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Abstract  

An appropriate facility layout is required to reduce total manufacturing cost, 

especially in uncertain environments. The design of a desirable facility layout is 

essential when the rearrangement of the facilities is expensive. Using Routing 

Flexibility (RF) as a principle of the Flexible Manufacturing System (FMS) can 

lead to the fulfillment of this need. This paper propounds two new mathematical 

models for the Dynamic Facility Layout Problem (DFLP) with stochastic 

approaches. The RF is considered when the demands of the independent parts 

follow Exponential and Normal distributions in which their parameters randomly 

alter from period to period. The primary nonlinear models are first linearized by the 

proposed innovative technique. Then, the performance of the proposed models and 

the linearization technique is assessed by solving two test problems. Next, the RF 

effect on the manufacturing system is analyzed. The obtained results verify the 

validity and applicability of the proposed models. It is also shown that the suggested 

linearization technique is an efficient technique with 99% accuracy, even if 

convexity conditions are not met. 
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Introduction 
 

To consider a proper design for the facility layout in any production system is inevitable. On 

the other hand, Material Handling Cost (MHC) is induced by 20% –50% of the Total 

Manufacturing Cost (TMC), while an effectual facility layout can diminish the cost from 10% 

to 30% [1]. So, the MHC is one of the most proper measures to assess the performance of a 

facility layout. The aim of the Facility Layout Problem (FLP) is to determine the locations of 

the facilities to reduce the MHC [2]. A facility can be defined as follows: a physical operational 

portion like a department in an organization, a machine in a manufacturing system, and a 

manufacturing cell [3]. The facility layout can affect the Key Performance Indexes (KPI) like 

Work-In-Process (WIP), throughput rate, and manufacturing lead time [4]. In FLP, it is assumed 

that the material flows between the centroid of two facilities. 

In general, there are three different approaches to deal with a multi-period FLP: І) static, ІІ) 

dynamic, and ІІІ) robust approaches. If the facility Rearrangement Cost (RC) is low, then the 

static approach will be appropriate, called Static Facility Layout Problem (SFLP). When the 
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mass flow of materials does not alter from period to period, the SFLPs could be applied. If 

demands vary in the planning horizon which is usual in dynamic environments, then the 

materials will flow differently. Because of the inefficient layout, rearrangement of the facility 

layout is essential, where the SFLP is no longer useful and is converted into Dynamic Facility 

Layout Problem (DFLP) [5]. As previously mentioned, the implementation of a facility layout 

is a significant part of the initial stages of creating a production system that is typically very 

costly. An inefficient facility layout can impose at least 36% of the TMC [6]. In DFLP, the 

optimal layout is not necessarily constant and can alter from period to period. However, 

sometimes the facility rearrangement may not be possible for technical reasons in the real 

world.  

In the FLP with the robust approach, neither a layout is optimal for each period separately, 

nor the layout changes from period to period. Instead, a stable facility layout with the minimum 

MHC under different stochastic demand scenarios is determined as the best layout in the whole 

planning horizon [2]. If the uncertainty is considered, then the stochastic approach will apply 

to all three aforementioned types of FLPs. Thus, the SFLP and DFLP are converted into 

Stochastic Static Facility Layout Problem (SSFLP) and the Stochastic Dynamic Facility Layout 

Problem (SDFLP), respectively. In both of them, the Decision Maker (DM) presents an opinion 

on uncertainty in part demands by confidence level (1 − 𝛼). The part demands are independent 

random variables with known means and variances and alter from period to period.  

Routing Flexibility (RF) is one of the necessities of each modern system such as a flexible 

manufacturing system (FMS). Flexible design is defined as the capability to modify the changes 

without significant impact on performance. The RF is specified as the average number of 

choices of a machine that a commodity can choose. Generally, the RF in a facility layout is the 

capability to manufacture a throughput by alternative routes within the system [7]. Flexibility 

is a valuable attribute and should be considered in a dynamic competitive environment. In the 

performance assessment, the value of flexibility should be considered [8]. The solution method 

for the FLP is determined by the features of the model like size problem, linearity, non-linearity, 

and modelling approach. The solution procedures can be generally classified into three types: 

a) exact, b) heuristic, and c) intelligent methods [9]. On the other hand, the Quadratic 

Assignment Problem (QAP) is NP-complete [10]. The optimization methods are unable to solve 

the problems with 15 or more facilities, within a reasonable time [11]. So, in addition to the 

three above-mentioned methods, there is a need for approximated algorithms that can present 

reasonable suboptimal solutions. However, the proposed models in this research are solved 

using an exact method, after applying a novel linearization technique. 

This paper has two major contributions. First, the RF is appended to the DFLP with the 

stochastic approaches under Normal and Exponential distribution functions. Second, a novel 

innovative linearization technique is introduced for the first time, which can be utilized for other 

complex cases with a high degree of non-linearity. The remainder of the paper is organized as 

follows: In Section 2, the most related research in the literature are briefly reviewed. Section 3 

describes the discussed problem followed by Section 4 where two stochastic models are 

presented when independent part demands are randomly distributed with the specified mean 

and variance. In Section 5, the proposed linearization technique is introduced. To validate the 

developed models as well as the linearization technique, some experiments are conducted 

including two sensitivity analyses in Section 6. Some managerial insights have presented in 

Section 7. Finally, the obtained results are presented in Section 8. 

 

 

 

Literature review 
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In recent studies, flexibility and robustness are two favorite subjects for FLP [12]. They 

declared the optimization approaches are one of the most main used methods to get the optimal 

solutions for small-sized problems. They also stated that the approximated approaches are 

widely classified such as improvement algorithms, construction algorithms, and meta-heuristic 

algorithms. The studies related to DFLP are summarized in Table 1.  

 
Table 1. Literature review of DFLP in terms of formulation and resolution approach 
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[13]   S T   √ √ Non L  

[14] D P       Non L  

[15] D P       Non L  

[16] B&B        Non L 
[17]  √   √    Non L 
[18]   S T  √    Non L 
[19]  √    √ √  Non L 
[20]    S A     Non L 
[21]  S T   √ √   Non L 
[22]  √       Non L 
[23]    GA     Non L 
[11]  √      Non L  

[6]  √      Non L  

[5]    S A  √ √  Non L 
[24]  √       Non L 
[25]  √    √   Non L 
[26]   H      Non L 
[27] B&B        Non L 
[28]    TSA     Non L 
[29]    GA √ √   Non L 

[2]  
DP&

SA 
      Non L 

[30]  C M   √    Non L 
[31]    SA √ √  Non L  

[32]    SA √ √  Non L  

[33]    GA √  √  Non L 

[34]    SA √ √   Non L 

[35]    GA √  √  Non L 

This research √    √ √ √  Linear 

S T: Scenario Tree, Non L: Nonlinear, DP: Dynamic Programming, B&B: Branch and Bound, S A: Simulated 

Annealing, GA: Genetic Algorithm, H: Heuristic, TSA: Tabu Search Algorithm, C M: Combined Metaheuristic 

 

Upon reviewing the literature, it seems that there are two genuine research gaps in designing 

a facility layout in dynamic environments. To the best of the authors’ knowledge, no research 

has investigated RF in the DFLP, so far. Accordingly, two integrated mathematical models 

based on QAP for the DFLP with the stochastic approaches are presented for the first time, 

where independent part demands follow the Exponential and Normal distribution functions. 

One of the reasons for using Normal distribution for demands is that most of the real-world 
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phenomena are compatible with Normal distribution [7]. Furthermore, to the best of our 

knowledge, this paper is the first to propose a new linearization technique for the nonlinear 

zero-one polynomial programming problems and utilize it for the presented models whereas 

[36] and [37] refer to linearization techniques.  

 

Problem description 
 

The existence of uncertainty in the DFLP creates the SDFLP. Moreover, the confidence level 

(1 − 𝛼) determines the uncertainty in part demands specifying by the DM. In this paper, a new 

nonlinear zero-one polynomial programming formulation is proposed for the DFLP with the 

stochastic approaches. In the proposed mathematical models, the RF is appended when the 

independent part demands follow the Exponential and Normal distributions in which their 

parameters are randomly altered from period to period.  

 

Notations 

 

In this subsection, the assumptions, indices and parameters and the decision variables of the 

proposed models are presented as follows. 

 

Assumptions 

The assumptions of the proposed models are as follows: 

1. The facilities are equal-sized, and the number of facilities is equal to the number of locations. 

2. The discrete representation is the same as the SDFLP. 

3. The part demands are independent random variables with specified variance and mean in 

each period; however, they are randomly altered from period to periods.   

4. The confidence level is specified. It shows the DM’s opinion on the uncertainty of demands. 

5. The parts with known sizes are transmitted as a batch from a facility to another. 

6. The interest rate is clear for each period (year, month). 

7. The distance between the center of facility locations (computed by the rectilinear distance), 

the number of total periods, the present value of part movement cost, and the facility sequence 

in each period are all given and specified as input parameters in the model.  

 

Indices and parameters 

The all indices and parameters used in the proposed nonlinear models have presented in 

Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Indices and parameters of the proposed nonlinear models. 
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Decision variable 

The used decision variables in the proposed models are as follows: 

 

𝑥𝑖𝑙  = { 
1      ;    If facility 𝑖 is assigned to location 𝑙  

0      ;   Otherwise                                                               
 

 

Quadratic Assignment Problem (QAP) 
 

Two mathematical models are presented in this paper based on QAP for the DFLP with the 

stochastic approaches, where the independent part demands follow the Exponential and Normal 

distribution functions. The following zero-one programming is a QAP formulation suggested 

by [38] used to extend the DFLP in this paper: 

 

Minimize  Z = ∑ fikdjlxijxkli,j,k,l                                                                                            (1) 

subject to: 

∑ 𝑥𝑖𝑗𝑖 =  𝑗                                                                                                    (2) ∀ ؛                          1

∑ 𝑥𝑖𝑗𝑗 =  𝑖                                                                                                    (3) ∀ ؛                          1

𝑥𝑖𝑗 ∈ ,𝑖∀ ؛                        {0,1}  𝑗                                                                                                          (4) 

 

Where 𝑛, 𝑓𝑖𝑘 and 𝑑𝑗𝑙 are the total number of locations, the flow of material from plant (facility) 

i to plant k, and the distance from location j to location l, respectively. If plant (facility) i is 

assigned to location j, then 𝑥𝑖𝑗 would be one; otherwise zero. In Eq 1, 𝑖 ≠ k implies that 𝑗 ≠ 𝑙, 

𝑗 ≠ 𝑙 implies 𝑖 ≠ 𝑘, 𝑖 = 𝑘 implies 𝑗 = 𝑙, and 𝑗 = 𝑙 implies 𝑖 = 𝑘 due to Eqs. 2 and 3. It should 

be noted that in the presented formulation, the assumptions of subsection 3.1.1 are applied. 

 

The proposed mathematical models 
 

Indices Parameters 

i,j  Indices of  facilities 

(𝒊, 𝒋 = 𝟏, 𝟐, … ,𝑴 ); 𝒊 ≠ 𝒋 
 

l,q  Indices of  facility locations 

(𝒍, 𝒒 = 𝟏, 𝟐, … ,𝑴); 𝒍 ≠ 𝒒 

M Total number of facilities or 

facility locations 

t Index of the period 

 (𝒕 = 𝟏, 𝟐,… , 𝑻) 
 

T Number of periods under 

consideration 

 

k Index for parts  

(𝒌 = 𝟏, 𝟐, … ,𝑲) 
 

K    Number of parts 

 

n   Index of the route of production 

(𝒏 =  𝟏, 𝟐,… ,𝑵) 
 

N  Number of production routes. 

𝑑𝑙𝑞     Distance between facility locations l, q 

𝐷𝑘𝑡     Demand for part k in the period t 

𝐼𝑟        Interest rate 

𝑓𝑖𝑗𝑘𝑡𝑛 The flow of materials for part k between facilities i and j in route 

production n in the period t. 

𝑓𝑖𝑗𝑘𝑡   The flow of materials for part k between facilities i and j in the period t 

𝑓𝑖𝑗𝑘   Materials flow for part k between facilities i and j 

𝑓𝑖𝑗     Materials flow for all parts between facilities i and j 

E()   Expected value (mean) of a parameter 

Var() Variance of a parameter 

𝑍1−𝛼      The  value of standard normal Z for (1 − 𝛼) confidence interval 

𝐶𝑘𝑡 The movement cost of each batch size per unit distance for part k in the 

period t 

𝐶𝑘  Present value of the movement cost for each batch size per unit distance for 

part k 

𝛽𝑖𝑗𝑘𝑡𝑛   {
1  ;    If facility 𝑗 appears immediately after 
facility 𝑖 in period 𝑡  for part 𝑘 in route 𝑛

0  ;     Otherwise .                                                                          
 

𝐵𝑘     Transfer batch size for part k 

𝑃𝑘𝑛     Passing probability of part k from route n 

𝐶(𝜋𝑟𝑚) Total MHC for layout 𝜋 

𝑈(𝜋𝑟𝑚, 1 − 𝛼) Maximum value (upper bound) of 𝐶(𝜋𝑟𝑚) with the confidence 

level (1 − 𝛼) 
𝑂𝐹𝑉𝑟𝑚   Total cost of facility layout 𝜋𝑟𝑚 
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In this section, we define the proposed objective function and present two new mathematical 

models.  

 

Determining the new objective function  

 

Usually, when a machine breakdown happens, uncertainty occurs in production. Under these 

circumstances, production routing flexibility is needed [7]. Also, since RF is one of the 

principles of FMS, the 𝑃𝑘𝑛 is added to the model for taking the RF into account. The 𝑃𝑘𝑛 is the 

passing probability of part k from route n. So, the material flow of part k between facilities i 

and j in the route of production n in period t (𝑓𝑖𝑗𝑘𝑡𝑛) is calculated as follows: 

 

𝑓𝑖𝑗𝑘𝑡𝑛 = 𝛽𝑖𝑗𝑘𝑡𝑛
𝐶𝑘𝑡𝐷𝑘𝑡

𝐵𝑘
𝑃𝑘𝑛                                             ;    ∀𝑖, 𝑗, 𝑘, 𝑡, 𝑛                                           (5) 

 

In Eq. 5, 𝛽𝑖𝑗𝑘𝑡𝑛 is a zero-one variable that ensures two consecutive operations can be done 

on part k in facilities i and j in period t in production route n. Regarding the considered 

assumptions, 𝐷𝑡𝑘 is an independent random variable and therefore, 𝑓𝑖𝑗𝑘𝑡𝑛 is also an independent 

random variable. The total flow for part k between facilities i and j in period t resulting from all 

routes of production (𝑓𝑖𝑗𝑘𝑡𝑛) can be written as Eq. 6: 

 

𝑓𝑖𝑗𝑘𝑡 = ∑ 𝑓𝑖𝑗𝑘𝑡𝑛𝑛 = ∑ 𝛽𝑖𝑗𝑘𝑡𝑛
𝐶𝑘𝑡𝐷𝑘𝑡

𝐵𝑘
𝑃𝑘𝑛𝑛                 ;    ∀𝑖, 𝑗, 𝑘, 𝑡                                  (6) 

 

Since 𝑓𝑖𝑗𝑘𝑡𝑛 is an independent random variable, 𝑓𝑖𝑗𝑘𝑡 is also a random variable, as well. The 

flow of part k between facilities i and j over all periods (𝑓𝑖𝑗𝑘) is given by Eq. 7: 

 

𝑓𝑖𝑗𝑘 = ∑
𝑓𝑖𝑗𝑘𝑡

𝑇𝑡 = ∑ 𝛽𝑖𝑗𝑘𝑡𝑛
𝐶𝑘𝑡𝐷𝑘𝑡

𝑇𝐵𝑘
𝑃𝑘𝑛𝑡,𝑛                     ;    ∀𝑖, 𝑗, 𝑘                                (7) 

 

Finally, the total flow between facilities i and j in the planning horizon resulting from all 

periods can be written as Eq. 8: 

 

𝑓𝑖𝑗 = ∑ 𝑓𝑖𝑗𝑘𝑘 = ∑ 𝛽𝑖𝑗𝑘𝑡𝑛
𝐶𝑘𝑡𝐷𝑘𝑡

𝑇𝐵𝑘
𝑃𝑘𝑛𝑘,𝑡,𝑛                                                  ;    ∀𝑖, 𝑗                (8) 

 

Since 𝑓𝑖𝑗𝑘𝑡 is an independent random variable, 𝑓𝑖𝑗𝑘 and 𝑓𝑖𝑗 are also random variables. Eqs.  9 

and 10 represent the expected value and variance of 𝑓𝑖𝑗, respectively. 

 

𝐸(𝑓𝑖𝑗) = ∑ 𝐸(𝑓𝑖𝑗𝑘)𝑘 =

∑ 𝛽𝑖𝑗𝑘𝑡𝑛
𝐶𝑘𝑡𝐸(𝐷𝑘𝑡)

𝑇𝐵𝑘
𝑃𝑘𝑛𝑘,𝑡,𝑛                                ;    ∀𝑖, 𝑗                                              (9) 

𝑉𝑎𝑟(𝑓𝑖𝑗) = ∑ 𝑉𝑎𝑟(𝑓𝑖𝑗𝑘)𝑘 = ∑ (
𝛽𝑖𝑗𝑘𝑡𝑛𝐶𝑘𝑡𝑃𝑘𝑛

𝑇𝐵𝑘
)
2

𝑉𝑎𝑟(𝐷𝑘𝑡)𝑘,𝑡,𝑛           ;    ∀𝑖, 𝑗                                  

    (10) 

 

Since 𝑓𝑖𝑗 is an independent random variable, the MHC for 𝜋𝑟𝑚, i.e., 𝐶(𝜋𝑟𝑚) is similarly a 

random variable with the following mean and variance as Eqs. 11 and 12. 

 

𝐸(𝐶(𝜋𝑟𝑚)) =  ∑ 𝐸(𝑓𝑖𝑗)𝑑𝑙𝑞𝑥𝑖𝑙𝑥𝑗𝑞𝑖,𝑗,𝑙,𝑞 =

∑ ∑ 𝛽𝑖𝑗𝑘𝑡𝑛
𝐶𝑘𝑡𝐸(𝐷𝑘𝑡)

𝑇𝐵𝑘
𝑃𝑘𝑛𝑑𝑙𝑞𝑥𝑖𝑙𝑥𝑗𝑞𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞                                    (11) 
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𝑉𝑎𝑟(𝐶(𝜋𝑟𝑚)) = ∑ 𝑉𝑎𝑟(𝑓𝑖𝑗)(𝑑𝑙𝑞𝑥𝑖𝑙𝑥𝑗𝑞)
2

𝑖,𝑗,𝑙,𝑞 =

∑ ∑ (
𝛽𝑖𝑗𝑘𝑡𝑛𝐶𝑘𝑡𝑃𝑘𝑛

𝑇𝐵𝑘
)
2

𝑉𝑎𝑟(𝐷𝑘𝑡)𝑑𝑙𝑞
2(𝑥𝑖𝑙𝑥𝑗𝑞)

2
𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞                        (12) 

 

If the decision-maker considers 𝑈(𝜋𝑟𝑚, 1 − 𝛼) as the maximum value (upper bound) of 

𝐶(𝜋𝑟𝑚) with the confidence level (1 − 𝛼), then the 𝑈(𝜋𝑟𝑚, 1 − 𝛼) can be minimized instead 

of 𝐶(𝜋𝑟𝑚). So: 

 

𝑃(𝐶(𝜋𝑟𝑚) ≤ 𝑈(𝜋𝑟𝑚, 1 − 𝛼)) = 1 − 𝛼                                                      (13) 

 

After standardization, Eq. 13 can be rearranged as Eq. 14:  

 

𝑈(𝜋𝑟𝑚, 1 − 𝛼) = 𝐸(𝐶(𝜋𝑟𝑚)) + 𝑍1−𝛼 (√𝑉𝑎𝑟(𝐶(𝜋𝑟𝑚)))                            (14) 

 

Instead of minimizing 𝐶(𝜋𝑟𝑚), its upper bound i.e., 𝑈(𝜋𝑟𝑚, 1 − 𝛼) can be minimized. 

Therefore, 𝑂𝐹𝑉𝑟𝑚 can be rewritten as Eq. 15: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑂𝐹𝑉𝑟𝑚 = 𝑈(𝜋𝑟𝑚, 1 − 𝛼)                                                (15) 

 

Also, the time value of money can be formulated as Eq. 16: 

 
𝐶𝑘𝑡 = 𝐶𝑘(1 + 𝐼𝑟)

𝑡                                                                                                                             (16) 

 

If Eqs. 11, 12, 14, and 16 are inserted into Eq. 15, then we have: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑂𝐹𝑉𝑟𝑚                                                                                                                                 (17)

= ∑ ∑ 𝛽𝑖𝑗𝑘𝑡𝑛
𝐶𝑘𝑡𝑃𝑘𝑛
𝑇𝐵𝑘

𝐸(𝐷𝑘𝑡)𝑑𝑙𝑞𝑥𝑖𝑙𝑥𝑗𝑞
𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞

+ 𝑍1−𝛼 (√∑ ∑ (
𝛽𝑖𝑗𝑘𝑡𝑛𝐶𝑘𝑡𝑃𝑘𝑛

𝑇𝐵𝑘
)

2

𝑉𝑎𝑟(𝐷𝑘𝑡)𝑑𝑙𝑞
2(𝑥𝑖𝑙𝑥𝑗𝑞)

2

𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞

) 

 

In the next subsection, Eq. 17 is formulated according to the distribution type of 𝐷𝑘𝑡 and its 

𝐸(𝐷𝑘𝑡) and 𝑉𝑎𝑟(𝐷𝑘𝑡). It is assumed that the independent part demands follow Normal and 

Exponential distributions, as discussed in subsections 4.2 and 4.3, respectively. Each of them 

has their own known expected value and variance. 

 

 

 

Modelling under normal distribution 

 

One of the reasons for using Normal distribution for demands is that most of the real-world 

phenomena are compatible with Normal distribution [7]. Now, if 𝐷𝑘𝑡 is considered as a 

normally distributed random variable, its expected value and variance can be calculated as Eqs. 

18 and 19: 
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𝐸(𝐷𝑘𝑡) = 𝜇𝑘𝑡                                                                                                                (18) 

𝑉𝑎𝑟(𝐷𝑘𝑡) = 𝜎
2
𝑘𝑡                                                                                          (19) 

 

When the independent random variables are summed, their properly normalized sum leads 

to a Normal distribution even if the main variables themselves are not normally distributed 

(Central Limit Theorem (CLT)). If 𝐷𝑘𝑡 follows Normal distribution, then it is not necessary for 

𝐾 to tend to infinity. In this case, regardless of 𝐾, the distribution of the summation tends to be 

Normal [39]. By inserting the Eqs. 18 and 19into Eq. 17, the first proposed model is obtained 

as follows: 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑂𝐹𝑉𝑟𝑚                                                                                                                                                               (20)

=
1

𝑇
(∑ ∑ 𝛽𝑖𝑗𝑘𝑡𝑛

𝐶𝑘(1 + 𝐼𝑟)
𝑡

𝐵𝑘
𝑃𝑘𝑛 𝜇𝑘𝑡  𝑑𝑙𝑞𝑥𝑖𝑙𝑥𝑗𝑞

𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞

) 

+
𝑍1−𝛼
𝑇

(√∑ ∑ (
𝛽𝑖𝑗𝑘𝑡𝑛𝐶𝑘(1 + 𝐼𝑟)

𝑡𝑃𝑘𝑛

𝐵𝑘
)

2

𝜎𝑘𝑡
2𝑑𝑙𝑞

2(𝑥𝑖𝑙𝑥𝑗𝑞)
2

𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞

) ;    𝑖 ≠ 𝑗 

 

Eq. 20 shows the objective function for the DFLP with stochastic approaches, when the RF 

is considered. The 𝑂𝐹𝑉𝑟𝑚 should be minimized, in which the part demands (𝐷𝑘𝑡) are 

independent normally distributed variables. The constraints of this model are as follows: 

 

∑ 𝑥𝑖𝑙𝑖 =  𝑙                                               (21) ∀ ؛                                                              1
 

Eq. 21 ensures that each location contains only one facility in the planning horizon.  

 

∑ 𝑥𝑖𝑙𝑙 =  𝑖                              (22) ∀ ؛                                                              1

𝑥𝑖𝑗 ∈ ,𝑖∀ ؛                                                          {0,1}  𝑙                                     (23) 

 

Eq. 22 ensures that each facility is located in only one location over the planning horizon. 

Though the part demands are random variables, the above-presented model is certain. Thus, the 

optimal values of the zero-one decision variables and optimal facility locations that were 

already unknown are now obtained, and the facility layout 𝜋𝑟𝑚 with stochastic approaches is 

determined over all periods. In the next subsection, Eq. 17 is rewritten, when the part demands 

(𝐷𝑘𝑡) follows the Exponential distribution function. 

 

Modelling under Exponential distribution 

 

To evaluate the performance of the proposed model, it is assumed that the demand of part k 

in period t (𝐷𝑘𝑡) is a random variable with an Exponential distribution. If 𝜆𝑡 (which is positive 

and signifies the average number of events within an interval in period t) be the parameter of 

an Exponential distribution for all parts in period t, then 𝐷𝑘𝑡~ 𝐸𝑥𝑝(𝜆𝑡) and its expected value 

and variance are as Eqs. 24-26: 

 

𝐸(𝐷𝑘𝑡) =
1

𝜆𝑡
                                                          ;   ∀𝑡                              (24) 

𝑉𝑎𝑟(𝐷𝑘𝑡) =
1

𝜆𝑡
2                                                    ;   ∀𝑡                            (25) 

According to the CLT, getting: 

𝑙𝑖𝑚
𝑘→∞

∑ 𝐷𝑘𝑡𝑘 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (
𝐾

𝜆𝑡
,
𝐾 

𝜆𝑡
2)                   ;   ∀𝑡                            (26) 
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If 𝐷𝑘𝑡~𝐸𝑥𝑝(𝜆𝑡) and 𝐾 ≥ 20, then the CLT could be establish [39]. According to Eq. 26 and 

by inserting Eqs. 24-25 into Eq. 17, the objective function of the proposed model in this 

condition can be presented as Eq. 27: 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑂𝐹𝑉𝑟𝑚                                                                                                                                                                (27)

=
𝐾

𝑇
(∑ ∑ 𝛽𝑖𝑗𝑘𝑡𝑛

𝐶𝑘(1 + 𝐼𝑟)
𝑡𝑃𝑘𝑛

𝜆𝑡𝐵𝑘
𝑑𝑙𝑞𝑥𝑖𝑙𝑥𝑗𝑞

𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞

)

+
𝑍1−𝛼√𝐾

𝑇
(√∑ ∑ (

𝛽𝑖𝑗𝑘𝑡𝑛𝐶𝑘(1 + 𝐼𝑟)
𝑡𝑃𝑘𝑛

𝜆𝑡𝐵𝑘
)

2

𝑑𝑙𝑞
2(𝑥𝑖𝑙𝑥𝑗𝑞)

2

𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞

) ;  𝑖 ≠ 𝑗 

 

Eq. 27 represents the Objective Function Value (𝑂𝐹𝑉𝑟𝑚) for the DFLP with stochastic 

approaches, when routing flexibility is considered. The constraints of this proposed model are 

the same as ones explained in subsection 4.2. 

 

Linearization 
 

It is often difficult to deal with nonlinear terms due to the complexity of their solving 

methods. To make the proposed models more tractable, an attempt is made so as to linearize 

the nonlinear terms as much as possible. In this section, a new linearization technique for the 

proposed models are presented. The suggested linearization method is based on some 

theoretical and numerical techniques [40]. In the next section, it is shown that the proposed 

linearization technique works efficiently and simply with 99% accuracy, even if the convexity 

condition is not met. Considering Eqs. 19-22, the main steps of the proposed linearization 

method are as follows: 

 

Step 1) Linearization of the product of two binary variables  

As it can be seen, the term 𝑥𝑖𝑙
2𝑥𝑗𝑞

2 existing in the 𝑂𝐹𝑉𝑟𝑚 is nonlinear. Since both variables 

are binary, without loss of generality, one can omit the power of two, and it consequently can 

be linearized by the help of an auxiliary binary variable (𝑈𝑖𝑙𝑗𝑞) and three extra constraints as 

Eqs. 28 to 31: 

 

𝑥𝑖𝑙
2𝑥𝑗𝑞

2 = 𝑥𝑖𝑙𝑥𝑗𝑞 → 𝑈𝑖𝑙𝑗𝑞 ,𝑖 ∀ ؛                        𝑙, 𝑗, 𝑞                                  (28) 

𝑈𝑖𝑙𝑗𝑞 ≤ 𝑥𝑖𝑙 ,𝑖 ∀ ؛                                                    𝑙, 𝑗, 𝑞                               (29) 

𝑈𝑖𝑙𝑗𝑞 ≤ 𝑥𝑗𝑞 ,𝑖 ∀ ؛                                                    𝑙, 𝑗, 𝑞                                            (30) 

𝑈𝑖𝑙𝑗𝑞 ≥ 𝑥𝑖𝑙 + 𝑥𝑗𝑞 − ,𝑖 ∀ ؛                                 1 𝑙, 𝑗, 𝑞                                      (31) 

 

 

Step 2) Linearization of the radical term  
After implementing the first step, Eq. 17 can be rewritten as follows: 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑂𝐹𝑉𝑟𝑚                                                                                                                                                                 (32)

= ∑ ∑ 𝛽𝑖𝑗𝑘𝑡𝑛
𝐶𝑘𝑡𝑃𝑘𝑛
𝑇𝐵𝑘

𝐸(𝐷𝑘𝑡)𝑑𝑙𝑞𝑈𝑖𝑙𝑗𝑞
𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞

+ 𝑍1−𝛼 (√∑ ∑ (
𝛽𝑖𝑗𝑘𝑡𝑛𝐶𝑘(1 + 𝐼𝑟)

𝑡𝑃𝑘𝑛

𝑇𝐵𝑘
)

2

𝑉𝑎𝑟(𝐷𝑘𝑡)𝑑𝑙𝑞
2𝑈𝑖𝑙𝑗𝑞

𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞

) 

 

As can be seen in Eq. 32 the last square root is an explicit nonlinear term named here as 

‘radical’. 

 

𝑟𝑎𝑑𝑖𝑐𝑎𝑙 = √∑ ∑ (
𝛽𝑖𝑗𝑘𝑡𝑛𝐶𝑘(1+𝐼𝑟)

𝑡𝑃𝑘𝑛

𝑇𝐵𝑘
)
2

𝑉𝑎𝑟(𝐷𝑘𝑡)𝑑𝑙𝑞
2𝑈𝑖𝑙𝑗𝑞𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞                 (33) 

 

To linearize the radical term, a new integer variable 𝐴 ≥ 0 is introduced as Eq. 34: 

 

𝐴 =  ⌈𝑟𝑎𝑑𝑖𝑐𝑎𝑙⌉                                                                                 (34) 
 

Where ⌈ ⌉ is the bracket sign and rounds the radical up to the nearest integer A. In fact, the 

radical expression is a positive real number. Ignoring the fraction part of that (if any), we 

assume A as a positive integer number, so A approximates the radical with a strictly lower than 

1-unit absolute error. It is quite good when the radical takes large values. Hence, the radical 

expression is replaced by A in the model. A is a positive integer number, and according to 

Theorem 1, it can be rewritten as Eq. 35: 

 

𝐴 = ∑ 2𝑣𝑚−1
𝑣=0 𝑦𝑣 + (𝑈𝐵 − 2

𝑚 + 1) 𝑦𝑚                                              (35) 

 

Where 𝑦𝑣 is a binary variable (c.f. Theorem 1). Also, UB is the upper bound of A, which can be 

obtained by setting all binary variables to one, while m is attained by Eq. 36: 

 

𝑚 = ⌊𝑙𝑜𝑔2(𝑈𝐵 + 1) ⌋                                                                             (36) 

𝑈𝐵 = √∑ ∑ (
𝛽𝑖𝑗𝑘𝑡𝑛𝐶𝑘(1+𝐼𝑟)

𝑡𝑃𝑘𝑛

𝑇𝐵𝑘
)
2

𝑉𝑎𝑟(𝐷𝑘𝑡)𝑑𝑙𝑞
2

𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞                               (37) 

 

After rising the two sides of Eq. 34 to power of two, we have: 

 

𝐴2 = ∑ ∑ (
𝛽𝑖𝑗𝑘𝑡𝑛𝐶𝑘(1+𝐼𝑟)

𝑡𝑃𝑘𝑛

𝑇𝐵𝑘
)
2

𝑉𝑎𝑟(𝐷𝑘𝑡)𝑑𝑙𝑞
2𝑈𝑖𝑙𝑗𝑞𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞                    (38) 

 

It should be noticed that the right-hand side of Eq. 38 is linear. Therefore, suffice it to 

linearize A2. According to Theorem 2, the Eq. 56 is proved to precisely simulate the quadratic 

term A2. Inequalities (39-42) are the linear equivalent of Eq. 38, which should be added as new 

constraints to the model. 

 

∑ ∑ (
𝛽𝑖𝑗𝑘𝑡𝑛𝐶𝑘(1+𝐼𝑟)

𝑡𝑃𝑘𝑛

𝑇𝐵𝑘
)
2

𝜎𝑘𝑡
2 𝑑𝑙𝑞

2𝑈𝑖𝑙𝑗𝑞𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞     ≤ ∑ 22𝑣𝑚−1
𝑣=0 𝑦𝑣 +

∑ ∑ 2𝑣+𝑤+1𝑚−1
𝑣<𝑤

𝑚−2
𝑣=0 𝑦𝑣𝑤 + (𝑈𝐵 − 2

𝑚 + 1)∑ 2𝑣+1𝑚−1
𝑣=0 𝑦𝑣𝑚 + (𝑈𝐵 − 2

𝑚  +
1)2𝑦𝑚                                                                             (39) 
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𝑦𝑣𝑤 ≤ 𝑦𝑣                                                     ؛ ∀𝑣, 𝑤 ∈ {0,… ,𝑚}                   (40) 

𝑦𝑣𝑤 ≤ 𝑦𝑤                                                    ؛ ∀𝑣, 𝑤   ∈ {0, … ,𝑚}                                           (41) 

𝑦𝑣𝑤 ≥ 𝑦𝑣 + 𝑦𝑤 − ,𝑣∀ ؛                                  1 𝑤     ∈ {0, … ,𝑚}                         (42) 
 

Where 𝑦𝑣 and 𝑦𝑣𝑤 are binary variables.  

According to steps 1 and 2, one can rewrite Eqs. 20-23 as Eqs. 43-54: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝐹𝑉𝑟𝑚 = ∑ ∑ 𝛽𝑖𝑗𝑘𝑡𝑛
𝐶𝑘(1 + 𝐼𝑟)

𝑡

𝑇𝐵𝑘
𝑃𝑘𝑛  𝜇𝑘𝑡  𝑑𝑙𝑞𝑈𝑖𝑙𝑗𝑞

𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞

+ 𝑍1−𝛼 𝐴    ;          𝑖 ≠ 𝑗                           (43) 

Subject to: 

∑ ∑(
𝛽𝑖𝑗𝑘𝑡𝑛𝐶𝑘(1 + 𝐼𝑟)

𝑡𝑃𝑘𝑛

𝑇𝐵𝑘
)

2

𝜎𝑘𝑡
2 𝑑𝑙𝑞

2𝑈𝑖𝑙𝑗𝑞
𝑘,𝑡,𝑛𝑖,𝑗,𝑙,𝑞

    

≤ ∑ 22𝑣
𝑚−1

𝑣=0

𝑦𝑣 + ∑ ∑ 2𝑣+𝑤+1
𝑚−1

𝑣<𝑤

𝑚−2

𝑣=0

𝑦𝑣𝑤 + (𝑈𝐵 − 2
𝑚 + 1) ∑ 2𝑣+1

𝑚−1

𝑣=0

𝑦𝑣𝑚

+ (𝑈𝐵 − 2𝑚 + 1)2𝑦𝑚                                                                                                                         (44) 

𝐴 = ∑ 2𝑣
𝑚−1

𝑣=0

𝑦𝑣 + (𝑈𝐵 − 2
𝑚 + 1)𝑦𝑚                                                                                                                               (45) 

∑𝑥𝑖𝑙
𝑖

= 𝑙 ∀ ؛                                              1 ∈ {1, … ,𝑀}                                                                                           (46) 

∑𝑥𝑖𝑙
𝑙

= 𝑖 ∀ ؛                                              1 ∈ {1, … ,𝑀}                                                                                            (47) 

𝑈𝑖𝑙𝑗𝑞 ≤ 𝑥𝑖𝑙 ,𝑖 ∀ ؛                                               𝑙, 𝑗, 𝑞 ∈ {1, … ,𝑀}                                                                           (48) 

𝑈𝑖𝑙𝑗𝑞 ≤ 𝑥𝑗𝑞 ,𝑖 ∀ ؛                                               𝑙, 𝑗, 𝑞 ∈ {1, … ,𝑀}                                                                           (49) 

𝑈𝑖𝑙𝑗𝑞 ≥ 𝑥𝑖𝑙 + 𝑥𝑗𝑞 − ,𝑖 ∀ ؛                            1 𝑙, 𝑗, 𝑞 ∈ {1, … ,𝑀}                                                                          (50) 

𝑦𝑣𝑤 ≤ 𝑦𝑣                                                  ؛ ∀𝑣, 𝑤 ∈ {0, … ,𝑚}                                                                                    (51) 

𝑦𝑣𝑤 ≤ 𝑦𝑤 ,𝑣∀ ؛                                                   𝑤 ∈ {0, … ,𝑚}                                                                                   (52) 
𝑦𝑣𝑤 ≥ 𝑦𝑣 + 𝑦𝑤 − ,𝑣∀ ؛                                1 𝑤 ∈ {0, … ,𝑚}                                                                                   (53) 
𝑦𝑣 , 𝑦𝑣𝑤 , 𝑈𝑖𝑙𝑗𝑞 , 𝑥𝑖𝑙 , 𝑥𝑗𝑞 ∈ ,𝑖∀ ؛              {0,1}  𝑙 , 𝑗, 𝑞, 𝑣, 𝑤                                                                             (54) 

 

Theorem 1: If A is an integer variable by upper bound UB and 𝑚 = ⌊𝑙𝑜𝑔2(𝑈𝐵 + 1) ⌋  , then A 

can be converted to a binary equation as Eq. 55: 

 

𝐴 = ∑ 2𝑣𝑚−1
𝑣=0 𝑦𝑣 + (𝑈𝐵 − 2

𝑚 + 1) 𝑦𝑚                                                                          (55) 

 

Proof 1: See Appendix A. 

Theorem 2: If A is an integer variable by upper bound UB, then 𝐴2 can be linearized by the 

help of binary variables 𝑦𝑖 and 𝑦𝑖𝑗 as Eq. 56: 

 

𝐴2 = ∑ 22𝑣𝑚−1
𝑣=0 𝑦𝑣 + ∑ ∑ 2𝑣+𝑤+1𝑚−1

𝑣<𝑤
𝑚−2
𝑣=0 𝑦𝑣𝑤 + (𝑈𝐵 − 2

𝑚 +
1)∑ 2𝑣+1𝑚−1

𝑣=0 𝑦𝑣𝑚                             + (𝑈𝐵 − 2
𝑚 + 1)2𝑦𝑚       (56) 

 

Proof 2: See Appendix B.  

 

In the next section, the proposed linearization technique is evaluated. 

Computational experiments 
 

The aims of this section are twofold: 1) In order to evaluate the performance of the proposed 

model and the suggested linearization technique, two test problems are generated and solved, 
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and 2) the sensitivity of the model to the three critical aspects, i.e., routing flexibility, 

confidence level and batch size is evaluated. The exact approaches are often found not to be 

suited for large size problems. That’s why only small problem instances are studied. 

 

Validation and verification of the proposed models 

 

In this subsection, twelve randomly generated test problems are solved to validate and verify 

the proposed model. Moreover, the optimal objective function value of the nonlinear model is 

compared with the linear model of the same problem to verify the precision of the proposed 

linearization technique. All computations are coded in GAMS 24.1.3 software and run on a PC 

Core i7, RAM 8GB, and 2.4 GHz CPU. In problem set (І), it is supposed that a manufacturing 

system consists of three equal-sized facilities and there are three facility locations. The problem 

set (ІІ) consists of five facilities and five facility locations. Both of them are examined in three 

periods (T=3, T=6 and T=9) with three parts and six routes of production, such that the facilities 

should be arranged on the shop floor. The part demands follow the Normal distribution function 

with known mean and variance and alter from period to period shown in Table 3. The distance 

between facility locations for both test problems is also given in Table 4. 

 

Table 3. The expected values (means) and variances of parts for the problem sets (І)and (ІІ). 

Parts 

(k) 

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

1 6.22 1.07 5.65 1.11 3.76 2.58 6.51 2.62 6.51 1.55 5.46 1.71 

2 2.56 2.82 8.86 2.44 6.63 1.61 9.11 1.34 7.58 2.94 7.61 1.91 

3 7.62 1.89 9.12 2.318 3.54 1.37 4.55 1.66 5.94 1.38 7.54 2.46 

 

Table 4. Distance between facility locations for the problem sets (І) and (ІІ). 

From       To 1 2 3 4 5 

1 0 10 20 15 25 

2 10 0 10 20 5 

3 20 10 0 20 10 

4 15 20 20 0 20 

5 25 5 10 20 0 

 

The parts flow between the facilities are given in terms of batches. In both test problems, the 

present value of the movement cost for each batch size per unit as well as the transfer batch size 

for part k is given in Table 5. Moreover, Table 5 presents the routes of the parts and its 

probability for the problem set (І). Table 6 also gives the routes of the parts and its probability 

for the problem set (II). 

 

 

 

 

 

 

 
Table 5. Primary value of the parameters, the route of the parts and its probability for the problem set (І). 

Parts (k) Facility sequence 
Probability of the 

route (𝑃𝑘𝑛) 
𝐶𝑘 𝐵𝑘 

1 2-3-1 0.5 30 10 
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2-3 0.2 

2-1 0.3 

2 3-1-2 1 50 5 

3 
1-2 0.7 

10 25 
1-3 0.3 

 
Table 6. The route of the parts and its probability for the the problem set (ІІ). 

Parts (k) Facility sequence Probability of the route (𝑃𝑘𝑛) 

1 
2-3-1-5 0.5 
2-3-4 0.2 
4-1-2 0.3 

2 3-1-2-5 1 

3 
1-2-4 0.7 
1-3-5 0.3 

 

As an example, the facility sequence for the third part in the problem set (І) is 1 →2 with the 

probability of 0.7 and 1→3 with the probability of 0.3. This example shows that the first and 

second operations on the third part are accomplished with the probability of 0.7 through 

facilities 1 and 2, respectively. The first and third operations on the third part are completed by 

facilities 1 and 3 with the probability of 0.3. In both test problem sets the interest rate are 

considered 0.2. The confidence level also are 0.75, 0.85, 0.9 and 0.99.  

After solving the problems optimally, the objective function value of the linear and nonlinear 

models for the problem sets (І), (ІІ) are presented and compared in Table 7 and then depicted 

in Figs. 1 and 2, respectively. It should be noted that the elapsed time-lapse of both of these 

problems is less than one minute for all calculations. 

 
Table 7. Comparison of the objective function value of the linear and nonlinear models for the problem sets (І) 

and (ІІ). 

Period α 
Test problem (І) Test problem (ІІ) 

Nonlinear Linear Difference (%) Nonlinear Linear Difference (%) 

T=3 

0.75 2467.86 2467.948 3.57 × 10 -3 3304.53 3304.662 1.3 × 10 -3 

0.85 2887.16 2887.996 8.3 × 10 -3 3730.74 3730.994 2.5 × 10 -3 

0.9 3327.54 3327.79 2.5 × 10 -3 4234.23 4234.873 6.4 × 10 -3 

0.99 3710.43 3710.84 4.1 × 10 -3 4651.41 4651.89 8.4 × 10 -3 

T=6 

0.75 3848.114 3848.307 1.93 × 10 -3 4948.54 4948.914 3.38 × 10 -3 

0.85 4434.14 4434.307 4.34 × 10 -3 5248.74 5248.914 3.38 × 10 -3 

0.9 4862.31 4862.89 5.8 × 10 -3 5543.11 5549.74 1.7 × 10 -3 

0.99 5103.24 5103.91 6.8 × 10 -3 5850.42 5850.79 3.8 × 10 -3 

 0.75 5262.33 5262.97 6.4 × 10 -3 6109.27 6109.81 5.4 × 10 -3 

T=9 0.85 5790.12 5790.86 7.4 × 10 -3 6632.15 6632.67 5.2 × 10 -3 

 0.9 6103.19 6103.68 4.9 × 10 -3 7002.35 7002.961 6.11 × 10 -3 

 0.99 6832.32 6832.87 5.5 × 10 -3 7556.62 7556.99 3.8 × 10 -3 

 

According to Table 7, it is evident that as the confidence level (α) increases, the Objective 

Function Value increases, too. In other words, the confidence level is directly related to the 

Objective Function Value. This means that managers have to pay more to be more confident. 

Also, according to Figs. 1 and 2, the values of both objective functions are very similar (error 

≤ 0.01%) in both sample problems, and the performance of the proposed linearization technique 

verifies what is proved by Theorem 2. 
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Fig. 1. Comparison of the objective function value of the linear and nonlinear models for the problem set (І). 

 

 
Fig. 2. Comparison of the objective function value of the linear and nonlinear models for the problem set (ІІ). 

 

Sensitivity analysis 

 

We first study the effect of routing flexibility on the manufacturing system. The sensitivity of 

the proposed model with “the confidence level (1 − 𝛼)” and “transfer batch size for part k (𝐵𝑘)” 

is also evaluated in subsections 6.2.1 and 6.2.2, respectively. To clarify the advantage of routing 

flexibility, the producibility is also discussed. According to [41], the producibility of a system 

is the ability to perform the intended task. The overall producibility of the system is calculated 

as Eq. 57: 

 

𝑅(𝑧) = ∑ 𝑅𝑘𝑡(𝑧)𝑘,𝑡                                                                                          (57) 

 

Where 𝑅𝑘𝑡(𝑧) is the expected producibility of the system for part k in period t. According to 

[41], 𝑅𝑘𝑡(𝑧) can be calculated as Eq. 58: 

 

𝑅𝑘𝑡(𝑧) = 𝐸(𝑅𝑘𝑡(𝑧)|𝑥) = ∑ (𝑅𝑘𝑡(𝑧)|𝑥)𝑥 𝑝(𝑥)                                  (58) 
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Where x represents the state of the system and 𝑝(𝑥) signifies its probability. Also, 𝑧 equals to 
𝑐

𝑑
 so that 𝑐 and 𝑑 are the capacity and load of a facility, respectively. In an inflexible system, 

the production may come to a grinding halt whenever a machine breaks down. 𝑅𝑘𝑡(𝑧)|𝑥 shows 

total producibility of the system in the x state. When there is no flexibility, 𝑅𝑘𝑡(𝑧)|𝑥 can be 

calculated as Eq. 59: 

 

𝑅𝑘𝑡(𝑧)|𝑥 = ∑ 𝑤𝑗𝑗  𝑟[𝑧𝑗]                                                                               (59) 

 

In Eq. 59, 𝑤𝑗 is the weight of facility j which is chosen so as to sum to unity. For 𝑟[𝑧𝑗], the 

function r will give a measure of the producibility with respect to the amount of work achieved 

by any system. In other words, a substantial feature of flexibility is that it enables the system to 

adjust itself to different changes. This ability helps the system to maintain a high level of 

producibility. An advantage of flexibility is that it can handle such emergency situations. 

According to [41], when there is routing flexibility, 𝑅𝑘𝑡(𝑧)|𝑥 can be calculated as Eq. 60: 

 

𝑅𝑘𝑡(𝑧)|𝑥 = ∑ 𝑤𝑗𝑗≠𝑖  𝑟[𝑧𝑗] + 𝑤𝑖 𝑟[𝜉𝑖]                                                         (60) 

 

Where 𝜉𝑖 can be computed by Eq. 61 as follows: 

 

𝜉𝑖 =
𝑙𝑖

𝑑𝑖
(∑ 𝑃𝑖𝑗𝑗 )𝑟 [

𝑐𝑗−𝑑𝑗

𝑃𝑖𝑗𝑙𝑖+𝑃𝑘𝑗𝑙𝑘
]                                                           (61) 

 

Where 𝑙𝑖 is an excess load of facility i so that 𝑙𝑖 = 𝑑𝑖 − 𝑐𝑖, and if 𝑑𝑖 < 𝑐𝑖 then 𝑙𝑖 = 0. Also, 𝑃𝑖𝑗 

is the proportion of the load that cannot be launched to another facility. It represents a measure 

of the facility’s inflexibility. The proportions are chosen so as to sum to unity, since a job 

exclusively can be diverted to one facility. According to [41], assuming the independence of all 

n facilities, the probability 𝑝(𝑥) is calculated as Eq. 62:  

 

𝑝 (𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑝𝑖∏ (1 − 𝑝𝑗)𝑗≠𝑖                                                   (62) 

 

Where 𝑝𝑖 is the probability that facility i is down. Also 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) defines the state of 

the system, where 𝑥𝑖 = 1, if facility i is in operating condition, and 𝑥𝑖 = 0, if it is down. 

In this section, the expected producibility of the system is only calculated for the third part 

in the first period under the condition of the problem set (І) named 𝑅31(𝑧). The 𝑅31(𝑧) can be 

obtained using total producibility of the system named 𝑅31(𝑧)|𝑥, where x represents the state 

of the system. In this paper, 𝑑𝑖 as the load of facility i is equavelent to the mean of demand. 

Also, 𝑐1 is the capacity of the first facility considered as 𝑐1 = 4 while the capacity of the second 

and third facilities are 𝑐2 = 5 and 𝑐3 = 10, respectively. The facility weights are set as 𝑤1 =

0.4, 𝑤2 = 0.3, and 𝑤3 = 0.3 and 𝑃𝑖𝑗 is set as 𝑃𝑖𝑗 =
1

3
  for all i and j. According to the above 

description, the obtained results are presented in Table 8.  

 

Table 8. The obtained results of 𝑅31(𝑧)|𝑥 and 𝑅31(z) 

  𝑅31(𝑧)|𝑥 𝑅31(z) 

𝑥 𝑝(𝑥) Inflexibility Flexibility Inflexibility Flexibility 

(1,1,1) 0.027 0.7 0.88 0.0189 0.024 

(0,1,1) 0.063 0.5 0.5 0.0315 0.032 
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(1,0,1) 0.063 0.5 0.54 0.0315 0.034 

(1,1,0) 0.063 0.4 0.404 0.0252 0.025 

(0,0,1) 0.147 0.3 0.3 0.0441 0.044 

(0,1,0) 0.147 0.2 0.2 0.0294 0.029 

(1,0,0) 0.147 0.2 0.2 0.0294 0.029 

(0,0,0) 0.343 0 0 0 0 

𝑅𝑘𝑡(𝑧) = 𝐸(𝑅𝑘𝑡(𝑧)|𝑥) =∑(𝑅𝑘𝑡(𝑧)|𝑥)

𝑥

𝑝(𝑥) 0.21 0.22 

 

It could be interesting to note that Table 8 is only for the third part. However, only 1% 

improvement in the producibility can be very effective in a large-size production system. To 

exemplify Table 8, the state of 𝑥 = (𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 0) is considered that only the third 

facility is down. So, 𝑐3 is equal to zero. Also, the excess load of the third facility would be equal 

to 𝑑3. In this calculation, 𝑝𝑖 is set as 𝑝𝑖 = 0.3, so: 

 

𝑝 (1,1,0) = 𝑝𝑖∏ (1 − 𝑝𝑗)𝑗≠𝑖 = 0.3 ∗ 0.3 ∗ 0.7 = 0.063                          (63) 

 

Also, 𝑅31(𝑧)|(1,0,1) is calculated as a sample from Table 8 for the inflexibility and 

flexibility states using Eqs. 64 and 65, respectively: 

 

𝑅31(𝑧)|(1,0,1) = 0.4 ∗  𝑟 [
4

7.62
] + 0 + 0.3 ∗  𝑟 [

10

7.62
] = 0.5                           (64) 

𝑅31(𝑧)|(1,0,1) = 0.5 + 0.4 ∗ 𝑟 (
7.62 − 4

7.62
∗
1

3
∗  𝑟 [

10 − 7.62

1
3
∗ (7.62 − 4) +

1
3
∗ 7.62

]) = 0.54                               (65) 

 

It is assumed that 𝐶𝑑 , 𝐶𝑅𝐹, 𝐶𝑉, 𝑧
∗, 𝑃𝑈, 𝑃𝐸 , and Q are the total cost belonging to down of a 

facility (monetary unit), the cost of routing flexibility, variable cost, the cost of facility layout 

(monetary unit), price of per unit, the expected producibility of the system, and quantity of 

production, respectively. The break-even point calculation scheme is presented as Eq. 66: 

 

𝑃𝑈𝑄𝑃𝐸 = 𝑧
∗ + 𝐶𝑅𝐹 + 𝐶𝑑 +  𝑄𝐶𝑉                           →                       𝑄 =

𝑧∗ + 𝐶𝑅𝐹 + 𝐶𝑑
𝑃𝑈𝑃𝐸 − 𝐶𝑉

                                              (66) 

 

Assuming the equality of 𝑧∗, Table 9 presents the other components of the break-even point 

analysis in two conditions; without and with routing flexibility for the data of the problem set 

(І). The last column of Table 9 is obtained by Eq. 66.  

 

 

 

 

 

 

Table 9. The components of the break-even point analysis 

                Components  

Type of layout 
𝑧∗($) 𝐶𝑅𝐹($) 𝐶𝑑($) 𝐶𝑉($) 𝑃𝐸  𝑃𝑈($) 𝑄∗ 

Stochastic layout without 

routing flexibility 
2467 0 500 15 0.21 100 495 
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Stochastic layout with 

routing flexibility 
2467 150 500 15 0.22 100 445 

 

The observed 50 units difference in 𝑄∗indicates that considering just one additional route in 

the production system of the problem set (І) could result in an increase in production by 10%. 

Fig. 3 demonstrates the above economic interpretation of the break-even point. 

To specify the privilege of the routing flexibility, the break-even point analysis is used here. 

There are many factors (such as product type, the volume of the production and product 

diversity) in choosing the type of the production system. However, the first issue is their cost-

effectiveness. So, the cost of routing flexibility (𝐶𝑅𝐹) is one of the most important components 

when making a decision. This paper formulates 𝐶𝑅𝐹 using Eq. 66. According to Fig. 3, if 𝐶𝑅𝐹 

becomes more than 150$, then the routing flexibility is not economical. 

 

Confidence level (1 − 𝛼) 

Table 10 presents the results of solving the proposed linearized model for the problem set 

(І) when the confidence level (1 −α) alters. Fig. 4 displays the relationship between the 

confidence level (1 −α) and the objective function value. 

 
Table 10. The sensitivity analysis of the proposed linearized 

model to the confidence level (1 − 𝛼) for the problem set (I). 

Confidence level 

(1 − 𝛼) 

Period 

T=3 T=6 

0.75 2429.08 3809.43 

0.85 2473.66 3853.65 

0.95 2549.2 3928.59 

 

 
Fig. 3. Graphical representation of the break-even point 
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Fig. 4. The sensitivity of the proposed linearized model to the confidence level 

 

As expected, when the confidence level (1 − 𝛼) increases, the objective function value also 

increases. In other words, the confidence level (1 − 𝛼) has a direct relationship with the 

objective function value. 

 

Transfer batch size for the part k (𝐵𝑘) 

In order to shed more light on the proposed model, the sensitivity of the proposed linearized 

model to the transfer batch size (𝐵𝑘) is analyzed. Table 11 presents the results of solving the 

proposed linearized model for the problem set (ІІ). Fig. 5 displays the relationship between the 

transfer batch size (𝐵𝑘) and the objective function value. 

 
Table 11. The sensitivity analysis of the proposed linearized model to 

increase of transfer batch size (𝐵𝑘) for the problem set (II). 

Increment percentage of 

the transfer batch size (𝐵𝑘) 

Period 

T=3 T=6 

0% 3258.99 5103.24 

50% 2190.07 3420.03 

90% 1739.54 2709.88 
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Fig. 5. The sensitivity of the proposed linearized model to the transfer batch size (𝐵𝑘) 

 

According to Fig. 5, when the transfer batch size (𝐵𝑘) increases, the objective function value 

decreases. So, it could be said that they have inverse relationship.  

 

Managerial insights 
 

The facility layout affects significantly the efficiency of the production system in the real world. 

It is a critical matter in every new facilities construction or the rearranging of existing ones. 

According to the necessity of a desirable arrangement in any layout, especially in industrial 

zones with an uncertain environment, the impact of the proposed models is egregious.  

The managers can take these models to the industrial floor to adapt to the potential alters in 

the competitive world’s today. These can have applied in any industrial system. This paper has 

specified the privilege of routing flexibility. Also, the break-even point analysis has used here. 

So, the cost of routing flexibility is one of the most important components when making a 

decision.  

This paper can have created practical insight for managers such as decision making about 

product type and product diversity, estimating the volume of the production, evaluating 

producibility, etc. Also, managers can make an economical decision by the proposed model and 

concept’s this paper. 

 

Conclusion and future works  
 

In this paper, two new integrated mathematical models were proposed for designing a facility 

layout in an uncertain environment. Exploring the literature review, a considerable amount of 

effort was made so as to cover two found important research gaps in the Dynamic Facility 

Layout Problem (DFLP) area through stochastic approaches. To do so, first, the routing 

flexibility (RF) in the basic model was considered in which the independent part demands 

followed Exponential and Normal distribution functions. It is often difficult to deal with 

nonlinear terms due to the complexity of their solving methods. Accordingly, the proposed 

model was linearized with a new linearization technique based on some theoretical and 

numerical methods which can be enumerated as the second contribution of this paper. The 

suggested linearization technique works well with an average error of less than 1%. Solving the 

DFLP as the NP-complete problem by the exact method can be inspirational for use in other 
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similar models. Also, two randomly generated test problems were solved to validate and verify 

the proposed models. The obtained results demonstrated that the discussed models have 

acceptable performance. Moreover, the routing flexibility effects on the manufacturing system 

was discussed and the sensitivity of the proposed models was then analyzed. This paper showed 

that the use of RF as the flexible manufacturing system (FMS) principle could reduce 

production costs, especially in uncertain environments. Generally, the main contributions of the 

paper can be summarized as follows: 

 Adding the RF to the DFLP using stochastic approaches. 

 Proposing a new exact linearization technique for nonlinear zero-one polynomial 

programming problems. 

 Considering the Exponential and Normal distributions for random variables of the 

independent part demands, where their parameters randomly alter from period to 

period. 

 Analyzing the RF effect on the manufacturing system. 

Finally, this research can be continued in future works in the following streams: 

  Considering some real constraints such as unequal-sized machines, closeness ratio, 

aisles as well as a budget constraint. 

 To propose a new exact linearization technique for nonlinear zero-one polynomial 

programming  

 Further investigation of the stability of the output layout by considering the 

confidence level as a fuzzy variable. 

 Product demands can be considered dependent. 

 The proposed models can be used for concurrently design of inter-cell and intra-cell 

layout design in the FMS. 
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Appendices 
 

Appendix A 

 

Proof 1: According to Number theory, each positive integer number lower than or equal to 

2𝑛 − 1 can be built by the sum of a subset of the set {20, 21, 22, … , 2𝑛−1 } which can be proved 

by induction. For example, 15 is equal to 24 − 1  and can be built as 1+2+4+8=15. In other 

words, every positive integer number x with the upper bound of the form 𝑈𝐵 = 2𝑛 − 1 can be 

written with the help of n binary variables 𝑦𝑖 as follows: 

 

𝑥 = 20𝑦0 + 2
1𝑦1 +⋯+ 2

𝑛−1𝑦𝑛−1 

𝑥 = 0 → 𝑦0 = ⋯ = 𝑦𝑛−1 = 0   

𝑥 = 1 = 20 → 𝑦0 = 1, 𝑦1 = ⋯ = 𝑦𝑛−1 = 0   

𝑥 = 2 = 21 → 𝑦1 = 1, 𝑦0 = 𝑦2 = ⋯ = 𝑦𝑛−1 = 0 

𝑥 = 3 = 20 + 21 → 𝑦0 = 𝑦1 = 1, 𝑦2 = ⋯ = 𝑦𝑛−1 = 0 

𝑥 = 4 = 22 → 𝑦2 = 1, 𝑦0 = 𝑦1 = 𝑦3 = ⋯ = 𝑦𝑛−1 = 0 

⋮ 
𝑥 = 14 =  21 + 22 + 23 → 𝑦0 = 0, 𝑦1 = ⋯ = 𝑦𝑛−1 = 1 

𝑥 = 15 =  20 + 21 + 22 + 23 → 𝑦0 = 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑛−1 = 1 
 

Now, one can generalize the above observation to the case that the upper bound is not of the 

form 2𝑛 − 1, but it falls within 2𝑛 − 1 < 𝑈𝐵 < 2𝑛+1 − 1. In this case, one must prove that 

every integer number x with an upper bound of 𝑈𝐵, can be built by the help of Eq. A.1: 

 

𝑥 = 20𝑦0 + 2
1𝑦1 +⋯+ 2

𝑛−1𝑦𝑛−1⏟                  
𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑟𝑡

+ (𝑈𝐵 − 2𝑛 + 1)𝑦𝑛⏟          
𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑎𝑟𝑡

                                                 (A.1) 

 



Advances in Industrial Engineering, Summer 2020, 54(3): 267-291 289 

 

For x lower than or equal to 2𝑛 − 1, it has already shown that it can be built by the first part of 

the equation, 𝑥 = 20𝑦0 + 2
1𝑦1 +⋯+ 2

𝑛−1𝑦𝑛−1. So, suffice it to show that every x greater than 

2𝑛 − 1, is also possible to be built by the help of the second part, i.e., (𝑈𝐵 − 2𝑛 + 1)𝑦𝑛.  

It is also easy to show that the second part is always lower than or equal to the maximum value 

of the first part, since the maximum value of the first part is 2𝑛 − 1 and the supremum value of 

the 𝑈𝐵 − 2𝑛 + 1 is 2𝑛+1 − 1 − 2𝑛 + 1 = 2𝑛+1 − 2𝑛 = 2𝑛 , given that x is an integer and 

𝑈𝐵 < 2𝑛+1 − 1, so, 𝑈𝐵 − 2𝑛 + 1 ≤ 2𝑛 − 1.  

Now, suppose that x is an integer number greater than 2𝑛 − 1. In order to complete the proof, 

suffice it to demonstrate that x can be built by Eq. A.1. 

Suppose that 𝑦𝑛 = 1; it means that we need to build 𝑥 − (𝑈𝐵 − 2𝑛 + 1) by the first part to 

complete the x. Since the upper bound of x is UB, so the term 𝑥 − (𝑈𝐵 − 2𝑛 + 1) is always 

lower than or equal to 2𝑛 − 1, therefore it is clearly possible to be built by the first part, and 

consequently the proof is completed. 

For instance, if 𝑈𝐵 = 20, one can build every 𝑥 ≤ 20 by the help of the equation below: 

 

 𝑥 = 20𝑦0 + 2
1𝑦1 + 2

2𝑦2 + 2
3𝑦3⏟                  

𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑟𝑡

+ (20 − 24 + 1)𝑦4⏟          
𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑎𝑟𝑡

= 20𝑦0 + 2
1𝑦1 + 2

2𝑦2 + 2
3𝑦3 + 5𝑦4 

As already depicted, for 𝑥 ≤ 15, it can be built by the first part, and for 𝑥 > 15 we have: 

𝑥 = 16 =  11 + 5 → 𝑦4 = 1, where 11(<= 15) itself can be built by the first part. 

𝑥 = 17 =  12 + 5 → 𝑦4 = 1, where 12(<= 15) itself can be built by the first part. 

⋮ 
𝑥 = 20 =  15 + 5 → 𝑦4 = 1, where 15(<= 15) itself can be built by the first part. 

 

It is also worth noting that if x is larger than 20, it cannot be built by the equation above and 

therefore the upper bound, UB, is never violated. 

On the other hand, since 2𝑛 − 1 < 𝑈𝐵 < 2𝑛+1 − 1, so n can be obtained by ⌊𝑙𝑜𝑔2 (𝑈𝐵 + 1)⌋. 
 

Appendix B 

 

Proof 2: According to Theorem 1, each positive integer number x with an upper bound of UB 

can be written in the form of Eq. A.1: 

 

𝑥 = 20𝑦0 + 2
1𝑦1 +⋯+ 2

𝑛−1𝑦𝑛−1 + (𝑈𝐵 − 2
𝑛 + 1)𝑦𝑛 = ∑ 2𝑖𝑦𝑖

𝑛−1
𝑖=0 + (𝑈𝐵 − 2𝑛 + 1)𝑦𝑛 (B.1) 

 

So, if we raise the two sides of the equation to power of two, then we have: 

 

𝑥2 = (∑2𝑖𝑦𝑖

𝑛−1

𝑖=0

+ (𝑈𝐵 − 2𝑛 + 1)𝑦𝑛)

2

 

 

The right-hand side is obviously a binomial term which can be factorized. 

After factorization, some terms of the form 𝑦𝑖
2 or 𝑦𝑖𝑦𝑗appear. Since 𝑦𝑖 is a binary variable, one 

can replace 𝑦𝑖
2 and 𝑦𝑖𝑦𝑗 by their linear equivalent terms 𝑦𝑖, and 𝑚𝑖𝑛 (𝑦𝑖, 𝑦𝑗), respectively. The 

last term can be simplified by introducing a new binary variable 𝑦𝑖𝑗  and adding the below 

constraints: 

𝑦𝑖𝑦𝑗  → 𝑦𝑖𝑗 

𝑦𝑖𝑗 ≤ 𝑦𝑖 

𝑦𝑖𝑗 ≤ 𝑦𝑗 

𝑦𝑖𝑗 ≥ 𝑦𝑖 + 𝑦𝑗 − 1 
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So, the factorization can be simplified as Eq. B.2: 

 
𝑥2 = ∑ 22𝑖𝑛−1

𝑖=0 𝑦𝑖 + ∑ ∑ 2𝑖+𝑗+1𝑛−1
𝑖<𝑗

𝑛−2
𝑖=0 𝑦𝑖𝑗 + (𝑈𝐵 − 2

𝑛 + 1)∑ 2𝑖+1𝑛−1
𝑖=0 𝑦𝑖𝑛 + (𝑈𝐵 − 2

𝑛 + 1)2𝑦𝑛    (B.2) 

 

It is straightforward to show that it is correct for 𝑛 ≤ 4. 

(𝑦0 + 2𝑦1 + 4𝑦2 + 8𝑦3 + 𝐴𝑦4)
2

= 𝑦0
2 + 4𝑦0𝑦1 + 4𝑦1

2 + 8𝑦0𝑦2 + 16𝑦1𝑦2 + 16𝑦2
2 + 16𝑦0𝑦3 + 32𝑦1𝑦3

+ 64𝑦2𝑦3 + 64𝑦3
2 + 2𝐴𝑦0𝑦4 + 4𝐴𝑦1𝑦4 + 8𝐴𝑦2𝑦4 + 16𝐴𝑦3𝑦4 + 𝐴

2𝑦4
2 →

= 𝑦0 + 4𝑦01 + 4𝑦1 + 8𝑦02 + 16𝑦12 + 16𝑦2 + 16𝑦03 + 32𝑦13 + 64𝑦23
+ 64𝑦3 + 2𝐴𝑦04 + 4𝐴𝑦14 + 8𝐴𝑦24 + 16𝐴𝑦34 + 𝐴

2𝑦4
= (𝑦0 + 4𝑦1 + 16𝑦2 + 64𝑦3)
+ (4𝑦01 + 8𝑦02 + 16𝑦03 + 16𝑦12 + 32𝑦13 + 64𝑦23)
+ 𝐴(2𝑦04 + 4𝑦14 + 8𝑦24 + 16𝑦34) + 𝐴

2𝑦4 
 

=∑22𝑖
3

𝑖=0

𝑦𝑖 +∑∑2𝑖+𝑗+1
3

𝑖<𝑗

2

𝑖=0

𝑦𝑖𝑗 + 𝐴∑2𝑖+1
3

𝑖=0

𝑦𝑖4 + 𝐴
2𝑦4 

Where 𝐴 =  𝑈𝐵 − 2𝑛 + 1, 

If we assume that for a given n, 

𝑓𝑛 = ∑ 2𝑖𝑦𝑖
𝑛−1
𝑖=0 + 𝐴𝑦𝑛  ⇒ 𝑓𝑛

2 = ∑ 22𝑖𝑛−1
𝑖=0 𝑦𝑖 + ∑ ∑ 2𝑖+𝑗+1𝑛−1

𝑖<𝑗
𝑛−2
𝑖=0 𝑦𝑖𝑗 + 𝐴∑ 2𝑖+1𝑛−1

𝑖=0 𝑦𝑖𝑛 +

𝐴2𝑦𝑛             (B.3) 
 

By using the induction proof, one can show that it is also correct for 𝑛 + 1. 

𝑓𝑛+1
2 = (𝑦0 + 2𝑦1 + 4𝑦2 +⋯+ 2

𝑛−1𝑦𝑛−1 + 2
𝑛𝑦𝑛 + 𝐴𝑦𝑛+1)

2

= (𝑦0 + 2𝑦1 + 4𝑦2 +⋯+ 2
𝑛−1𝑦𝑛−1 + 2

𝑛𝑦𝑛 + 𝐴𝑦𝑛 − 𝐴𝑦𝑛 + 𝐴𝑦𝑛+1)
2

= (𝑦0 + 2𝑦1 + 4𝑦2 +⋯+ 2
𝑛−1𝑦𝑛−1 + 𝐴𝑦𝑛 + 2

𝑛𝑦𝑛 − 𝐴𝑦𝑛 + 𝐴𝑦𝑛+1)
2

= (𝑓𝑛 + 2
𝑛𝑦𝑛 − 𝐴𝑦𝑛 + 𝐴𝑦𝑛+1)

2 = (𝑓𝑛 + 2
𝑛𝑦𝑛 + 𝐴(𝑦𝑛+1 − 𝑦𝑛))

2 → 

𝑓𝑛+1
2 = 𝑓𝑛

2 + 2𝑛+1𝑓𝑛𝑦𝑛 − 2𝐴𝑓𝑛𝑦𝑛 + 2
2𝑛𝑦𝑛

2 − 2𝑛+1𝐴𝑦𝑛
2 + 𝐴2𝑦𝑛

2 + 2𝐴𝑓𝑛𝑦𝑛+1
+ 2𝑛+1𝐴𝑦𝑛𝑦𝑛+1 − 2𝐴

2𝑦𝑛𝑦𝑛+1 + 𝐴
2𝑦𝑛+1

2 → 

𝑓𝑛+1
2 = 𝑓𝑛

2 + 2𝑛+1𝑓𝑛𝑦𝑛 − 2𝐴𝑓𝑛𝑦𝑛 + 2
2𝑛𝑦𝑛 − 2

𝑛+1𝐴𝑦𝑛 + 𝐴
2𝑦𝑛 + 2𝐴𝑓𝑛𝑦𝑛+1 + 2

𝑛+1𝐴𝑦𝑛(𝑛+1)
− 2𝐴2𝑦𝑛(𝑛+1) + 𝐴

2𝑦𝑛+1
= 𝑓𝑛

2 + 𝑓𝑛𝑦𝑛(2
𝑛+1 − 2𝐴) + 2𝐴𝑓𝑛𝑦𝑛+1 + (𝐴

2 − 2𝑛+1𝐴 + 22𝑛)𝑦𝑛 + 𝐴
2𝑦𝑛+1

+ 𝑦𝑛(𝑛+1)(2
𝑛+1𝐴 − 2𝐴2) 

 

Where, 

𝑓𝑛𝑦𝑛 = (∑2𝑖𝑦𝑖

𝑛−1

𝑖=0

+ 𝐴𝑦𝑛)𝑦𝑛 →∑2𝑖𝑦𝑖𝑛

𝑛−1

𝑖=0

+ 𝐴𝑦𝑛 

𝑓𝑛𝑦𝑛+1 = (∑2𝑖𝑦𝑖

𝑛−1

𝑖=0

+ 𝐴𝑦𝑛)𝑦𝑛+1 →∑2𝑖𝑦𝑖(𝑛+1)

𝑛−1

𝑖=0

+ 𝐴𝑦𝑛(𝑛+1) 

 

By substitution of the equations, we have: 
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𝑓𝑛+1
2 = ∑22𝑖

𝑛−1

𝑖=0

𝑦𝑖 +∑∑2𝑖+𝑗+1
𝑛−1

𝑖<𝑗

𝑛−2

𝑖=0

𝑦𝑖𝑗 + 2𝐴∑2𝑖
𝑛−1

𝑖=0

𝑦𝑖𝑛 + 𝐴
2𝑦𝑛

+ (2𝑛+1 − 2𝐴) (∑2𝑖𝑦𝑖𝑛

𝑛−1

𝑖=0

+ 𝐴𝑦𝑛) + 𝐴∑2𝑖+1𝑦𝑖(𝑛+1)

𝑛−1

𝑖=0

+ 2𝐴2𝑦𝑛(𝑛+1)

+ (𝐴2 − 2𝑛+1𝐴 + 22𝑛)𝑦n + 𝐴
2𝑦𝑛+1 + 𝑦𝑛(𝑛+1)(2

𝑛+1𝐴 − 2𝐴2) 
 

After simplification we have: 

→ 𝑓𝑛+1
2 = (∑22𝑖

𝑛−1

𝑖=0

𝑦𝑖 + 2
2𝑛𝑦n) + (∑∑2𝑖+𝑗+1

𝑛−1

𝑖<𝑗

𝑛−2

𝑖=0

𝑦𝑖𝑗 + 2
𝑛+1∑2𝑖𝑦𝑖𝑛

𝑛−1

𝑖=0

)

+ 𝐴(∑2𝑖+1
𝑛−1

𝑖=0

𝑦𝑖(𝑛+1) + 2
𝑛+1𝑦𝑛(𝑛+1)) + 𝐴

2𝑦𝑛+1

=∑22𝑖
𝑛

𝑖=0

𝑦𝑖 +∑∑2𝑖+𝑗+1
𝑛

𝑖<𝑗

𝑛−1

𝑖=0

𝑦𝑖𝑗 + 𝐴∑2𝑖+1
𝑛

𝑖=0

𝑦𝑖(𝑛+1) + 𝐴
2𝑦𝑛 
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