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Abstract  

Many supply chains lack flexibility and adaptability in today's competitive market, 

resulting in customer dissatisfaction, backorders, and several extra costs for the 

business. Additionally, the inability to quickly meet the customer's demands and 

the unnecessary transportation costs is also one of the significant challenges faced 

by the fixed facilities' supply chain. To address these challenges, this study analyzed 

the mobile facilities supply chain and the production, distribution, and delivery of 

goods conducted by trucks based on customer preferences. This study proposes a 

bi-objective mixed-integer linear programming model to ensure the mobile 

facilities' routing and manufacturing schedules are optimized to meet the customer's 

needs. Furthermore, this model minimizes production and distribution costs in the 

shortest amount of time. An exact decomposition algorithm based on Benders 

decomposition is used to find high-quality solutions in a reasonable amount of time 

to tackle the problem efficiently. We present several acceleration strategies for 

increasing the convergence rate of Benders' decomposition algorithm, including 

Pareto optimality cut and warm-up start. The warm-up start acceleration strategy 

itself is a meta-heuristic based on particle swarm optimization (PSO). Using the 

Benders decomposition, we demonstrate the superior accuracy of our solution 

methodology for large-scale cases with 10 kinds of products ordered by 30 

customers using 10 mobile facilities. 
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Introduction  
 

The supply chain includes all activities turning the raw materials into the final products and 

delivering them to the customers. In the supply chains consisting of the consecutive production, 

storage, and distribution of the products, every process is often optimized separately [2]. 

Production and distribution are the two chief factors in the supply chain, which seem vital in 

achieving optimal efficiency. On the other hand, scheduling problems are among the most 

critical issues in the contemporary world, significantly influencing the manufacturing and 

service-providing systems [3]. Several modern industries have adopted integrated production 

and distribution planning and scheduling. Such integration is more noticeable in the sectors 

taking care of the production based on the Make to Order (MTO), The on-time delivery with 

the lowest cost to the customers is controversial. To overcome these challenges, in addition to 

the more integration between the production and distribution, a practical production and 

distribution framework by considering the routing issue is essential [8]. 

Soon, there is the potential of the multi-level supply chain’s replacement by an integrated 

production and distribution system, in a way that a mobile facility (MF) can replace all of the 
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current factories; for instance, 3D printing manufacturing technology. Afterward, the 

competition will take place on the logistics [17]. Also, Tang and Veelenturf indicated that 

logistics is a competitive tool for companies to enhance their power [18].  

Although the fixed factories produce numerous products delivered by their distribution 

network, they cannot be flexible and adaptable enough in the manufacturing centers and must 

look for novel solutions. The Distributed Manufacturing System can be a good idea for 

overcoming these challenges. The Mobile Supply Chain is formed based on this concept, 

aiming at producing close to the customers, upgrading the level of satisfying the customers’ 

demands, and therefore, obtaining customer satisfaction [22]. 

So, MFs have been used to increase flexibility and robustness, and have been expanded to 

meet customer needs as quickly as possible to the customer. MFs have enabled companies to 

manage demand peaks and can help fixed facilities in critical situations such as high demand 

due to changes in the market. They can act as a backup when production lines fail. MFs can 

also be used to reduce costs such as transportation costs, unnecessary transportation in fixed 

facilities and so on. 

For many years, MFs are employed due to their capability in production while being mobile 

and the possibility of transporting the manufacturing equipment to produce some of the 

products. However, their abilities for high-tech and modern production have not been fully 

taken advantage of. The mobile facilities return to their supply centers, satisfying their demands 

in terms of raw materials. The routing is executed according to the customers’ initial demand, 

and during the movement to the destination, the production is taken care of. Afterward, a stop 

is made in an optimal location, and the customer’s demand is satisfied. 

In this article, a mathematical model for the production during the mobile facilities’ 

movement is proposed; in this model, such facilities can produce multiple products. Each of 

these facilities moves toward the customers based on the customers’ demands and stop in one 

of the determined points, satisfying their demands based on the specified time window. The 

customers move based on the distance towards the MF, getting their order. The closest case is 

likely to be the public benefit services, such as medicine or mask manufacturing under crises. 

Besides, the chief concern is the integrated production and routing planning, a particular 

product is delivered to the customer at the specified time, paving the way for JIT conditions. 

 

Literature review 
 

The literature review framework of this study is defined as follows. In literature, several 

research fields can be found which have some intersections with Integrated Production and 

Distribution Scheduling in Mobile Facilities. Some researchers have investigated the 

application, importance, challenges, and background of the mobile facilities. Also, a literature 

review of integrated distribution and production in the supply chain and a review of the issues 

pertinent to the mobile facilities, routing, and locating problems are shown. In the end, a 

summary of the literature review is indicated in Table 1. 

Due to the increase in E-commerce, the Last Mile Logistic concept has been employed in 

various applications. By considering their favorable time window, the customers’ demands 

satisfaction has been turned into one of the chief criteria in the micro supply chain and 

transportation industry [19]. Also, raising the online orders and the demand for its delivery on 

time or on the specified time is one of the main challenges of the companies, particularly in the 

big cities with heavy traffic. Moreover, in recent years, several investigations have been 

executed in the realm of the fixed facilities defects, such as redundant and vain transportation, 

higher construction costs, and the tendency to develop mobile facilities. All of these can be a 

persuasive reason for mobile facilities’ employment [9]. The idea of mobile production is 

described as different titles in the literature review: 
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Factory in a box [23] and movable production system [24] and Reconfigurable 

manufacturing system [25] and plug and produce [26], all of which have the same subject but 

in different applications. Ask and Stillström have explained the requirements for establishing 

an MF and mentioned some examples of different industries [49]. 

The mobile facilities can be designed in three types to enhance the performance based on 

the environmental conditions. The first type of MF is in a way that it can be installed inside a 

container of a truck. This type is suitable for single-product systems whose location changes 

daily or weekly such as a 3D printer for making dolls. The other type is the facilities, including 

multiple portable containers with the capability of producing and assembling multi-component 

products. This type is used for the cases whose location is changed monthly such as asphalt or 

cement manufacturing. In the end, we have plenty of mobile facilities consisting of multiple 

huge prefabricated products that are assembled in a suitable place and transported by truck. 

Those have various containers, ideal for the cases whose location is not changed for several 

years such as mobile hospitals in deprived areas [7]. 

The first mobile facility was designed by Preeman, and its patent was taken out in 1975. This 

MF was intended for asphalt manufacturing and could be employed in civil operations in any 

place [49]. However, thanks to Iranian youth efforts, the first asphalt mixing facility 

was built and implemented in 1995†. 

The mobile facilities are highly capable of the semi-finished products’ montage, recycling, 

being employed in the construction industry, i.e., cement and perishable materials, and 

producing products required in crisis [9]. Besides, this kind of facility can act as an accelerator 

in places lacking in industrial areas and critical conditions, such as floods, earthquakes, and 

wars. 

Also, other applications of them can be the maximum coverage of cell phone signals in 

various areas and humanitarian aid arrangements [10]. Another application of mobile facilities 

is providing service to remote areas where building a center is not economically feasible. One 

of the essential applications of them that are ubiquitous today and in Coronavirus outbreaks is 

employing mobile laboratories for conducting tests in remote areas so that all countries can take 

advantage of these services equally [11].  

Generally, all studies and issues that have been conducted in the mobile facilities’ modeling 

can be categorized into the combination of the following areas, each of which is reviewed first. 

Finally, the discrepancies between the current problem's differences with each are examined. 

A) One of the most critical managers’ decisions is locating new production facilities that have 

been accorded paramount importance as the supply chain management, which is the most 

critical frontier of competitive advantage, emerged [32]. Most of the studies conducted on 

mobile facilities’ modeling are based on the Facility Location Problem that Weber addressed 

in 1962. He reviewed the literature in this field in Daskin’s article in 2008. A lot of studies are 

carried out on the Location Problem of mobile facilities. In these types of problems, facilities 

can settle in different horizons in different places and provide services. The objective function 

in most of these problems is minimizing the customer's pathway to receiving services or 

minimizing the Transportation costs [15]. 

Locating mobile facilities is not a novel subject, and some studies are conducted in Durocher, 

S. and Kirkpatrick, D [20], in which customers and mobile facilities could move constantly.  

This problem was first examined by Demaine et al. by referring to the concept of mobile 

facilities [33]. Güden et al. [16] also studied a location problem in construction management by 

employing mobile facilities. They determined the number and location of the route taken by the 

MF by minimizing the costs and took advantage of Branch and Price to solve the problem. A 

vast majority of studies conducted in this field are on obtaining approximations for upper and 
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lower bounds of this problem [10]. In 2015, Halper also investigated moving mobile facilities 

and allocating customers to these facilities to satisfy their demands to minimize the total 

transportation costs of customers and the mobile facilities. They employed the Local Search 

Neighborhood to solve this model.  

Other problems that can fall into this category are the mobile hub location problem. In the 

investigation published by Bashiri et al., they have investigated the MFs in Hub Location 

Problem. The mobile facilities are located in Hub places and can respond based on changes in 

demand and overcome the additional costs in establishing facilities. The objective function of 

this study was minimizing the cost and maximizing the profit. This investigation demonstrated 

that mobile hub performs better and is more influential than the classic version of this network. 

They also developed a genetic algorithm with adjusted parameters and simulated annealing for 

solving the relevant model [21].  

B) The TSP and VRP have been examined as two classic problems in the supply chain. The 

movement of vehicles in the network is planned, and the vehicles are responsible for picking 

up/delivering the services. However, in reality, some vehicles might be capable of providing 

the services. In this case, the capability of movement and motion is considered as an advantage. 

The movement of the mobile facility can also be modeled by a VRP problem with service time 

[30]. A comprehensive review of the studies conducted on this subject can be found in the 

article [31]. 

The routing problem of the mobile facilities is distinct from the problems mentioned above 

and has some differences. The first study on location problems of mobile facilities was 

conducted by Halper et al. in 2011 [5]. He accurately defined this problem as the MFRP aims 

at creating some routes for the mobile facilities so that the demands that are met by these 

facilities during the planning horizon are maximized constantly. They considered a wide range 

of places where mobile facilities could settle and provide services. Movement among these 

places was also possible, and time was regarded as a continuous variable. Besides, the objective 

function was maximizing the met demands. They also proposed three heuristic methods [7]. 

Consequently, Lei et al. [9] introduced a scheduling problem modeled by a two-stage stochastic 

programming method. In the first stage, mobile facilities' movement was decided. In the second 

stage, the way mobile facilities meet customers' demands based on various scenarios is 

examined. They employed a multi-cut L-shaped algorithm to solve this model. 

After the investigation and introduction of the mobile facilities and studying their 

applications, we have examined some articles addressing integrated production and distribution 

planning and scheduling. 

Although there are several separate articles in the planning and routing field, integrated 

studies have been conducted between the mentioned areas in the last few years. That is why 

facilities are required to economize to be more noticeable in the competitive market. Generally, 

a comprehensive investigation has been conducted in this field by Moons et al. [27]. 

In most of these studies, the commodity delivery is done after the production, and the routing 

problem for the delivery issue is not taken into account [14]. Nonetheless, in [8] and [15], the 

routing of the vehicles is considered for delivery to the customers. 

It is worth mentioning that in none of these articles, the production is carried out shortly as 

possible after submitting the demand by the customer. However, in this article, such an 

important issue is addressed using the mobile facility concept. 

Moreover, in a study conducted by Behzad, an MINLP model is provided, aiming to 

maximize the profit. The production and routing scheduling from the supplier to the initial 

location of the mobile facility is examined. In the end, by employing the greedy algorithm, the 

problem is solved, and the sensitivity analysis is carried out [28]. In this article, a network of 

suppliers, several customers with predictable demand, and plenty of mobile facilities are 

observed. In this article, the main objective of the model is the cost, and the production planning 
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facet is the subject of concern. The routing problem is considered for the customer directly, and 

they do not have a constrained time window in getting their products. 

 
Table 1. An overview of the related literature and the research gap. 
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Yes Min cost Heuristic Yes  No/Yes 

Mobile facility 

routing and 

production problem 

MINLP [6] 2017 

No Min cost Metaheuristic Yes Yes Yes/Yes P-hub Location MIP [21] 2018 

No Max Demands Heuristic No No No/Yes MFRP MIP [7] 2011 

No Min cost Metaheuristic Yes No No/Yes MFLP MIP [5] 2015 

No 

Min Total 

Distance 

traveled 

Branch and Price No No No/Yes 
Dynamic P-median 

Problem 
MIP [6] 2019 

Yes 
Min cost + 

Min Delay 
Pareto Frontier No No No/Yes 

Mobile facility 

routing and 

production problem 

MINLP [22] 2021 

Yes Min cost Exact Algorithm   Yes/No IPDS MINLP [35] 2018 

Yes 

Min demand 

+ Max 

Satisfaction 

Hybrid PSO, ε-

constraint 
No No Yes/No IPDS MINLP [34] 2020 

Yes 

Max 

Customer 

Satisfaction 

Branch and Bound 

(B&B), simulated 

annealing 

No No Yes/No IPDS MINLP [36] 2017 

Yes 
Min cost + 

Min Delay 
Benders Decomposition Yes No No/Yes MFRPP MIP 

Present 

Study 

 

The production in trucks and delivering the commodities to the customers via this way is 

associated with various challenges as follows. 

1- The routing of the equipment is categorized as the decision variables at the strategic level. 

Simultaneously, the mobile facilities are considered to be at the operational level due to the 

spatial changes in a short period [29]. 

2- Given that the mobile facilities are supposed to provide several customers, with respect to 

the time window constraint of each customer, the TWVRP problem is another facet of the 

routing problems in these facilities. 

3- The production in the mobile facilities should be in a way that does not interfere with the 

customer’s time window. Accordingly, the production and routing should be integrated to get 

a wide berth to the delays and fines. 

According to the literature review, integrated production and distribution by using mobile 

facilities are new and applied issues in the industry. It can be employed to overcome some of 

the barriers like inflexibility, inadaptability, and higher logistics costs. In this article, some of 

these gaps are addressed, and the following contributions are categorized:  

1. We are developing an optimal model for the mobile facilities’ production and routing 

so that the desired product of the customer is delivered on time. 

2. The integrated production during the distribution of the mobile facilities to mitigate the 

costs. 

3. Making sure of satisfying the customer’s demands using a proper solution. 
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Problem statement 
 

Consider the integrated production and routing scheduling problem of the mobile facilities. In 

this problem, V facilities are to satisfy C customers’ demands, including P products. The 

customers’ demands are considered certain. The mobile facilities start over from the initial 

nods, moving towards the demand points based on the executed routing subject to the time 

duration between nodes and the demands in each nod. Through this pathway, the mobile 

facilities produce based on their capabilities, arriving at the demand points. Besides, based on 

the distance and the cost, the customers also reach the appropriate demand locations to satisfy 

their demands. The mobile facility may not have been able to produce all the products desired 

by the customer at the arrival moment. Thereby, it stops at the demand locations and continues 

making. When the customer’s demand is met, it moves to the next node. In case it moves to the 

next node, the production process will be carried out to meet the total demands of the customers 

that are allocated to that node. 

 

Assumptions 

 

 The demands of the customers are assumed to be certain. 

 The upper and lower limits of the product’s production time are assumed to be certain in 

the problem.  

 A limitation is considered for the mobile facilities’ production number. Indeed, the 

mobile facilities have capacity.  

 For the mobile facilities, merely the constant cost is seen in the case of use.  

 Providing service and responding to the customers’ demands starts when the MF arrives 

at the particular place and continues until leaving that node. 

 Each customer is allocated to a node based on the distance the customer has from the 

nodes that supply the demands and must meet the customer’s demand at that node.  

 

Mathematical model 

 

The Integrated Production and Distribution Scheduling in Mobile Facilities is formulated as 

follows. 

 

Notations: 

𝑖, 𝑗 ∈  𝜔 = {1, … , 𝐼} Set of nodes where the demand is met 

𝑟, 𝑟′ ∈ 𝜂 = {1, … , 𝑅} Set of MFs starting and endpoints 

ℎ, ℎ′ ∈ 𝜌, 𝜔 ∪ 𝜂 = 𝜌 = {1, … , 𝐻} Set of all nodes 

𝑝 𝜖 𝛺 = {1, … , 𝑃} Set of products 

𝑣 𝜖 𝛤 = {1, … , 𝑉} Set of mobile facilities 

𝜉𝑟 Set of mobile facilities, v, starting from node r 

𝑐 ∈  𝜃 = {1, … , 𝐶} Set of customers 

 

Parameters: 

M: A sufficiently large number 

𝑑𝑐𝑝:  number of product p demand by the c-th customer.  

𝛼𝑝𝑣: Production rate of product p in mobile facility v per unit of time. 

𝑡ℎℎ′: Interval between node h and ℎ′.  

𝑢𝑏𝑖𝑝: Upper bound of product p production time for the i-th node if the node demand is met.  
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𝑙𝑏𝑖𝑝: Lower bound of product p production time for the i-th node if the node demand is met.  

𝑐𝑟𝑖𝑣𝑝: Production cost of product p for the i-th node by machine v started from the depot r.   

𝑓ℎℎ′𝑣: Transport cost from node h to ℎ′ with mobile facility v.   

𝑎𝑖𝑐: Transport cost of the c-th customer towards the i-th node to meet their demand.  

𝑅𝑐: Movement radius of the c-th costumer.  

𝑚𝑖𝑐: Distance between the c-th customer and the i-th node, where their demand is met. 

𝑐𝑎𝑝𝑖𝑝: Facility capacity of the demand node i for product p.  

 

Binary Decision Variables: 

𝑋ℎℎ′𝑣: Equals to one if there is a path between node h and ℎ′ with the mobile facility v, 

otherwise equals to zero.  

𝐸𝑟𝑖𝑣: Equals to one, if the mobile facility v belongs to the starting point r and allocated to 

customer i, otherwise equals to zero. 

𝑌𝑖𝑐: Equals to one, if the c-th customer is allocated to the i-th node to meet their demand, 

otherwise equals to zero.  

𝐿𝑖𝑝𝑣: Equals to one, if the mobile facility v produces product p for the i-th node, otherwise 

equals to zero.  

 

Positive Decision Variables: 

𝐴𝑇ℎ𝑣: Arrival and staying time at the customer location h with the mobile facility v. 

𝐵𝑖𝑣𝑝: Arrival and staying time for completing production of product p in the node i with the 

mobile facility v. 

𝑆ℎ𝑣: Staying time at the customer location h with the mobile facility v. 

𝑍𝑟𝑖𝑣𝑝: Production amount of product p to meet the needs of customer i by the mobile facility v 

extracted from the starting point r. 

𝐶𝑚𝑎𝑥: Maximum time to meet the whole system demand considering the limitations. 

 

Auxiliary Variable: 

𝑏𝑐𝑝: Demand matrix of product p by the c-th customer, which is equal to one if there is demand 

for product p and equals to zero, otherwise.  

The mathematical model of this problem is as follows: 

 

(1)  𝐹1 = ∑ ∑ ∑ 𝑓ℎℎ′𝑣 .

𝐻

ℎ′=1

𝐻

ℎ=1

𝑋ℎℎ′𝑣

𝑉

𝑣=1

 

(2)  𝐹2 = ∑ ∑ ∑ ∑ 𝑐𝑟𝑖𝑣𝑝 . 𝑍𝑟𝑖𝑣𝑝

𝑅

𝑟=1

𝐼

𝑖=1

𝑃

𝑝=1

𝑉

𝑣=1

 

(3)  𝐹3 = ∑ ∑ 𝑎𝑖𝑐 . 𝑌𝑖𝑐

𝐼

𝑖=1

𝐶

𝑐=1

 

   

(4)  𝑚𝑖𝑛( 𝑍1) = 𝐹1 + 𝐹2 + 𝐹3 

(5)  𝑚𝑖𝑛( 𝑍2) = 𝐶𝑚𝑎𝑥  

(6) ∀𝑖 ∈ 𝜔, (𝑟, 𝑣) ∈ 𝜉𝑟 ∑ 𝑋𝑖ℎ𝑣

𝐻

ℎ=1

= 𝐸𝑟𝑖𝑣  

(7) ∀𝑖 ∈ 𝜔, (𝑟, 𝑣) ∈ 𝜉𝑟 ∑ 𝑋ℎ𝑖𝑣

𝐻

ℎ=1

= 𝐸𝑟𝑖𝑣  
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(8) ∀ℎ ∈ 𝜌, 𝑣 ∈ 𝛤 ∑ 𝑋ℎ′ℎ𝑣

𝐻

ℎ′=1

= ∑ 𝑋ℎℎ′𝑣

𝐻

ℎ′=1

 

(9) ∀𝑖 ∈ 𝜔, (𝑟, 𝑣) ∈ 𝜉𝑟 ∑ 𝑋𝑟ℎ𝑣

𝐻

ℎ=1,ℎ≠ℎ′

+ ∑ 𝑋ℎ𝑖𝑣

𝐻

ℎ=1

≤ 1 + 𝐸𝑟𝑖𝑣 

(10) (𝑟, 𝑣) ∈ 𝜉𝑟 ∑ 𝑋𝑟𝑖𝑣 . 𝑀

𝐼

𝑖=1

≥ ∑ 𝐸𝑟𝑖𝑣

𝐼

𝑖=1

 

(11) ∀𝑖 ∈ 𝜔, 𝑣 ∈ 𝛤, 𝑟 ∈ 𝜂 𝑋𝑟𝑖𝑣 ≤ 𝐸𝑟𝑖𝑣  

(12) ∀𝑣 ∈ 𝛤, 𝑟 ∈ 𝜂 𝑋𝑟𝑟′𝑣 = 0 

(13) ∀𝑖 ∈ 𝜔, (𝑟, 𝑣) ∈ 𝜉𝑟 𝐴𝑇𝑖𝑣 ≥ 𝑆𝑖𝑣 + 𝑡𝑟𝑖 − 𝑀. (1 − 𝑋𝑟𝑖𝑣) 

(14) ∀ℎ ∈ 𝜌, 𝑣 ∈ 𝛤, 𝑖 ∈ 𝐼, 𝑖 ≠ ℎ 𝐴𝑇ℎ𝑣 ≥ 𝐴𝑇𝑖𝑣 + 𝑆ℎ𝑣 + 𝑡𝑖ℎ − 𝑀. (1 − 𝑋𝑖ℎ𝑣) 

(15) ∀𝑖 ∈ 𝜔, (𝑟, 𝑣) ∉ 𝜉𝑟  𝐸𝑟𝑖𝑣 = 0 

(16) ∀𝑖 ∈ 𝜔, 𝑣 ∈ 𝛤, 𝑝 ∈ 𝛺 𝐵𝑖𝑣𝑝 ≥ 𝐴𝑇𝑖𝑣 − 𝑀(1 − 𝐿𝑖𝑝𝑣) 

(17) ∀𝑖 ∈ 𝜔, 𝑣 ∈ 𝛤, 𝑟 ∈ 𝑅, 𝑝 ∈ 𝛺 𝑙𝑏𝑖𝑝 . 𝐿𝑖𝑝𝑣 ≤ 𝐵𝑖𝑣𝑝 ≤ 𝑢𝑏𝑖𝑝. 𝐿𝑖𝑝𝑣  

(18) ∀𝑖 ∈ 𝜔, (𝑟, 𝑣) ∈ 𝜉𝑟 , 𝑝 ∈ 𝛺 ∑ 𝑧𝑟𝑖𝑣𝑝

𝑟=1

≤
𝑆𝑖𝑣 + (∑ 𝑡𝑖ℎ. 𝑋𝑖ℎ𝑣ℎ∈𝐻 )

𝛼𝑣𝑝

 

(19) ∀𝑖 ∈ 𝜔, (𝑟, 𝑣) ∈ 𝜉𝑟 ∑ 𝑍𝑟𝑖𝑣𝑝

𝑃

𝑃=1

≤ 𝐸𝑟𝑖𝑣 . 𝑀 

(20)   ∀𝑖 ∈ 𝜔, (𝑟, 𝑣) ∈ 𝜉𝑟 ∑ 𝑍𝑟𝑖𝑣𝑝

𝑃

𝑝=1
≥ 𝐸𝑟𝑖𝑣  

(21) ∀𝑖 ∈ 𝜔, 𝑣 ∈ 𝛤, 𝑝 ∈ 𝛺 𝐶𝑚𝑎𝑥 > 𝐵𝑖𝑣𝑝 

(22) ∀𝑖 ∈ 𝜔, (𝑟, 𝑣) ∈ 𝜉𝑟 , 𝑝 ∈ 𝛺 ∑ ∑ 𝑍𝑟𝑖𝑣𝑝 ≤ 𝑐𝑎𝑝(𝑖, 𝑝)

𝑉

𝑣=1

𝑅

𝑟=1

 

(23) ∀𝑐 ∈ 𝜃 ∑ 𝑌𝑖𝑐 = 1

𝐼

𝑖=1

 

(24) ∀𝑖 ∈ 𝜔, (𝑟, 𝑣) ∈ 𝜉𝑟 , 𝑝 ∈ 𝛺 ∑ ∑ 𝑍𝑟𝑖𝑣𝑝 ≥ ∑ 𝑌𝑖𝑐 . 𝑑𝑐𝑝

𝐶

𝑐=1

𝑅

𝑟=1

𝑉

𝑣=1

 

(25) ∀𝑖 ∈ 𝜔, ∀𝑐 ∈ 𝜃 𝑌𝑖𝑐 . 𝑚𝑖𝑐 ≤ 𝑅𝑐 

(26) ∀𝑖 ∈ 𝜔, (𝑟, 𝑣) ∈ 𝜉𝑟 , 𝑝 ∈ 𝛺 𝐿𝑖𝑝𝑣 . 𝑀 ≥ ∑ 𝑍𝑟𝑖𝑣𝑝

𝑅

𝑟=1

 

(27) ∀𝑖 ∈ 𝜔, (𝑟, 𝑣) ∈ 𝜉𝑟 , 𝑝 ∈ 𝛺 𝐿𝑖𝑝𝑣 ≤ ∑ 𝑍𝑟𝑖𝑣𝑝

𝑅

𝑟=1
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Eq. 1 calculates the transportation costs, and Eq. 2 calculates the production costs for each 

node. In the objective function (3), the transportation costs of customers are minimized. In the 

objective function (4), the maximum time of completing production in the system will be 

minimized.  

Constraints 6 and 7 determine the previous and the following routes (the last and the 

following nodes) per node. This constraint also determines that each node can merely 

be visited by one mobile facility at a specific time. Constraint 8 specifies that if a V-type mobile 

facility enters a node, the same V-type facility must exit that node. Constraint 9 determines that 

each node must connect to the starting locations or other nodes according to the route and the 

performed allocation. Constraints 10 and 11 state that the V mobile facility moves from the 

starting location r to the next node when the mobile facility and the relevant node are selected. 

Constraint 12 determines that no mobile facility can go from the starting point to another 

starting point. Constraints 13 and 14 specifies the sum of the arrival and stay times at the nodes 

by each mobile facility. Constraint 15 determines that if the V mobile facility is not allocated to 

node r, the mobile facility is not allowed to exit that node. Constraint 16 determines the time it 

takes for a mobile facility to reach a node for producing the total demand of a customer must 

be greater than the time MF arrive. Constraint 17 specifies the time window for each product 

that is produced at each node and define a lower and upper bound for producing product p. 

Constraint 18 calculates the extent of production by the mobile facilities allocated to the starting 

location r according to the period of the stay time in the route and the time it spends to stay in 

the customer location. Besides, constraints 19 and 20 determines which mobile facilities have 

production. Constraint 21 determines the maximum time it takes the demand to be met in the 

system. Constraint 22 determines that the accumulation space for each node is limited, and this 

accumulation capacity must be taken into account. Constraint 23 ensures that each customer is 

allocated to one node. Constraint 24 determines that the minimum production for the product p 

belonging to node i at the mobile facility V must meet the demand of customer C in that node.  

Constraint 25 determines that the customers can meet their demands at the nodes within the 

motion radius determined for that customer. Constraints 26 and 27 states that the mobile facility 

V cannot produce the product p for the demand group i unless that facility is allocated to that 

node. 

 

Proposed Solution Approach 
 

Our initial tests showed that the implementation of this model required significant computation 

time because of the complex structure of the developed model. The model is also strongly NP-

hard. This section develops an accelerated benders decomposition algorithm to reduce the 

model's computational complexity. Solving the proposed model is done with the Benders 

Decomposition Algorithm. GAMS 24.1 was used on a PC platform running a Core i7 2.5 GHz 

processor and 8 GB of memory during all experiments. The following are detailed test sets that 

were adopted for each experiment. The Benders decomposition performance improved by 

Pareto accelerators and a warm-up strategy, and a convergence slowness result this algorithm 

was removed. Then, based on solution time, we compared these accelerators. 

 

Benders Decomposition Method (BD) 

 

In 1962, Benders suggested a decomposition method for solving large-scale mixed-integer 

linear programming (MILP) problems [37]. The main idea of BD is a row or constraint 

generation method. BD divides the problem into the Benders Main Problem (BMP) and 

Benders Sub-Problem (BSP). In reality, BD removes some variables from the main problem 

and handles them in BMP. In other words, BMP is a relaxed version of the main problem with 
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a set of integers and related limitations. This method uses an upper and lower bound for 

optimality. In minimization problems, a lower bound is determined for the objective function 

after the problem has been solved. Also, the upper bound is selected by solving the sub-problem.  

The Benders decomposition method, first, solves the main problem using a possible solution 

from non-complicating variables. Then, it selects a lower bound for the objective function and 

obtains the complicating variables [39]. In the second step, Benders decomposition solves BSP 

while taking into account the output of the complicated variables and sets an upper bound for 

the objective function from the output of the dual-objective sub-problem and the output from 

the main objective functions. The algorithm calculates the difference between the upper bounds 

and lower bounds during each step, and when the difference is below a certain threshold, the 

algorithm is stopped. In the case where the algorithm does not stop, the optimality cut is 

imposed on the BMP based on the results of the dual-objective sub-problem. Therefore, the 

main problem is solved again to obtain the complicating variable and problem-bound results. 

This algorithm is repeated until the difference between the upper and lower bounds becomes 

less than a set amount [38]. 

This model can be presented as below: 

 

Benders Master Problem (BMP) 

In a model with fixed variables for vehicle routing and production scheduling, the model 

becomes a simple problem identifying the quantities to be delivered to the customers at any 

given node. Our complicated variables are 𝐴𝑇𝑖𝑣, 𝐵𝑖𝑣𝑝, 𝑋ℎℎ′𝑣, 𝐸𝑟𝑖𝑣, 𝑦𝑖𝑐, 𝐿𝑖𝑝𝑣, and 𝐶𝑚𝑎𝑥. 

Therefore, in the Master Problem frame, they can be portrayed so that Eq. 5 can be used as the 

objective function and 6, 7, 8, 9, 10, 11, 12, 15, 18, 19, 20, 22, 23, 24, 25, 26, 27 as constraints. 

 

Benders Dual Sub-Problem (B-DSP) 

For fixed values of 𝐴𝑇𝑖𝑣 = 𝐴𝑇. 𝑙𝑖𝑣, 𝐵𝑖𝑣𝑝 = 𝐵. 𝑙𝑖𝑣𝑝, 𝑋ℎℎ′𝑣 = 𝑋. 𝑙ℎℎ′𝑣, 𝐸𝑟𝑖𝑣 = 𝐸. 𝑙𝑟𝑖𝑣, 𝑦𝑖𝑐 =

𝑦. 𝑙𝑖𝑐, 𝐿𝑖𝑝𝑣 = 𝐿. 𝑙𝑖𝑝𝑣, and 𝐶𝑚𝑎𝑥 = 𝐶. 𝑙𝑚𝑎𝑥 and after associating the dual variables 𝑤13 ≥

0, 𝑤14 ≥ 0, 𝑤16 ≥ 0, 𝑤17 ≥ 0, 𝑤18 ≥= 0, 𝑤21 ≥ 0 with constraints (13), (14), (16), (17) 

and (21), respectively, the following dual linear problem is obtained: 

 

(33) 

𝑍𝑑𝑠𝑝 = ∑ ∑ ∑ 𝑤18𝑖𝑝𝑣 ∗ (𝑙𝑏𝑖𝑝 . 𝐸. 𝑙𝑖𝑝𝑣)

𝑉

𝑣=1

𝑃

𝑝=1

𝐼

𝑖=1

− ∑ ∑ ∑ 𝑤17𝑖𝑝𝑣 ∗ (𝑢𝑏𝑖𝑝 . 𝐸. 𝑙𝑖𝑝𝑣)

𝑉

𝑣=1

𝑃

𝑝=1

𝐼

𝑖=1

+ ∑ ∑ ∑ 𝑤14𝑖𝑗𝑣 ∗ (𝑆. 𝑙𝑖𝑣 + 𝑡𝑖ℎ − 𝑀. (1 − 𝑥. 𝑙𝑖𝑗𝑣))

𝑉

𝑣=1

𝐽

𝑗=1

𝐼

𝑖=1

+ ∑ ∑ ∑ 𝑤13𝑟𝑖𝑣 ∗ (𝑆. 𝑙𝑖𝑣 + 𝑡𝑟𝑖 − 𝑀. (1 − 𝑥. 𝑙𝑟𝑖𝑣))

𝑉

𝑣=1

𝑅

𝑟=1

𝐼

𝑖=1

− ∑ ∑ ∑ 𝑤16𝑖𝑝𝑣 ∗ (−𝑀(1 − 𝐿. 𝑙𝑖𝑝𝑣))

𝑉

𝑣=1

𝑃

𝑝=1

𝐼

𝑖=1

+ ∑ ∑ ∑ 𝑓ℎℎ′𝑣 .

𝐻

ℎ′=1

𝐻

ℎ=1

𝑋. 𝑙ℎℎ′𝑣 + ∑ ∑ ∑ ∑ 𝑐𝑟𝑖𝑣𝑝. 𝑍. 𝑙𝑟𝑖𝑣𝑝

𝑅

𝑟=1

𝐼

𝑖=1

𝑃

𝑝=1

𝑉

𝑣=1

𝑉

𝑣=1

+ ∑ ∑ 𝑎𝑖𝑐 . 𝑌. 𝑙𝑖𝑐

𝐼

𝑖=1

𝐶

𝑐=1

 

(34) ∑ 𝑤13𝑟𝑖𝑣

𝑟,𝑟∉𝑈𝑈

+ ∑ 𝑤14𝑖𝑗𝑣

𝑗,𝑖≠𝑗

− ∑ 𝑤14𝑗𝑖𝑣

𝑗,𝑖≠𝑗

− ∑ 𝑤16𝑖𝑝𝑣

𝑝

≤ 0 

(35) 
−𝑤17𝑖𝑝𝑣 + 𝑤18𝑖𝑝𝑣 + 𝑤16𝑖𝑝𝑣 − 𝑤21𝑖𝑝𝑣 ≤ 0 

 

(36) ∑ ∑ ∑ 𝑤21𝑖𝑝𝑣

𝑉

𝑣=1

𝑃

𝑝=1

𝐼

𝑖=1

≤ 1 

 



Advances in Industrial Engineering, Winter 2021, 55(1): 117-132 

 125 

The BD effectively converges after a series of finite stages. This algorithm is less efficient 

in larger problems due to being time-consuming; therefore, accelerators are used to speed this 

algorithm up. First, many accelerators are implemented on the BMP to increase its convergence 

rate, decreasing the number of cuts while improving their quality. In this section, there must be 

a trade-off between the number of iterations and the computational running time. Therefore, 

two accelerators are presented in the next section to solve larger problems in a more acceptable 

timeframe. 

 

Pareto-Optimal Cuts (POC) 

 

A method was introduced by Magnanti and Wong (1981) that is used as a cut empowerment 

technique [40]. BSP might present multiple optimal answers. Therefore, these cuts in different 

sections can have different qualities and effects. An optimality cut can be created by selecting 

the more efficient solution, which is better than all other possible cuts, known as the Pareto-

optimal Cut (POC).  

In the following mathematical model, the variable y is considered as the complicated 

variable: 

 
(37) min 𝑐𝑥 + 𝑑𝑦 

(38) 𝐴𝑦 ≥ 𝑏 

(39) 𝐸𝑥 + 𝐹𝑦 ≥ ℎ 

(40) 𝑥 ≥ 0, 𝑦 ∈ 𝑆 

 

If the 𝑢𝑎 optimal point dominates the 𝑢𝑏 optimal point (both of which are optimal answers 

to the DSP problem), and only then, we will have: 

 
(41) ∀𝑦 ∈ 𝑆, 𝑑𝑦 + 𝑢𝑎(ℎ − 𝐹𝑦) ≥   𝑑𝑦 + 𝑢𝑏(ℎ − 𝐹𝑦) 

 

If there is at least one �̅� ∈ 𝑆, we will have: 

 
(42) 𝑑𝑦 + 𝑢𝑎(ℎ − 𝐹𝑦) >   𝑑𝑦 + 𝑢𝑏(ℎ − 𝐹𝑦) 

 

Based on the definition of the dominant cut, finding the optimal point for obtaining the 

dominant cut is of importance. According to [40], if 𝑀𝑢 is the optimized multifold answer set 

of the following DSP model: 

 
(43) max  (ℎ − 𝑓�̅�)𝑇𝑢 + 𝑑�̅� 

(44) 𝑠. 𝑡: 𝐸𝑇𝑢 ≤ 𝑐 

(45) 𝑢 ≥ 0 

 

Then, 𝑢0 as the optimized answer of the following model will create the Pareto-optimal cut: 

 
(46) 𝑚𝑎𝑥  (ℎ − 𝑓𝑦𝑜)𝑇𝑢 + 𝑑𝑦𝑜 
(47) 𝑠. 𝑡: 𝐸𝑇𝑢 ≤ 𝑐 
(48) 𝑢 ∈ 𝑀𝑢 

 

In this model, the 𝑦0 variable is a core point integrated convex set of all 𝑦 ∈ 𝑆, because it is 

not easy to obtain the Benders Master Problem core point. The following general rules are 

obeyed in calculating the core points [41]: 

 
(49) 𝑖𝑓 𝑦 ≥ 0 𝑡ℎ𝑒𝑛 𝑦𝑜 > 0 
(50) 𝑖𝑓 𝑦 ∈ {0,1} 𝑡ℎ𝑒𝑛 0 < 𝑦𝑜 < 1 
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(51) 𝑖𝑓 𝑦 ≥ 0 & ∑ 𝑦𝑗
𝑜

𝑘

𝑗=1

≤ 𝑃 𝑡ℎ𝑒𝑛   𝑦𝑜 > 0, ∑ 𝑦𝑗
𝑜

𝑘

𝑗=1

< 𝑃  

 

Therefore, the Pareto model and core point of this problem will be as follows: 

 

𝐶𝑜𝑟𝑒𝑆𝑖𝑣: Core Point of 𝑆𝑖𝑣   

𝐶𝑜𝑟𝑒𝑥𝑖𝑗𝑣: Core Point of 𝑥𝑖𝑗𝑣   

𝐶𝑜𝑟𝑒𝐿𝑖𝑝𝑣: Core Point of 𝐿𝑖𝑝𝑣   

𝐶𝑜𝑟𝑒𝐸𝑖𝑝𝑣: Core Point of 𝐸𝑖𝑝𝑣   

𝐶𝑜𝑟𝑒𝑍𝑟𝑖𝑣𝑝: Core Point of 𝑍𝑟𝑖𝑣𝑝   

𝐶𝑜𝑟𝑒𝑌𝑖𝑐: Core Point of 𝑌𝑖𝑐 

 

(52) 

∑ ∑ ∑ 𝑤14𝑖𝑗𝑣 ∗ (𝑡𝑖𝑗 + 𝐶𝑜𝑟𝑒𝑆𝑖𝑣 − 𝑀 ∗ (1 − 𝐶𝑜𝑟𝑒𝑥𝑖𝑗𝑣)

𝐽

𝑗=1

𝑉

𝑣=1

𝐼

𝑖=1

+ ∑ ∑ ∑ 𝑤13𝑟𝑖𝑣 ∗ (𝐶𝑜𝑟𝑒𝑆𝑖𝑣 + 𝑡𝑟𝑖 − 𝑀 ∗ (1 − 𝐶𝑜𝑟𝑒𝑥𝑟𝑖𝑣)

𝑅

𝑟=1

𝑉

𝑣=1

𝐼

𝑖=1

+ ∑ ∑ ∑ 𝑤16𝑖𝑝𝑣 ∗ (−1 + 𝐶𝑜𝑟𝑒𝐿𝑖𝑝𝑣) ∗ 𝑀

𝑉

𝑣=1

𝑃

𝑝=1

𝐼

𝑖=1

+ ∑ ∑ ∑
𝑤18𝑖𝑝𝑣 ∗ (𝑙𝑏𝑖𝑝 ∗ 𝐶𝑜𝑟𝑒𝐸𝑖𝑝𝑣) + ∑ ∑ ∑ 𝑤17𝑖𝑝𝑣 ∗ (𝑢𝑏𝑖𝑝 ∗ 𝐶𝑜𝑟𝑒𝐸𝑖𝑝𝑣) +

𝑉

𝑣=1

𝑃

𝑝=1

𝐼

𝑖=1

𝑉

𝑣=1

𝑃

𝑝=1

𝐼

𝑖=1

 

∑ ∑ ∑ ∑ 𝑐𝑟𝑖𝑣𝑝 . 𝐶𝑜𝑟𝑒𝑍𝑟𝑖𝑣𝑝

𝑅

𝑟=1

𝐼

𝑖=1

𝑃

𝑝=1

𝑉

𝑣=1

+ ∑ ∑ ∑ 𝑓ℎℎ′𝑣 . 𝐶𝑜𝑟𝑒𝑋ℎℎ′𝑣

𝑉

𝑣=1

𝐻

ℎ′=1

𝐻

ℎ=1

+ ∑ ∑ 𝑎𝑖𝑐 . 𝐶𝑜𝑟𝑒𝑌𝑖𝑐

𝐼

𝑖=1

𝐶

𝑐=1

 

 

𝑠. 𝑡: 

(53) 

𝑧𝑑𝑠𝑝. 𝑙 =  ∑ ∑ ∑ 𝑤18𝑖𝑝𝑣 ∗ (𝑙𝑏𝑖𝑝 . 𝐸. 𝑙𝑖𝑝𝑣)

𝑉

𝑣=1

𝑃

𝑝=1

𝐼

𝑖=1

− ∑ ∑ ∑ 𝑤17𝑖𝑝𝑣 ∗ (𝑢𝑏𝑖𝑝 . 𝐸. 𝑙𝑖𝑝𝑣)

𝑉

𝑣=1

𝑃

𝑝=1

𝐼

𝑖=1

+ ∑ ∑ ∑ 𝑤14𝑖𝑗𝑣 ∗ (𝑆. 𝑙𝑖𝑣 + 𝑡𝑖ℎ − 𝑀. (1 − 𝑥. 𝑙𝑖𝑗𝑣))

𝑉

𝑣=1

𝐽

𝑗=1

𝐼

𝑖=1 𝑖𝑗𝑣

+ ∑ ∑ ∑ 𝑤13𝑟𝑖𝑣 ∗ (𝑆. 𝑙𝑖𝑣 + 𝑡𝑟𝑖 − 𝑀. (1 − 𝑥. 𝑙𝑟𝑖𝑣))

𝑉

𝑣=1

𝑅

𝑟=1

𝐼

𝑖=1

− ∑ ∑ ∑ 𝑤16𝑖𝑝𝑣 ∗ (−𝑀(1 − 𝐿. 𝑙𝑖𝑝𝑣))

𝑉

𝑣=1

𝑃

𝑝=1

𝐼

𝑖=1

+ ∑ ∑ ∑ 𝑓ℎℎ′𝑣 .

𝐻

ℎ′=1

𝐻

ℎ=1

𝑋. 𝑙ℎℎ′𝑣 + ∑ ∑ ∑ ∑ 𝑐𝑟𝑖𝑣𝑝. 𝑍. 𝑙𝑟𝑖𝑣𝑝

𝑅

𝑟=1

𝐼

𝑖=1

𝑃

𝑝=1

𝑉

𝑣=1

𝑉

𝑣=1

+ ∑ ∑ 𝑎𝑖𝑐 . 𝑌. 𝑙𝑖𝑐

𝐼

𝑖=1

𝐶

𝑐=1

 

 

(54) ∑ 𝑤13𝑟𝑖𝑣

𝑟,𝑟∉𝑈𝑈

+ ∑ 𝑤14𝑖𝑗𝑣

𝑗,𝑖≠𝑗

− ∑ 𝑤14𝑗𝑖𝑣

𝑗,𝑖≠𝑗

− ∑ 𝑤16𝑖𝑝𝑣

𝑝

≤ 0 

(55) −𝑤17𝑖𝑝𝑣 + 𝑤18𝑖𝑝𝑣 + 𝑤16𝑖𝑝𝑣 − 𝑤21𝑖𝑝𝑣 ≤ 0 

(56) ∑ ∑ ∑ 𝑤21𝑖𝑝𝑣

𝑉

𝑣=1

𝑃

𝑝=1

𝐼

𝑖=1

≤ 1 
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Heuristics 

 

Because the set of complicated variables is used to determine cuts directly affects the number 

of iterations These solutions are traditionally found by exact or approximate methods solving 

the regular MP. For improving the quality or generating solutions faster, three approaches have 

been suggested: (1) using alternative formulations, (2) enhancing the BMP formulation, and (3) 

using heuristics to generate solutions independently or improve existing solutions. 

Researchers have found that applying a heuristic or metaheuristic method to Benders' 

approach improves performance [43]. Even though the mentioned accelerators can highly 

reduce the gap resulting from Benders decomposition, there remains a problem of insufficient 

convergence after multiple iterations. The challenge here is developing an algorithm to solve 

the proposed model efficiently, but that is what this paper seeks to accomplish.  

In order to extend the relaxed MP, Heuristics is used to create preliminary tight cuts as a 

warm-start strategy. There is no doubt that heuristic and meta-heuristic algorithms should 

pertain to the problem under study [44]. 

The meta-heuristic method is used for solving BMP, which is the standard execution of the 

Benders decomposition algorithm, to present a preliminary and feasible answer and create a cut 

based on it [45]. An essential intelligent optimization algorithm from swarm intelligence is 

particle swarm optimization (PSO). In 1995, James Kennedy and Russell C. Eberhart developed 

this algorithm based on observing animal social behavior, such as fish and birds that live in 

small and large crowds. Based on direct interaction, sharing information, and recollecting good 

memories between members of the answer population, the PSO algorithm solves the problems 

[46]. we present a computational-efficient algorithm for solving BMP, which is based on the 

principles of particle swarm optimization (PSO) [48]. 

 

Performance evaluation and computational results 
 

The result of four solution approaches is compared in this section (CPLEX, Classic Benders 

Decomposition, Pareto optimality cut and Warm-up strategy). The optimality of all problems 

is determined, and in Table 5, you will find details such as the average number of iterations and 

average running time for each case. Twenty distinct instances exist for each class. 

We randomly generated instances to assess the performance of the developed algorithms for 

a wide range of situations. Our test was composed of instances generated with the following 

parameters: 

 Number of product p ordered by the customer C, 𝑑𝑐𝑝: randomly generated number in 

the interval [10, 100]. 

 Upper bound of product p production time, 𝑢𝑏𝑖𝑝: randomly generated number in the 

interval [1000, 2000]. 

 Lower bound of product p production time, 𝑙𝑏𝑖𝑝: randomly generated number in the 

interval [300, 1500]. 

 Transport cost of the customer C towards the i-th node to meet their demand, 𝑎𝑖𝑐: 
randomly generated number in the interval [100, 300]. 

 Interval between node h and ℎ′, 𝑡ℎℎ′: randomly generated number in the interval [0.1, 

0.8]. 

 Production rate of product p in mobile facility v based on each unit of time, 𝛼𝑝𝑣:  

randomly generated number in the interval [0.1, 1]. 

 Production cost of product 𝑝 for the 𝑖 − 𝑡ℎ node by machine 𝑣 started from the depot 𝑟, 

𝑐𝑟𝑖𝑣𝑝: randomly generated number in the interval [100, 300]. 
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 Transport cost from node ℎ to ℎ′ with mobile facility 𝑣, 𝑓ℎℎ′𝑣: randomly generated 

number in the interval [150, 450]. 

 Facility capacity of the demand node i for product p, 𝑐𝑎𝑝𝑖𝑝: randomly generated number 

in the interval [40, 120]. 

 Movement radius of the costumer C, 𝑅𝑐 : randomly generated number in the interval [6, 

9]. 

 Distance between customer C, and the i-th node, where their demand is met, 𝑚𝑖𝑐 : 

randomly generated number in the interval [150,350]. 

The sizes of the cases that are used in all cases are presented in Table 2. Table 3 presents the 

number of binary variables, integer variables, continuous variables, and the number of 

constraints of each case. 

 
Table 2. Size of the cases 

Type Case 
Number of binary 

variables 

Number of Continuous 

Variables 

Number of 

integer Variable 

Number of 

Constraints 

Small 

Size 

Case 1 50 25 16 227 

Case 2 112 41 32 449 

Case 3 204 81 64 873 

Case 4 220 97 96 1097 

Case 5 508 257 400 3432 

Medium 

Size 

Case 6 710 353 576 4839 

Case 7 1210 371 500 5210 

Case 8 910 441 1080 8470 

Large 

size 

Case 9 11900 5101 13500 104520 

Case 10 25250 11001 40000 290700 

 

Table 3. Number of the variables 

Case h i r v p c 

Case 1 4 2 2 2 2 5 

Case 2 6 4 2 2 2 5 

Case 3 6 4 2 4 2 5 

Case 4 6 4 2 4 3 5 

Case 5 7 5 2 4 10 20 

Case 6 8 6 2 4 12 25 

Case 7 12 10 2 5 5 20 

Case 8 8 6 3 5 12 30 

Case 9 20 20 3 15 15 40 

Case 10 25 25 4 20 20 50 

 

Table 4. Abbreviation of different methods 

Classic Benders decomposition, without any acceleration techniques CBD 

Pareto-optimal cuts PC 

Using MOPSO for feasible answer WS 

 

A list of acceleration methods and some other abbreviations can be found in Table 4. Table 

5 contains the results of Benders decomposition applied to 8 acceleration cases with various 

acceleration techniques. The CBD and PC algorithms are ineffective in solving this problem in 

small cases. However, there are improvements in large cases. For example, it is easier to 

produce optimality cuts when PC is used. However when working with large-scale cases, WS 

is better than other acceleration methods. 
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Table 5. Comparison of CPLEX, CBD, PC and WS 

 
Average number of 

iterations 

 
Average running time (sec.) 

Optimality Gap 

 CBD PC WS  CPLEX CBD PC WS 

Case 1 3 4 1  0.134 0.909 1.29 0.166 Yes 0 % 

Case 2 5 5 1  0.181 2.63 2.05 0.22 Yes 0 % 

Case 3 6 5 1  0.332 1.887 1.8 0.386 Yes 0 % 

Case 4 6 5 2  0.33 2.42 2.07 0.28 Yes 0 % 

Case 5 5 4 2  0.37 2.6 2.2 0.32 Yes 0 % 

Case 6 11 8 3  123.752 96.73 91.23 8.75 Yes 0 % 

Case 7 15 10 6  660.84 145.63 120.2 11.41 Yes 0 % 

Case 8 21 16 9  3621 362.235 312.82 42.33 Yes 0 % 

Case 9 56 50 21  NA* 4145.63 4120.2 411.41 No 2 % 

Case 10 93 72 31  NA 8362.235 8312.82 1042.33 No 5 % 
* The time to solve this problem with this method was more than one day. 

 

Sensitivity Analysis 
 

We focus on the 𝛼𝑣𝑝 parameter due to its considerable effect on production to analyze the 

sensitivity. As was expected, the increase of the 𝛼𝑣𝑝 parameter leads to a decrease in the usage 

of the facility because an increase in this parameter leads to lower production and higher staying 

time at the node; therefore, the model is willing to move to feasibility and using other facilities 

even by increasing its costs.  

In this section, an example with two MFs is analyzed and other parameter and variable is 

similar to Case 2. In the first MF, 𝛼𝑣𝑝 is greater than the second MF. In a typical example, each 

MF meets two nodes and responded to the demand of two customers, but when the parameter 

is manipulated, the first MF only meet one node and the second MF meet another one. So, 

increasing 𝛼𝑣𝑝 leads to a decrease in the usage of the v1 facility. 

Also, the model must find an answer to meet demands in the node with other constraints 

such as production capacity due to the facility limit, time window, radial, and time intervals. 

Therefore, even with the decreased 𝛼𝑣𝑝 of each facility, another facility does not undergo much 

change to optimize the target function generally. Another important point to note is no attention 

has been paid to the production rate in different facilities but in the real world, it has to be 

calculated. 

Here the v2 is analyzed: 

 
Table 6. Sensitivity analysis 

Sum of weighted objective 

functions 

Number of nodes that 

𝒗𝟐visits. 
Tolerance of  𝜶𝒗𝟐𝒑 

𝜶𝒗𝟐𝒑 
3967446 0 +70 

3831508 1 +50 

3773031 2 0 

3772459 2 -50 

 

Conclusion  
 

A mobile facility's integrated production and distribution stages scheduling at the operational 

level are crucial for reducing operational costs and customer wait times, two critical aspects of 

a company's success. Yet, the majority of integrated production and distribution scheduling 

models analyze only tactical or strategic decisions, and only a tiny number examine integrated 

operational decisions. Therefore, this study has tried to analyze mobile facilities as an 

innovation in production and distribution scheduling at the operational level. For this, a novel 

mathematical model for the integrated production and distribution scheduling problem was 
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presented by considering some real-world attributes, which lead to a decrease in customer wait 

time alongside the costs. We propose Benders decomposition algorithm to solve the issue. 

Benders decomposition's two computational enhancements are also made, namely, the Pareto 

optimality cut and warm-up start heuristic. Based on the computational results, these 

acceleration strategies improve Benders decomposition efficiency for handling large instances.   

We can apply this model to all producers and distributors of perishable commodities with 

expiration dates, such as dairy products, pharmaceuticals, chemicals, and masks produced for 

our country's citizens during this pandemic. 
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