Csh2

2(α̅R1
+ d − umax)

−
Csh(h − xd)

d2(α̅R1
+ 2d − umax)

−
Cp(h − xd)2

d4(α̅R1
+ 2d − umax)

+ Csdh2
+∞

h
d

− Cs (
E(Wk)d2(α̅R1

+ 2d − umax)
2

− (h − xd)

2d4(α̅R1
+ d − umax)

3
(α̅R1

+ 2d − umax)
2)) gD(x)dx + (CshE(Wk))

+ Cs  ∫ (2hx − x2d +
x2d2

2(α̅R1
+ d − umax)

− (E(Wk))
2

(α̅R1
+ d − umax)

h
d

0

− [
E(Wk) (h + xd + Wk(α̅R1

+ d − umax))

2α̅R1
+ 2d − 2umax

]) gD(x) dx] 

(19) 

 

where E(Tk) demonstrates the average time in a production period that obtained through 

relations (20) and (21). 
 

(20) E(Tk) = E(Wk) + E(Dk) 

(21) E(Dk) = μp[p(lmax) − p(lm)] + μC[1 − p(lm)] 
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The Cost Average of Maintenance 

The expected total cost of maintenance is calculated as relation (22). 
 

(22) δM =
1

E(Tk)
(Mp[P(lmax) − P(lm)] + Mc[1 − P(lmax)] 

 

The Cost Average of Quality 

The cost average of quality depends on the cost average of non-conforming products during 

the production period. This cost element is calculated as (23). 
 

(23) E(T2) = E(Wk) − E(T1) 
 

where we have: 
 

Wk = T1 + T2 →    T2 = Wk − T1 
 

and the expected value of T1 is determined as (24). 
 

(24) E(T1) =
h

umax − d − α̅R1

 

 

In additional, the average number of non-conforming products during T1 and T2 is obtained 

as (25) and (26) respectively. 
 

(25) Qp1 = α̅R1
E(T1) 

(26) Qp2 = α̅R2
E(T2) = α̅R2

(E(Wk) − E(T1)) 
 

According to Equations (22-25), the average of total cost of quality is calculated through the 

Equation (27). 
 

(27) δQ =
Cnc

E(Tk)
[Qp1 + Qp2] 

 

By replacing the Equation (24) in Equation (26), the cost average of quality (δQ) can be 

calculated as equal (28). 
 

(28) δq =
Cnc

E(Tk)
[α̅R1

h

umax − d − α̅R1

+ α̅R2
(E(Wk) −

h

umax − d − α̅R1

) 

 

By adding the costs of quality, inventory, and maintenance, the average of total cost per time 

unit is calculated as Equations (20) and (30). 
  

(29) Π(h. lm) = δI + δQ + δM 

𝚷(𝐡. 𝐥𝐦) =
1

E(Tk)
[∫ (

Csh2

2(α̅R1
+ d − umax)

−
Csh(h − xd)

d2(α̅R1
+ 2d − umax)

−
Cp(h − xd)2

d4(α̅R1
+ 2d − umax)

+ Csdh2
+∞

h
d

− Cs (
E(Wk)d2(α̅R1

+ 2d − umax)
2

− (h − xd)

2d4(α̅R1
+ d − umax)

3
(α̅R1

+ 2d − umax)
2)) gD(x)dx + (CshE(Wk))

+ Cs  ∫ (2hx − x2d +
x2d2

2(α̅R1
+ d − umax)

− (E(Wk))2(α̅R1
+ d − umax)

h
d

0

− [
E(Wk) (h + xd + Wk(α̅R1

+ d − umax))

2α̅R1
+ 2d − 2umax

]) gD(x) dx] +
1

E(Tk)
(Mp[P(lmax) − P(lm)]

+ Mc[1 − P(lmax)] +
Cnc

E(Tk)
[α̅R1

h

umax − d − α̅R1

+ α̅R2
(E(Wk) −

h

umax − d − α̅R1

)] 

(30)  
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To calculate average of total cost per time unit for specific input parameters, it is necessary 

to determine the value of E(Tk). Based on the proposed strategy, it can be concluded that the 

end of the operating period (Wk) corresponds to the moment at which the rejection rate is greater 

than 𝑙𝑚 that is denoted by 𝑡𝑚. Suppose 𝑙(𝑡)  is a continuous and ascending function that 

expresses the changes of the rejection rate as a function of time. In this case we have (31) and 

(32) as below:  

 
(31) l(tm) = lm 

(32) tm = l−1(lm) 

 

Solution Approach 

 

In this section, the proposed solution approach is presented. The proposed integrated procedure 

is a numerical iterative technique based on the proposed algorithm in [24]. The proposed 

method doesn’t explore all solution space but it behaves as a numerical optimization procedure 

and provides near optimal solution. In most numerical methods, the resulting response error can 

be controlled and reduced to the required amount, and this, in addition to being easier to 

implement, make numerical algorithms a suitable option for solving NP-hard and non-linear 

optimization problems. The proposed algorithm is coded with MATLAB R2014a software and 

some analysis are carried out using MINITAB 16 software. The algorithm was run on a PC 

with Intel Core i7-8550U CPU, 2.10 GHz and 8GB RAM. In order to evaluate the performance 

of the proposed algorithms, data of (Montgomery, 2009) was used and new required parameters 

were added. Moreover, some random instances were used for sensitivity analysis and more 

investigations. 

The average of total cost per time unit as the objective function is calculated via Equation 

(30). This equation determines the optimal values of the decision variables 𝑙𝑚
∗  and ℎ∗. As 

mentioned above, to use Equation (30), the average operating time E(WK) need to be estimated 

using Equation (32), which is influenced by the function 𝑙(𝑡)that represents changes in the 

rejection rate per time. To estimate the function 𝑙(𝑡) for each amount of input data, a model is 

required for the production process. In the proposed model, a production system must be 

considered that, along the planning horizon, for the desired cumulative production, it produces 

non-conforming products according to Equation (33): 

 
(33) L(t + ∆t) = L(t)(1 + ξ) 

 

where, L(t) is the cumulative number of non-conforming products at moment t as a random 

variable between zero and one with the beta distribution function. Moreover, Δ𝑡 is the time 

required for accumulation production and the rejection rate is calculated according to Equation 

(34). In this relation, 𝑚 and 𝑥 represents the number of products and the batch size respectively. 

 

(34) l(t) =
L(t)

mx
 

 

 Procedure of the proposed approach is shown in Figure 6 in detail, in which the following 

notation has been added: 

 
L° Number of non-conforming products at the moment 𝑡 = 0 

nrep Number of iterations 

 

The batch size x is generated during period 𝑇, then the number of unconfirmed products is 

randomly calculated using Equation (33) and finally the rejection rate l(t) is obtained using 
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Equation (34). The approach is repeated for 𝑚 periods with length 𝑇 until the rejection rate 

does not exceed one, and we will have nrep iterations in totally. Finally, the mean value li(ti) 

for i = 1,2, … , nrep is considered to estimate the lm function using the least squares method. 

 

 
Figure 6. Flowchart of the proposed solving procedure [24] 

 

Computational Results 

 

In order to evaluate performance of the proposed model and solution approach, some test 

problems are considered to solve and analyze. To this end, the data of Radhavi et al.'s (2010) 

study are adopted and used in this section (14). Therefore, data and condition of test problems 

has been defined as below: 

The probability distribution function of repair time: N (μ = 2. σ = 0.5); 

The probability distribution function of maintenance time and preventive repairs: N (μ =
0.5. σ = 0.1); 

The probability distribution function of the rejection rate: Beta (α = 3. β = 3); 

lmax = 0.8; 
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Cs = 5$; 

Cp = 5$; 

Mc = 5$; 

Mp = 500$; 

Cnc = 5$; 

umax = 100$; 

d = 20; 

lm = [0.01 0.6]; 
ℎ = [10 100]; 

In additional, values of the input parameters for generating data are considered as below: 

 The estimation function: lt
e; 

 The cumulative number of unverified products at the time zero: 𝐿 = 0; 

 The batch size: 𝑋 = 50; 

 The number of iterations for generating data: 𝑛𝑟𝑒𝑝 = 10; 

 The number of periods: 𝑚 = 7; 

The results of implementation the proposed model for optimizing the problem for 7 periods 

(shown in rows) and 10 times iteration (columns) has been shown in Table (1). Each cell of 

Table (1) shows non-conforming unit rate as result for defined period and iteration. As can be 

seen, with increasing number of periods in each iteration non-conforming unit rate increases. 

 
Table 1. Result of solving the instance for 7 periods in 10 iterations 

Perio

d 

Iteration 

1 

Iteration 

2 

Iteration 

3 

Iteration 

4 

Iteration 

5 

Iteration 

6 

Iteration 

7 

Iteration 

8 

Iteration 

9 

Iteration 

10 

𝑇1 0.142 0.161 0.171 0.144 0.180 0.152 0.181 0.181 0.158 0.183 

𝑇2 0.253 0.287 0.323 0.276 0.321 0.266 0.319 0.293 0.243 0.289 

𝑇3 0.341 0.430 0.440 0.425 0.454 0.377 0.476 0.405 0.346 0.391 

𝑇4 0.441 0.602 0.561 0.591 0.609 0.486 0.627 0.556 0.444 0.490 

𝑇5 0.552 0.788 0.708 0.769 0.777 0.617 0.812 0.755 0.572 0.614 

𝑇6 0.696  0.893 0.974 0.995 0.819   0.745 0.747 

𝑇7 0.866         0.935 

 

Figure 7 shows the shape of the obtained function lt
e as well as the shape of its estimate using 

a least square curve fitting tool. The obtained estimated expression has been calculated as 

equation (36). Hence, using equation (32), for a given lm, E[Wk] can be found as equation (37). 

 
(36) lt

e = 0.3909Ln(t) + 0.072 

(37) E(Wk) = exp (
lm − 0.072

0.3909
) 

 

 
Figure 7. Estimation of rejection rate changes over time 

y = 0.3909ln(x) + 0.072
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Now that all the terms of the total average cost per time unit (equation (30)) have been 

defined for any given values of the decision variables ℎ and 𝑙𝑚. Table 2 shows the result of 

solving the mentioned numerical example using the integrated model. Due to this result, as 

expected, when the limit value of lm increases, the average production time E(WK) increases 

too.  
 

Table 2. Evaluation of the optimal policy based on the cost of shortage 
𝒍𝒎 𝒉 𝑬(𝒘𝒌) 𝑬(𝒕𝒌) 𝜹 𝜫(𝒉. 𝒍𝒎) 

0.05 60 2.502533 3.316689 1210.908 4600.706 

0.1 60 2.630841 3.357341 1118.418 4443.149 

0.15 60 2.765727 3.369883 970.9142 4249.045 

0.2 60 2.907529 3.371529 774.5562 4011.652 

0.25 60 3.056601 3.377257 540.2808 3731.711 

0.3 60 3.213316 3.399816 285.127 3418.416 

0.35 60 3.378067 3.449723 31.87074 3089.358 

0.5 10 3.835253 3.924753 882.0638 1364.839 

0.6 10 4.337523 4.321523 935.2717 1393.093 

 

Considering the numerical input data presented at the beginning of this section, in this part, 

there has been used a simple enumeration procedure to find the optimal couple (h∗, 𝑙𝑚
∗
), which 

minimizes the total average cost per time unit. Figure 8 shows the contour plot of the response 

surface of this cost rate 𝚷(𝐡. 𝐥𝐦). In the optimal strategy, the average production time is 8.3 

hours and the average cycle time is 9.3. The minimum value of Π (h. lm) was also obtained in 

1364.839. 

 

 
Figure 8: Contour plot for the response surface 

 

Conclusion 

 

In the realm of modern production systems, the interplay between quality management, 

inventory control, and maintenance scheduling remains a focal point of organizational 

efficiency. Manufacturing industries are facing difficult challenges and they must achieve a 

high productivity and a high quality at the same time at the lowest possible cost to maintain 

their competitiveness and their continuity in today’s competitive environment. To reach these 
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objectives, they need to manage successfully several functions such as maintenance, 

production, quality and inventory. Managers and researchers are increasingly recognized that 

the survival of any company depends on its management approach. One of the keys of success 

consists to an effective integration between these different fields which can lead to an excellent 

manufacturing performance. 

In this paper, the policy of quality control, preventive maintenance, production control and 

simultaneous in a single-machine production system, considering a rework stage, under four 

scenarios (production period without deficiency, production period with compensable 

deficiency, production period before reaching saved inventory and without shortage, production 

period before reaching saved inventory and with compensable shortage) were examined. For 

generating optimal strategy, a mathematical model has been developed. Non-conforming 

product rates (𝑙𝑚
∗ ) and inventory size (h*) protect the model decision variables, which are 

determined by an integrated approach. In optimal strategy (𝑙𝑚
∗ , ℎ∗) given by modeling and 

simulation minimizes total average unified cost, that is contained of inventory, maintenance 

and quality costs. 

The aim of this work was to integrate buffer stock sizing, preventive maintenance and quality 

control issues in a single model. The problem was discussed under four abovementioned 

scenarios and a numerical instance of a real case study was solved using the proposed solution 

approach. Findings indicate the performance accuracy of the proposed iterative procedure. 

Moreover, sensitivity analyses were performed to show the effect of the main parameters and 

the robustness of the proposed integrated model. Solving the problem under the equal 

probability of the four scenarios indicated that the total expected cost has been increased 

compared to the obtained best combination. In addition, the result of the proposed model 

showed that, with increasing the limit value of lm, the average production time E (WK) increases.  

In this paper an integrated procedure was proposed that can guide decision-makers in 

optimizing resource allocation and enhancing operational performance. The result of this study 

emphasizes the critical importance of integrating quality aspects into overall production 

strategy. By acknowledging that defects necessitate rework, managers are compelled to adopt 

a proactive quality assurance framework. Implementing robust quality control measures not 

only reduces rework rates but also minimizes associated costs, thereby improving overall 

profitability. This proactive stance should be complemented by systematic training programs 

to empower employees with the skills necessary to uphold and enhance product quality. 

Moreover, the article underscores the relationship between inventory management and 

production efficiency. Maintaining optimal inventory levels is essential to mitigate excess 

holding costs while ensuring that production runs smoothly without interruptions. The insights 

provided within the analysis suggest that managers should employ just-in-time (JIT) inventory 

practices, which could significantly decrease wastage and improve cash flow. Additionally, 

applying techniques such as demand forecasting and inventory turnover assessments can further 

refine inventory management processes. 

Suggestions for future research include probabilistic demand, limited product storage time, 

multi-machine modeling, and multi-product modeling. Another suggestion can be modeling 

with stochastic costs, and define a specific distribution function for cost of inspection. 
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