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Abstract  

Due to facing an acute shortage of beds in hospitals, the danger of getting involved 

in hospital infections and high-cost hospitals care, the Home Health Care industry 

has encountered high demands in recent years. Different stakeholders with various 

interests are involved in home health care that makes the process of planning and 

scheduling of nurses, who offered services, challenging. This paper, therefore, 

focuses on scheduling and routing nurses traveled to the patient’s home by 

considering the main features of the problem such as Continuity of Care and 

temporal dependencies. A new formulation for adjusting time distance between two 

consecutive jobs performed by a nurse is presented. A feasible solution has to 

consider nurse and patient’s preferences, time windows for jobs, nurse’s 

qualification and waiting time. A genetic algorithm is proposed to solve the 

problem. The computational results show the efficiency of the proposed algorithm 

especially for large size instances. Finally, the effect of nurse’s dispatching policy 

on the objective function, waiting and travelling times is examined. 
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Introduction 

In recent years, Home Health Care (HHC) services have encountered high demands and the 

reason behind this is the appearance of new diseases, lack of nurses in hospitals, and an increase 

in the aging population. In addition, family members often live far from each other in modern 

life and there is no possibility to take care of the individuals needful to care by the other family’s 

members [1]. The population share of people older than 65 years was five percent in 1960 while 

it has been increased to nine percent in 2018 and is expected to increase to sixteen percent in 

2050. Demographic transition in birth and death rates in recent years will lead to an older age. 

The annual birth rate was 2 percent around the 1960s. It is around 1.09 percent in 2018 and is 

expected to reach 0.05 percent by 2050. This trend leads to less care for older parents from their 

children.   

The most advantages of keeping patients at home can be summarized as the decrease in 

therapeutic costs, preventing the lack of admission or delay in the admission of patients in 

hospitals, the possibility of keeping the patient’s social relations, the decrease of patients stay 

in hospitals, the decrease of the danger of getting involved in hospital infections and fewer costs 

rather than hospital services. As well, services related to sending nurses are including a variety 

of activities such as medical services, therapeutic services, social and pharmaceutical services, 
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preparing the patients’ food, taking baths, and home cleaning. These services are given to 

patients, old individuals, children, and people who suffer from physical and mental disabilities.   

Determining shifts and finding routes for nurses were previously done manually. In light of 

this evidence, scheduling manually has a wide range of challenges. First, scheduling might be 

not optimized. Second, solving problems with high dimensions is a time-consuming process. 

Thus, it is vital to implement efficient and effective procedures to tackle these problems. 

Solving such problems has been under attention in recent years by utilizing mathematical 

models. A comprehensive review and recent advances in HHC optimization can be found in 

Fikar et al. and Cissé et al. [2,3]. Bertels et al. [4] show that the HHC problem without 

considering the time interdependencies conditions is an NP-Hard problem; therefore, the 

problem cannot be solved effectively in polynomial time. The NP-hardness of the problem is 

the reason to use metaheuristic algorithms or other methods to solve the problem in a reasonable 

time, especially in large-size samples. In this paper, the nurse scheduling is done in a single 

period (day). This problem is, in fact, a combination of the VRP problem and scheduling. 

However, some features of this problem differentiate it from classic VRP problems. Some of 

these features are as follows: i) in HHC problem some patients must be visited more than one 

time, ii) different qualification levels are considered for nurses, and iii) there are time 

dependencies between some jobs. In other words, one of the features that make the HHC 

problem more complicated, compared to VRP is temporal dependencies, in this case, there must 

be a time distance between two jobs done for one patient. 

The main contribution of this paper is developing a new mathematical model for HHC by 

considering temporal dependencies, continuity of care, and adjusting time distance between two 

consecutive jobs performed by a nurse. For this purpose, a new formulation is developed for 

adjusting the time distance between two consecutive jobs performed by a nurse. A metaheuristic 

solution based on a genetic algorithm is also developed to overcome computational time issues.  

The structure of the paper is as follows: First, the related works in HHC are reviewed. 

Problem definition and some main features of HCC are presented in Section 3. The proposed 

solution method will be discussed in Section 4. Numerical results and sensitivity analysis on 

some main parameters will be presented in Section 5. 

 

Literature Review 
 

This section presents some related studies, mainly categorized as single period and multi-period 

problems.  

Regarding single period problems, Eveborn et al. [5] have formulated the HHC problem 

based on set partitioning and use a repeated matching algorithm to solve it. They considered 

different traveling times based on the type of vehicles. Trautsamwieser et al. [6] considered the 

effect of flood disasters on HHC scheduling problems. They exploited the Variable 

Neighborhood Search (VNS) approach to solve the problem for real instances. The nurse’s 

qualification to do the jobs, the nurses' and patients’ preferences, and breaking time for nurses 

have been considered as assumptions in this research work. Rasmussen et al. [7] had modeled 

the problem as a set portioning problem and to solve the problem a Branch and Price (B&P) 

approach was used. Five kinds of temporal dependencies had been introduced, and these 

temporal dependencies were modeled as general precedence conditions. Koeleman et al. [8] 

have modeled HHC as a Markov decision process. The optimal scheduling policies have been 

considered for two with and without waiting rooms. Rodriguez et al. [9] used three sources of 

information to estimate demand and applied a two-stage stochastic programming approach to 

formulating the problem. Braekers et al. [10] is the first paper in the HHC problems that forms 

a bi-objective mathematical model. The first objective function minimizes cost included travel 

and overtime costs, while the second considers an inconvenience score for each job concerning 
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time windows. To solve the problems in real dimensions a metaheuristic algorithm was 

presented.  Liu et al. [11] formulated an HHC problem with consideration of lunch breaks for 

workers. A B&P algorithm was applied to exactly solve the problem. Some clients were left 

uncovered. Hiermann et al. [12] considered the HHC problem minding the mode of 

transportation for nurses. The constraints of the problem were divided into two soft and hard 

categories. Nurses, patient’s preferences, and the nurses’ qualifications to do jobs were 

considered in that. In addition, four metaheuristics were proposed to solve the problem. Decerle 

et al. [13] formulated the HHC problem for assigning nurses to jobs on a given day while 

considering synchronization constraints, nurses’ qualification, and time windows for nurses and 

jobs. The synchronization visits could be violated by considering penalty in the objective 

function. In Fikar et al. [14], a solution procedure for daily planning of HHC problems was 

provided. Nurses of different qualification levels were delivered to the patients’ homes by a 

transport service and the possibility of walking was considered too. In Mankowska et al. [15], 

which is more closely to the current study, patients were divided into two groups: the patients 

that need one service and the patients that need two services with precedence. To solve the 

problem, a variable neighborhood search with a new matrix solution representation has been 

used. In the recent case, between the starting time and ending time of jobs, there should be a 

maximum and minimum time distance. Decerle et al. [16] applied an ant colony algorithm to 

solve a single period HHC problem by emphasizing the workload balancing among nurses. 

Recently, Euchi et al. [17] applied artificial intelligence techniques to optimize the offered 

services in an HHC problem. 

Regarding multi-period HHC problems, Bard et al. [18] has minded the scheduling periods 

weekly. The therapists were also divided into two groups. Licensed therapists must-visit 

patients who were visited for the first time. In the objective function, they were trying to 

minimize the costs of visits and traveling of patients. To solve the problem a greedy randomized 

adaptive search procedure was developed. Lanzarone et al. [19] were seeking to minimize the 

maximum overtime among nurses. Each patient was assigned to a nurse and this assignment 

would not change until the end of the patient’s therapy period. They considered uncertainty in 

new patient’s demands.  

One of the main features of the HHC problem is continuity of care. This kind of restriction 

ensures that each patient is assigned to a small group of nurses. To consider continuity of care, 

Cappanera et al. [20] limited the number of nurses that can visit patients during the time horizon. 

Duque et al. [21] presented a bi-objective mathematical model based on set portioning. The 

patient-nurse preference and the time preference were considered. The problem instances were 

provided by a local organization in Belgian. To consider continuity of care, patients were 

divided into two groups based on the number of visits per week: patients requiring less than 

three visits per week and patients requiring more than three visits. In the study done by Carello 

et al. [22] nurses were assigned to patients based on territory and skills. Patients with uncertain 

demand were divided into five groups based on continuity of care. For soft continuity of care, 

a reassignment cost was associated. In Carello et al. [23], three stakeholders, who are involved 

in HHC, were considered. As well, overtime cost, workload balance, and the reassignment of 

jobs were considered in the objective function. Continuity of care, nurses’ compatibly with 

patients, and nurses’ availability were regarded too. Moreover, a fairness metric was given to 

distribute works evenly among nurses. Patient demands were considered in both deterministic 

and uncertain cases. Besides, due to the uncertainty inherited in treatment duration, the authors 

presented a robust cardinality-constrained formulation. Recently, Grenouilleau et al. [24] 

developed a new decomposition method for the HHC problem with Predefined Visits. 

Table 1 shows an illustrative sample of some recent studies on the HHC by mathematical 

programming approach. While this is by no means a representative sample of all existing 

research in the literature, it is sufficient to illustrate the gaps in the current research. 
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Table 1. A brief literature reviews on developed mathematical models in HCC 
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Bachouch et al. [33] Multi 1                    

Bertels et al. [6] Single 5                      

Eveborn et al. [5] Single 1                     

Hertz et al. [34] Multi 2                          

Trautsamwieser et al. [35] Single 7                   

Trautsamwieser et al. [36] Single 7                  

Rasmussen et al. [7] Single 3                       

Nickel et al. [38] Multi 4                      

Cappanera et al. [39] Multi 1                          

Mankowska et al. [15] Single 3                        

Lanzarone et al. [19] Multi 1                         

Trautsamwieser et al. [37] Multi 1                    

Bard et al. [18] Multi 2                     

Carello et al. [22] Multi 2                        

Hiermann et al. [12] Single 13                   

Fikar et al. [14] Single 3                    

Duque et al. [21] Multi 2                     

Braekers et al. [10] Single 4                   

Rest et al. [40] Single 4                   

Guericke et al. [41] Multi 3                    

Cappanera et al. [20] Multi 5                   

Decerle et al. [13] Single 3                 

Liu et al. [42] Single 2                 

Shi et al. [43] Single 2                 

Du et al. [44] Multi 3                 

Decerle et al. [16] Single 3              

Grenouilleau et al. [45] Multi 1              

Euchi et al. [17] Single 4              

This Study Single 1              

 

From Table 1 it can be concluded that very few studies take into account main subjects such 

as continuity of care, temporal dependencies, job synchronization, nurse’s qualifications, the 

time window for both nurses and jobs, staff satisfaction as well as customer satisfaction 

simultaneously. In this paper, a new mathematical model is developed to consider the 

aforementioned real-world assumptions simultaneously. For this purpose, a new formulation 
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for adjusting the time distance between two consecutive jobs performed by a nurse is presented. 

Since the problem studied here is NP-hard, an evolutionary algorithm is also proposed to solve 

large size cases in a reasonable time. 

 

Problem definition 
 

Consider a set of nurses and a set of jobs. All jobs must be done and no job is left uncovered. 

There is no time window for nurses and nurses are available all day long. Jobs must be done in 

a hard time window. It means the beginning and ending time for each job must be in the related 

time window and doing the jobs out of the related time window is not authorized. The nurses 

must begin the jobs at one starting point and finish them at the ending point. With respect to the 

formulation of this problem in the present paper, we can consider the beginning and ending 

points of jobs at any other point. For example, the beginning point can be an office. In other 

words, each nurses' home is considered as a virtual job with zero time. It is possible that two or 

more jobs are related to one patient, and there may not be any special relation among these jobs, 

like bathing assistance in the morning and preparing food at noon. There may also be some 

special relation among the jobs, like taking medicine before or after having food. The patients’ 

preferences about nurses and also nurses’ preferences about patients are considered. For 

example, a female nurse may not prefer to be sent to male patients. In addition, each nurse can 

do some special jobs. For instance, a nurse may have the ability to do daily jobs like preparing 

food, taking bath, and doing some easy medical affairs, however, may not have the ability to 

do professional medical affairs.  

The temporal dependencies are considered and one kind of it is synchronization. For 

example, when two nurses for a patient with special physical conditions (like overweight or 

physical disability) are needed to take a bath. In this situation, if one nurse arrives sooner at the 

patients’ home, he/she must wait for the other one. In Drexl [25], a complete description of the 

synchronization in VRP problems is presented. The other case is when there must be a time 

distance between two jobs done for one patient. For example, a patient takes his/her medicine 

at a set time after having food and there must be a maximum (𝑑𝑖𝑗
𝑚𝑎𝑥) and a minimum (𝑑𝑖𝑗

𝑚𝑖𝑛) 

time distance between the beginning time of doing these two jobs. As well, the situation in 

which there is no relation between two jobs related to a patient is considered as two distinct 

jobs.  

One of the most important features in healthcare is the Continuity of Care (COC). There are 

different definitions for COC. Haggerty et al. [26] identified three types of COC. In this paper, 

relational COC is considered. It implies that each patient faces a low number of nurses as 

possible. The decrease of nurses sent to take care of patients on the one-hand increases the sense 

of responsibility of nurses as well as nurses’ efficiency and on the other hand, decreases the 

therapy period that leads to the improvement of patients’ satisfaction. COC is very important 

especially for patients that need mental health. However, specializing one nurse to one patient 

and not changing him/her is impossible because of the nursing shortage and a high number of 

patients. Despite its importance, considering COC increases the complexity of the problem. 

Therefore, this feature of the HHC problems attracts a little attention to the optimization 

problems. Carello et al. [22] present complete definitions of various kinds of relational COC. 

In the present paper, the jobs are divided into three categories based on COC: 1) The jobs that 

need hard COC. It implies that the specialized nurse does not change until the end of the therapy 

period, 2) The jobs that need soft COC. In this case, changing a nurse specialized in a job will 

result in a penalty in the objective function. The penalty is calculated based on the assignment 

of nurses to the jobs in the previous days, iii) the jobs do not require COC. Sets, parameters, 

and variables are defined in Table 2. 
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Table 2. Sets, parameters and variables. 

 

Sets 

𝐽               Set of Jobs 

𝑂1            Set of the starting location of nurses 

 
𝑂2            Set of the ending location of nurses  

 

𝐽𝑠             Set of all soft jobs  

𝐽ℎ             Set of all hard jobs 

𝑁              Set of nurses  

𝐽𝑑             Set of jobs with temporal dependencies 

S              Set of jobs with synchronization 

Parameters 

𝑞𝑖𝑛           Equal one if nurse 𝑛 is qualified to do job 𝑖 

𝑝𝑗
𝑛            Penalty for soft job 𝑗 if perform by nurse 𝑛 

Γ(j, n)    Equal one if hard job 𝑗 is performed by nurse 𝑛 

𝜇𝑖𝑗           Equal one if job 𝑗 must be performed after job  𝑖 

𝑑𝑖𝑗
𝑚𝑖𝑛       Minimum time between start time of jobs i and 𝑗  when 𝜇𝑖𝑗 = 1 

𝑑𝑖𝑗
𝑚𝑎𝑥       Maximum time between start time of jobs 𝑖 and 𝑗 𝑤ℎ𝑒𝑛 𝜇𝑖𝑗 = 1 

𝑤𝑛            Maximum waiting time between two consecutive jobs performed by nurse n 

𝑊𝑛            Minimum time distance between two consecutive jobs performed by nurse n 

[𝑎𝑖 , 𝑏𝑖]    Time window for job 𝑖 

𝑡𝑖𝑗          Travelling time from job 𝑖 to job 𝑗 

𝑑𝑖            Duration of job 𝑖 

𝛾𝑗            is equal to 0 or 1. 

𝑀            A big number 

Decision variables 

𝑥𝑖𝑗𝑛            A binary variable, one if nurse 𝑛 moves from job 𝑖 to job 𝑗 

𝑠𝑗
𝑛             Nurse's arrival time at job j  

  

𝑡𝑗
𝑛             Nurse's starting time at job j 

 

𝑀𝑖𝑛 ∑ 𝑝𝑗
𝑛

𝑗∈𝐽𝑠,𝑖∈𝐽∪𝑂1 𝑥𝑖𝑗𝑛                                                                                                                                               (1) 

The objective function minimizes the penalties for jobs that need soft COC. In Eq. 1, 

penalties are calculated based on historical data. 

  

∑ 𝑥𝑖𝑗𝑛 = 1𝑛∈𝑁,𝑖∈𝐽∪𝑂1                ∀𝑗                                                                                                                                                                      (2) 
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∑ 𝑥𝑖𝑗𝑛 ≤ 1                    𝑗∈𝐽,𝑖∈𝑂1 ∀𝑛                                                                                                                                                                          (3) 

∑ 𝑥𝑖𝑗𝑛 ≤ 1𝑖∈𝐽,𝑗∈𝑂2                    ∀𝑛                                                                                                                                                                           (4) 

 

The second constraint ensures that all the jobs are done and there is no job left uncovered. 

The third and fourth constraints guarantee that the nurses must start and finish their jobs at 

starting and ending points respectively. 

 

∑ 𝑥𝑖𝑗𝑛 =𝑖∈𝐽∪𝑂1
∑ 𝑥𝑗𝑘𝑛𝑘∈𝐽∪𝑂2

      ∀𝑛, 𝑗                                                                                                                                                                (5) 

 

Constraint (5) is the flow conservation constraint and implies that each nurse that goes to the 

one job to do his/her duty must exit it. 

 

∑ 𝑥𝑖𝑗𝑛 ≥ Γ(j, n)𝑖∈𝐽∪𝑂1              ∀𝑛, 𝑗                                                                                                                                                                   (6) 

 

Constraint (6) ensures that the same previous nurse must do hard jobs. 

 

𝜇𝑖𝑗(𝑡𝑗
𝑛 − 𝑡𝑖

𝑚) + 𝜇𝑗𝑖(𝑡𝑖
𝑚 − 𝑡𝑗

𝑛) ≥ 𝑑𝑖𝑗
𝑚𝑖𝑛 −𝑀1(2 − ∑ 𝑥𝑘𝑖𝑛𝑘∈𝐽,𝑗∈𝑂2 −∑ 𝑥𝑘𝑗𝑛𝑘∈𝐽,𝑗∈𝑂1 ) ∀ 𝑛,𝑚 ∈ 𝑁, ∀𝑖, 𝑗 ∈ 𝐽𝑑      (7) 

𝜇𝑖𝑗(𝑡𝑗
𝑛 − 𝑡𝑖

𝑚) + 𝜇𝑗𝑖(𝑡𝑖
𝑚 − 𝑡𝑗

𝑛) ≤ 𝑑𝑖𝑗
𝑚𝑎𝑥 +𝑀2(2 − ∑ 𝑥𝑘𝑖𝑛𝑘∈𝐽,𝑗∈𝑂2 − ∑ 𝑥𝑘𝑗𝑛𝑘∈𝐽,𝑗∈𝑂1 )     ∀ 𝑛,𝑚 ∈ 𝑁, ∀𝑖, 𝑗 ∈ 𝐽𝑑    (8) 

 

Constraints (7) and (8) ensure the minimum and maximum time distance between jobs with 

temporal interdependencies. These constraints force the latter job (j) to be started at least 

𝑑𝑖𝑗
𝑚𝑖𝑛after the first job and not later than 𝑑𝑖𝑗

𝑚𝑎𝑥. In the case that 𝑑𝑖𝑗
𝑚𝑖𝑛=𝑑𝑖𝑗

𝑚𝑎𝑥 = 0, there is 

synchronization between jobs. 

 

𝑡𝑖
𝑛 + (𝑑𝑖 + 𝑡𝑖𝑗)𝑥𝑖𝑗𝑛 ≤ 𝑠𝑗

𝑛 + 𝑏𝑖(1 − 𝑥𝑖𝑗𝑛)            ∀𝑛, 𝑖, 𝑗                                                                                                                       (9) 

𝑡𝑖
𝑛 + (𝑑𝑖 + 𝑡𝑖𝑗)𝑥𝑖𝑗𝑛 ≥ 𝑠𝑗

𝑛 − 𝑏𝑗(1 − 𝑥𝑖𝑗𝑛)            ∀𝑛, 𝑖, 𝑗                                                                                                                      (10) 

 

Constraints (9) and (10) show the relation between the starting time of the first job and its 

duration and the arrival time of the second job, minding the time distance between two jobs. 

 

𝑎𝑖 ∑ 𝑥𝑖𝑗𝑛 ≤𝑖∈𝐽∪𝑂1 𝑡𝑖
𝑛    ∀𝑛, 𝑗                                                                                                                                                                                 (11)  

𝑏𝑖 ∑ 𝑥𝑖𝑗𝑛 ≥𝑖∈𝐽∪𝑂1 𝑡𝑖
𝑛     ∀𝑛, 𝑗                                                                                                                                                                                (12) 

𝑡𝑖
𝑛 + 𝑑𝑖 ≤ 𝑏𝑖      ∀𝑛, 𝑖                                                                                                                                                                                                (13) 

 

Constraints (11), (12) and (13) ensure that the starting and finishing time of each job must 

be in its time window. 

 

𝑎𝑗 − 𝑡𝑖𝑗 − 𝑑𝑖 − 𝑡𝑖
𝑛 ≤ 𝑤𝑛𝑥𝑖𝑗𝑛 +𝑀3(1 − 𝑥𝑖𝑗𝑛) + 𝑀𝛾𝑗                    ∀𝑛, 𝑖, 𝑗                                                                                (14) 

𝑎𝑗 − 𝑡𝑖𝑗 − 𝑑𝑖 − 𝑡𝑖
𝑛 ≥ 𝑊𝑛𝑥𝑖𝑗𝑛 +𝑀4(1 − 𝑥𝑖𝑗𝑛) − 𝑀(1 − 𝛾𝑗)         ∀𝑛, 𝑖, 𝑗                                                                               (15) 

 

Constraints (14) and (15) ensure that the waiting time must be less than a certain number. In 

other words, there should be a distance between the ending time of a job and its successor’s 
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time window/the starting time. Indeed, constraint (14) forces that waiting time must be less than 

a specified number 𝑤𝑛. Otherwise, constraint (15) is activated which implies that there must be 

a specified time distance between doing two consecutive jobs by one nurse. These constraints 

take into account nurses’ preferences. 

 

𝑡𝑖
𝑛 − 𝑠𝑖

𝑛 ≤ 𝑀𝛿𝑖1    ∀𝑛, 𝑖                                                                                                                                                                                           (16) 

𝑡𝑖
𝑛 − 𝑎𝑖 ≤ 𝑀𝛿𝑖2      ∀𝑛, 𝑖                                                                                                                                                                                           (17) 

𝛿𝑖1 + 𝛿𝑖2 ≤ 1         ∀𝑖                                                                                                                                                                                                 (18) 

 

Constraints (16) to (18) show the relation between the arrival time and the job starting time, 

with respect to the lower bound of the time window. 

 

𝑥𝑖𝑗𝑛 ≤ max (𝑞𝑖𝑛 , 𝑞𝑗𝑛 )  ∀𝑛, 𝑖, 𝑗                                                                                                                                                                          (19)  

 

Constraint (19) ensures that jobs can be visited by nurses who are qualified to do them. 

 

𝑠𝑖
𝑛 ≤ 𝑡𝑖

𝑛   ∀𝑛, 𝑖                                                                                                                                                                                                            (20) 

𝑠𝑖
𝑛 ≥ 0   ∀𝑛, 𝑖                                                                                                                                                                                                               (21) 

𝑥𝑖𝑗𝑛 ∈ {0,1}     ∀𝑛, 𝑖, 𝑗                                                                                                                                                                                             (22) 

𝛿𝑖1, 𝛿𝑖2 ∈ {0,1}  ∀𝑖                                                                                                                                                                                                    (23) 

𝛾𝑗 ∈ {0,1} ∀𝑗                                                                                                                                                                                                                (24) 

𝑞𝑖𝑛 ∈ {0,1} ∀𝑛, 𝑖                                                                                                                                                                                                        (25) 

𝜇𝑖𝑗 ∈ {0,1}  ∀𝑖, 𝑗                                                                                                                                                                                                        (26) 

Constraints (20) to (26) define possible domains of the variables. 

 

Solution approach: Genetic Algorithm (GA) 
 

Without considering COC and time window for nurses, Mankowska et al. [15] worked on a 

simpler version of the problem studied here and concluded that the computation time of the 

HHC scheduling problem is heavily dependent on the dimensions of the problem. In other 

words, the HHC problem without considering COC and time window for nurses belongs to NP-

hard problems and there is no exact algorithm with polynomial order to solve it. Thus, our 

proposed HHC problem can be categorized as an NP-hard problem too. This way, heuristics 

and metaheuristics approaches are appropriate to find near optimum solutions for large 

problems in a reasonable time. A popular population-based metaheuristics Genetic Algorithm 

(GA) is, therefore, applied to solve the proposed HHC model. The effectiveness of the Genetic 

algorithm to find near-optimal solutions in a rational time for routing and scheduling problems 

has been shown in previous studies e.g. Shi et al. [27], Liu et al. [28], Algethami et al. [29], and 

Algethami et al. [30]. 

The genetic algorithm, proposed by Holland in 1967 for the first time, is a metaheuristic 

population-based algorithm that has a lot of applications in solving combinatorial problems. 

This algorithm begins its work with an initial population that each of them is equivalent to one 
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point of the solution space called a chromosome. In each iteration, several chromosomes are 

chosen and new chromosomes (children) are made using crossover and mutation operators [31]. 

Fig.1 shows the general framework of the proposed GA to solve the HCC problem modeled in 

the previous section.  

 

Start

Set GA parameters: Number of iterations (imax), 
Population size(PopSize), Crossover rate (Pc), Mutation 

rate (Pm), Elitism rate (Er)

Generate initial random population
and repair them using repair procedure ; i=0

-Select Pc% of population and generate offsprings using 
cross-over procedure And then repair them using repair 

procedure 
-Select Pm% of population and generate offsprings using 

mutation procedure And then repair them using repair 
procedure 

Decoding and Evaluation all chromosomes using decoding 
and evaluation procedure and select next generation from 

current population and new offsprings using selection 
procedure.

i=i+1

i<imaxYes

No

End

Load model parameters: Number of jobs, Number of 
nurses, Duration of jobs, Time windows, Qualification, 

Penalties,  and precedence data

 
Fig. 1. Framework of the proposed solution algorithm 

 

Solution representation and decoding of chromosomes 

 

Based on the GA, a chromosome is equivalent to a point of the solution space. The solution 

representation is the most important part of the algorithm that has a remarkable effect on its 

efficiency. Since this algorithm is population-based, the solution representation should have 

two features: first, in addition to simplicity, it does not occupy the memory of the computer; 

second, each chromosome must be equivalent to only one point of solution space. The 

chromosome given in this algorithm has 𝑁𝑗 gene, which 𝑁𝑗 is equal to the number of jobs. Each 

gene is therefore equivalent to one job. Fig. 2 shows a sample chromosome of a problem with 

10 jobs and 5 nurses. 

 
Job 10 Job 9 Job 8 Job 7 Job 6 Job 5 Job 4 Job 3 Job 2 Job 1 

3 5 2 2 1 2 5 3 3 1 

Fig. 2. solution representation 
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The important topic about solution representation is the way of encoding and decoding 

chromosomes. In the considered problem, each point of solution space includes assignment 

nurses to jobs, the sequence of services, and nurses scheduling with respect to the assumptions 

and the constraints. About assignment of nurses to jobs and based on Fig. 2, nurse 1 is assigned 

to jobs 1 and 6, nurse 2 is assigned to jobs 5, 7 and 8, nurse 3 is assigned to jobs 2, 3, and 10, 

and nurse 5 is assigned to jobs 4 and 9. Besides, nurse 4 is idle in this chromosome. The 

sequence of services of nurses is determined based on the lower bound of the time window. 

This way, if in the chromosome given in Fig .2, the lower bound of the time windows is as  

𝑎𝑗 = [20,10,50,30,40,80,90,70,60,100];  the route of nurse 2 is as 5, 8, and 7. About 

scheduling of nurses, there are many assumptions and constraints including the 

minimum/maximum time distance between the starting times of two successive jobs, time 

windows, and so on. The chromosomes and the decoding process are designed in such a way 

that the jobs are done with respect to the lower bound of time windows and the minimum time 

distance between two jobs. Other constraints are considered using the penalty and repair 

mechanism that is described below. 

In the following, the chromosome decoding is presented briefly. 

- Step 1: sort all jobs according to their lower bound of time windows (𝑎𝑗) 

- Step 2: in the sorted array, for each job=1 𝑡𝑜 𝑁𝑗 repeat step 3 (to calculate arrival time 

of nurse n to job j, 𝑠𝑗
𝑛 ) and step four (to calculate start time of job j doing by the nurse 

n, 𝑡𝑗
𝑛). 

- Step 3: 

 

𝑠𝑗
𝑛 = {

𝑀𝑎𝑥(𝑎𝑗 , 𝑡𝑗
𝑛)        𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑗𝑜𝑏 𝑜𝑓 𝑛𝑢𝑟𝑠𝑒 𝑛

𝑡𝑗
𝑛 + 𝑑𝑗 + 𝑡𝑖𝑗                  𝑒𝑙𝑠𝑒                                                                                      

 
                  

(27) 

 

     -     Step 4: 

 

𝑡𝑗
𝑛 =

{
 
 

 
 
𝑀𝑎𝑥(𝑎𝑗 , 𝑠𝑗

𝑛)                                       𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑎𝑣𝑒 𝑎 𝑝𝑟𝑒𝑞𝑢𝑖𝑠𝑡𝑒

𝑀𝑎𝑥 (𝑎𝑗 , 𝑠𝑗
𝑛,∑ 𝑡𝑖

𝑛

𝑁𝑛

𝑛=1

+ 𝑑𝑖𝑗
𝑚𝑖𝑛)         𝑒𝑙𝑠𝑒(𝑖𝑓 𝑗𝑜𝑏 𝑖 𝑖𝑠 𝑝𝑟𝑒𝑞𝑢𝑖𝑠𝑡𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗)

       

 

 

    (28) 

 

The significant issue in designing the metaheuristic algorithms is the way of encountering 

infeasible chromosomes made during reproduction. There are many approaches to face 

infeasible chromosomes, such as applying the penalty function in evaluating the infeasible 

chromosomes and the repair mechanism that is described in the following section. 

 

Initial population generation and repair mechanisms 

 

As mentioned earlier, in the proposed algorithm the initial population is made randomly. In 

each chromosome, each gene is equivalent to one job; it starts from the first gene and assigns 

one nurse to each gene randomly. There are two basic assumptions in assigning nurses to jobs. 

First, some jobs called hard jobs must only be done by a fixed nurse. Besides, about the other 

jobs and depending on the quality of nurses each job can be done by a group of nurses. For this 

reason, some chromosomes, which are created in the reproduction process or by GA operators, 

may not fulfill these assumptions. To face this challenge each infeasible chromosome is 

amended by a repair mechanism. The proposed repair procedure is used in three situations: after 
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creating the initial population, after generating children by the mutation, and after the crossover 

operator. 

- Step 1: for all jobs=1:𝑁𝑗 , if job j is a hard job, go to step 2, else go to step 3. 

- Step 2: If the assigned nurse to job j is not qualified, change him\her with a qualified 

nurse. 

- Step 3: If the assigned nurse to job j is not qualified, choose one of the qualified nurses 

randomly and assign him\her to job j. 

 

Fitness evaluation and the penalty function 

 

One of the common approaches in facing infeasible solutions is using the penalty function. In 

this case, the infeasible chromosomes are not eliminated, but by using a penalty function and 

depending on their derivation from constraints, their value of objective function gets worse. 

Therefore, their chance to stay in the next generations will be decreased. The reason for not 

eliminating these chromosomes is that an infeasible chromosome may become a chromosome 

with a very well fitness by a small change through crossover and mutation operators. 

Based on Eq. 1 the Objective Function Value (OFV)  of each chromosome is equal to the 

sum of penalties for soft jobs (𝑃0). However, as far as there is the possibility of generating the 

infeasible solutions, the OFV of infeasible chromosomes is increased using Eq. 29 in which 𝑃 

is the penalty coefficient and it can take every number to itself with respect to the problem data. 

 

𝑂𝐹𝑉 = 𝑃0 + 𝑃 ∗ (𝑃1 + 𝑃2 + 𝑃3 + 𝑃4)                                                   (29) 

 

As is mentioned earlier respect to the chromosome designing and decoding process some 

constraints are always satisfied and some others may be satisfied by the repair mechanism. 

However, in four cases, as described below, a chromosome may become infeasible which 

results in penalties from P1 to P4. Consider a chromosome: in the case, that nurse n finishes job 

j in 𝑡𝑗
𝑛 + 𝑑𝑗 , the penalty 𝑝𝑒𝑛1

𝑗𝑛
 depending on deviation from 𝑏𝑗, will be calculated as Eq. 30 in 

which 𝑁𝑛 is the number of nurses: 

 

𝑝𝑒𝑛1
𝑗𝑛
= 𝑀𝑎𝑥(0, 𝑡𝑗

𝑛 + 𝑑𝑗 − 𝑏𝑗) ⟹ 𝑝1 =∑∑𝑝𝑒𝑛1
𝑗𝑛

𝑁𝑛

𝑛=1

𝑁𝑗

𝑗=1

                                                           (30) 

 

If the job i is the prerequisite of job j the time distance between the starting times of these 

two jobs must be placed in the interval [𝑑𝑖𝑗
𝑚𝑖𝑛, 𝑑𝑖𝑗

𝑚𝑎𝑥]. Since 𝑑𝑖𝑗
𝑚𝑖𝑛 always is satisfied in the 

decoding process, the penalty 𝑝𝑒𝑛2
𝑗𝑛

 is calculated by Eq. 31, regarding 𝑑𝑖𝑗
𝑚𝑎𝑥: 

 

𝑝𝑒𝑛2
𝑗𝑛
= 𝑀𝑎𝑥 (0,∑𝑡𝑗

𝑛

𝑛

−∑𝑡𝑗
𝑛 − 𝑑𝑖𝑗

𝑚𝑎𝑥

𝑛

) ⟹ 𝑝2 =∑∑𝑝𝑒𝑛2
𝑖𝑗

𝑁𝑗

𝑗=1

𝑁𝑗

𝑖=1

                                     (31) 

 

The waiting time of nurse n for doing the job 𝑗 (𝐸𝑗𝑛) must be less than 𝑟1or more than 𝑟2. 

Otherwise, the penalty 𝑝𝑒𝑛3
𝑗𝑛
 will be calculated by Eq. 32: 

𝑝𝑒𝑛3
𝑗𝑛
= 𝑀𝑖𝑛(𝐸𝑗𝑛 − 𝑟1  , 𝑟2 − 𝐸𝑗𝑛) ⟹ 𝑝3 = ∑ ∑ 𝑝𝑒𝑛3

𝑗𝑛𝑁𝑛
𝑗=1

𝑁𝑗
𝑖=1

                                 (32) 
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Each nurse must have finished his/her job before a specified time (𝑏𝑛). If this is violated, the 

penalty 𝑝𝑒𝑛4
𝑗𝑛
 will be calculated as below: 

 

𝑝𝑒𝑛4
𝑗𝑛
= 𝑀𝑎𝑥(0, 𝑡𝑗

𝑛 + 𝑑𝑗 + 𝑡𝑖𝑗 − 𝑏𝑛) ⟹ 𝑝4 = ∑ ∑ 𝑝𝑒𝑛4
𝑗𝑛𝑁𝑛

𝑛=1

𝑁𝑗
𝑗=1

                                      (33)  

 

In Eq. 33, the job 𝑗 is the last job of a nurse. 

 

The Crossover and Mutation operators 

 

The crossover operator is used to generate children by the combination of two parents. In this 

algorithm, the one-cut-point and two-cut-point crossovers are used to generate two children by 

two parents. The Crossover procedure can be summarized as follows: 

Step 1: select randomly two chromosomes 𝑝1 = (𝑝1
1, …… . . , 𝑝𝑛

1) and 𝑝2 = (𝑝1
1, …… . . , 𝑝𝑛

1) as 

parents.  
Step 2: generate a random number r, between 0 and 1. If 𝑟 < 0.5 go to step 3 (one-cut-point), 

else go to step four (two-cut-point) 

Step 3: a position 𝑖 between 1 to 𝑁𝑗 − 1 be randomly chosen and two offspring 𝑂1and 𝑂2 are 

generated: 

                   𝑂1 = (𝑝1
1, …… . . , 𝑝𝑖

1, 𝑝𝑖+1
2 . . . , 𝑝𝑛

1), 𝑂2 = (𝑝1
2, …… . . , 𝑝𝑖

3, 𝑝𝑖+1
1 . . . , 𝑝𝑛

1) 
Step 4: two positions 𝑖 and 𝑗 between 1 to 𝑁𝑗 − 1 be randomly chosen (𝑖 < 𝑗) and two offspring 

𝑂1 and 𝑂2 are generated as below: 

𝑂1 = (𝑝1
1, …… . . , 𝑝𝑖

1, 𝑝𝑖+1
2 . . , , 𝑝𝑗

2, 𝑝𝑖𝑗+1
1 , . , 𝑝𝑛

1) , 𝑂2 = (𝑝1
2, …… . . , 𝑝𝑖

2, 𝑝𝑖+1
1 . . , , 𝑝𝑗

1, 𝑝𝑖𝑗+1
2 , . , 𝑝𝑛

2)             

 If 𝑃1 and 𝑃2 are two chosen parents and 𝑂1 and 𝑂2 are two generated children an example of 

one-cut-point crossover and two-cut-point crossover are shown in Fig. 3. 

 
Selected parents 

3 5 2 2 1 2 5 3 3 1  𝑃1: 

3 2 2 3 1 4 4 3 5 2  𝑃2: 

 
(a) 

3 2 2 3 1 4 5 3 3 1  𝑂1: 

3 5 2 2 1 2 4 3 5 2  𝑂2: 

 
(b) 

3 5 2 2 1 4 4 3 3 1  𝑂1: 

3 2 2 3 1 2 5 3 5 2  𝑂2: 
 

Fig. 3. Crossover operators: (a) one-cut-point crossover with i=4; (b) two-cut-point crossover with i=3 and j=6 

 

The mutation operator is used to make a new solution by making random changes in a selected 

parent. Here three different mutation operators are used (Swap, Uniform, Inversion). Based on 

the Swap operator two genes are randomly chosen from a chromosome and their values are 

replaced with each other. This way, the created chromosome is a new point of the solution 

space.  It is clear that this operator makes minor changes in selected chromosomes. regarding 

the inversion operator, one part of a chromosome is randomly chosen and their genes values 

are arranged diversely. Finally, the uniform operator selects the Pu percent of genes and replaces 

their values with random values between 1 to n (number of nurses). For example, in Fig. 4 if P 

shows the selected parent, 𝑂1, 𝑂2 and 𝑂3 are offspring that may be created via each of the 
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aforementioned mutation operators. As it is observed each of these operators can make different 

changes in the parent chromosome and make a high capability to search the whole solution 

space without falling into the local optimum trap. 

 
Selected parent 

3 5 2 2 1 2 5 3 3 1  P: 

 

(a) 

3 5 2 2 3 2 5 1 3 1  O1: 

 

(b) 

3 2 1 2 2 5 5 3 3 1  O2: 

 

(c) 

1 5 2 2 4 2 5 3 4 1  O3: 

Fig. 4. Mutation operators: (a) swap; (b) inversion; (c) uniform. 

 

The selection strategy to form new generation 

 

After generating children using the crossover and mutation operators, the next generation is 

selected from the current population and the created children. To do this, two approaches are 

used simultaneously: Elitism and Roulette wheel selection. First, all chromosomes are arranged 

based on their fitness and Nelite number of their best are chosen to attend in the next generation 

(Nelite =PopSize*ElitismRate). The remainder of the members of the next generation is chosen 

randomly by the Roulette wheel selection procedure in which a selection probability is assigned 

to each chromosome according to its fitness. Naturally, the more fitness value of one 

chromosome results in its higher chance to be in the next generation. 

The computational results 
 

In this section, the mathematical model and the proposed genetic algorithm are evaluated by 

solving several examples. In addition, sensitivity analysis is performed to evaluate the behavior 

of the problem under different conditions. Thus, the managerial guidelines will be presented. 

The genetic algorithm is encoded using MATLAB software. CPLEX solver is used to solving 

the proposed mathematical model through GAMS 24.7.3. The experiments are done on a 

Windows 10, 64-bit laptop with Intel 1.80 GHz and 6-GB RAM. 

 

Parameter setting 

 

The values of the input parameters of the genetic algorithm have a prominent role in the 

performance of the algorithm. To set the best values of the selected parameters, The Taguchi 

method is used. Five main parameters in the genetic algorithm in three different levels are 

considered, as it is shown in Table 3. To find the proper value of parameters, the 
27L orthogonal 

array is used. For more detailed information, interested readers are referred to Sazvar et al. [31] 

and Navazi et al. [32]. In brief, Fig. 5 shows the results of the Taguchi method as: Mutation 

rate=0.1, Crossover rate=0.5, Uniform mutation rate=0.4, Elitism rate=0.8 and population size 

= Nj. 
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Table 3. Different level of parameters 

Level3  Level 2  Level 1   

0.1  0.07  0.05  Mutation rate (Pm) 

0.9  0.7  0.5  Crossover rate (Pc) 

5Nj  3Nj  Nj  Population size (npop) 

0.6  0.4  0.2  Uniform mutation rate (Pu) 

0.1  0.08  0.05  Elitism rate (Er) 

  

 

Fig. 5. The results of Taguchi method 

 

Evaluation of the proposed GA 

 

To evaluate the performance of the proposed genetic algorithm, 14 problems are generated in 

different dimensions reported in Table 4.  
 

Table 4. Characteristics of the generated examples 

Instance |𝐽| |𝐽ℎ| |𝐽𝑠| |𝑁| |𝑆| |𝐽𝑑| 

1 18 3 6 8 0 4 

2 18 3 6 8 4 4 

3 18 3 6 8 2 4 

4 41 5 11 15 2 6 

5 41 5 11 15 4 6 

6 58 11 41 50 0 6 

7 81 6 61 50 0 4 

8 12 5 5 100 0 2 

9 14 5 5 100 0 4 

10 18 5 5 100 0 8 

11 55 4 47 89 0 4 

12 55 4 47 89 0 4 

13 59 4 51 90 0 4 

14 18 5 5 100 0 8 

In Table 5, a comparison is given between the results of solving the examples with the proposed 

genetic algorithm and the GAMS software. HHC is an NP-hard problem, there is only the 

possibility of solving the small and medium examples by the GAMS software. As it is shown 
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in Table 5, in some cases GAMS could not find optimal solutions, and ‘-’ indicates that the PC 

comes out of memory.  

 

Table 5. Performance of developed GA 

  CPLEX  GA    

 
Lower 

Bound 
Objective function 

CPU 

time(s) 
Best objective function 

CPU 

time(s) 
Average Worst 

1 12 12 2 13 3 15.4 17 

2 12 12 2 13 5 14 15 

3 26 26 2 30 1 30 30 

4 150 150 9 175 9 179.8 188 

5 111 111 38 120 24 125 135 

6 2860 2860 299 2876 282 2889.2 2897 

7 4605 4605 1761 4628 1500 4629.2 4631 

8 955 955 465 955 24 955 955 

9 955 955 485 955 17 955 955 

10 955 - - 955 10 955 955 

11 2896 2896 687 2902 607 2907 2913 

12 2894 - - 2903 604 2911.6 2925 

13 9148 - - 9161 659 9168.2 9173 

14 955 - - 955 50 955.8 957 

 

Regarding Table 5, the average of the gap between the best of GA and optimum values is 

violated between 0 to 16.6% (test problem no.4). The minimum and maximum gaps between 

the average solution obtained by GA and optimum values are equal to 0 and 28% (test problem 

no.1) respectively. Table 5 shows the running time of the proposed GA versus that of CPLEX 

too. We see that the running time of CPLEX is exponential regarding problem size. Though 

GA’s running time is almost linear.  

 

Sensitivity analysis 

 

The impact of the number of jobs with precedence 

It should be noted that the complexity and computational time of each instance depend on 

the number of jobs, the number of jobs with precedence, the number of jobs with 

synchronization, and the nurses’ quality matrix. The computational experiments on generated 

instances confirm this. 

For example, the impact of the number of jobs with precedence on the solution time is 

investigated. This is done by keeping the total number of jobs fixed and increasing the number 

of jobs with precedence. An instance with 100 nurses and 20 jobs is considered. Five jobs are 

hard and five jobs are soft. The number of jobs with precedence was increased from 2 to 10. 

CPLEX solver could not find an optimal solution (except for the first instance). The GA 

algorithm is used to solve the instances. In all cases, the proposed algorithm solved the problem 

in a reasonable time. The results also show the advantages of the proposed algorithm, in 

particular in the case of jobs with precedence. Fig. 6 shows the effect of the number of jobs 

with precedence on running time. As this figure shows by increasing the number of jobs with 

precedence from 2 to 10, the running time goes up dramatically and increases 2.8 times. 

Consequently, based on the numerical results, the number of jobs with precedence, which is 
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one of the main differences between the HHC problem and VRP, is one of the influential factors 

in solving time. 

 

 

Fig. 6. Impact of jobs with precedence 

 

Dispatching policy 

In this part, different policies of dispatching nurses are compared. Nurses can start/end their 

jobs at home or office, this depends on the HHC agency’s policy or contractual agreement. To 

compare the effect of each policy on the solution, different examples are considered and for 

each one, the starting and ending point of nurses is changed. The objective function, the sum of 

waiting time of all nurses and total traveling time is calculated. The result is shown in Table 6. 

As it is shown in Table 6, in all cases, the objective function does not change. This shows that 

changing the nurses dispatching policy generally has not effect on the objective function. 

Hence, the HHC office without worrying about the impact of the nurse dispatching policy on 

the objective function can choose one of the policies according to the condition. Also as it is 

shown in the last column of Table 6, it can be seen that the effect of changing the policy of 

sending nurses on total traveling time is negligible. However, the nurses’ dispatching policies 

have a meaningful effect on the waiting times. 

To compare the effect of each dispatching policy on the total waiting time, the obtained 

results are illustrated in Fig. 7. The results show that by using different strategies of dispatching 

nurses, the total waiting time of nurses is changed. As well, in some cases, changing the policy 

of sending nurses may lead to a failure to solve the problem by GAMS (In one case, the applied 

PC comes out of memory). 

 
 

Table 6. Different policies of dispatching nurses 

 Instance 
Objective 

function 

Sum of waiting 

time 
Total travelling time 

office to home 1 172 252 962 

home to office 1 172 335 969 

home to home 1 172 252 967 

office to office 1 172 252 954 

office to home 2 961 0 315 
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 Instance 
Objective 

function 

Sum of waiting 

time 
Total travelling time 

home to office 2 961 40 351 

home to home 2 961 27 305 

office to office 2 961 0 305 

office to home 3 81 101 949 

home to office 3 81 74 942 

home to home 3 infeasible infeasible infeasible 

office to office 3 81 201 944 

office to home 4 170 319 979 

home to office 4 170 257 961 

home to home 4 170 243 989 

office to office 4 170 318 930 

     

 

 

Fig. 7. Comparing the sum waiting time 

 

Conclusion and future research  
 

In this study, a mathematical model for the daily planning of HHC was formulated. In the 

developed model all jobs must be done. Real-world constraints such as continuity of care and 

temporal dependencies were considered as two main aspects of the problem. Besides, a new 

formulation for adjusting the time distance between two consecutive jobs performed by a nurse 

was presented. The solution obtained by the proposed GA algorithm was compared with the 

exact ones. The result showed the efficiency of the proposed algorithm. As well, the numerical 

results demonstrate that changing the nurses dispatching policy generally does not affect the 

objective function ie. total penalties for jobs need soft COC. However, the dispatching policy 

can change the total waiting time meaningfully. For example, in problem instance 2, the total 

waiting time was zero when office to home/office to office policy was implemented. While it 

was increased to 40 and 27 by applying home to office and home to home policies respectively.  

For future study and regarding Table 1, various aspects such as overtime, breaks, and part-time 

nurses can be considered. The different cases of disasters that cause new conditions and need 

rescheduling can be under attention too. As it was shown, besides the dimension of the problem, 

the quality matrix has a crucial impact on the complexity and computational time of the 
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problem. Deeper analysis to evaluate the effect of the quality matrix can be under attention, 

which is marginally addressed. As well, developing other solution algorithms with the help of 

hybrids or other types of metaheuristics and comparing them with the developed GA, in terms 

of performance criteria, can be a fruitful direction to do further researches. or Also, a more 

comprehensive analysis of the nurse dispatching policy and the impact of different aspects of it 

can be considered.   
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