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Abstract  

In several statistical process monitoring applications, it is possible to determine the 

quality of a product or process using a linear or nonlinear regression relationship 

called "profile". Basically, standard monitoring methods involve two phases: Phase 

I and II. Usually, there is a general assumption about knowing the process 

parameters; yet, this condition is not met in several applications, and parameter 

estimation takes place using the in-control data set gathered in Phase I. The present 

study evaluates and compares some Phase II control chart approaches to monitor 

the second-order polynomial profiles when the parameters of the process are 

estimated. These methods include Orthogonal, MEWMA and dEWMA-OR control 

charts. Each control chart performance is measured concerning ARL, SDRL, 

AARL and SDARL metrics using the Monte Carlo simulation approach. The results 

showed that parameter estimation strongly affects the in-control and out-of-control 

performance of control charts, particularly in the case of using only a few Phase-I 

samples for the parameter estimation. Moreover, the superior overall performance 

of the Orthogonal method rather than the other competing methods is shown. 

Furthermore, we concluded that the F estimation method leads to better control 

chart performance in Phase II. 
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Introduction  
 

The profile stability during the time is monitored using control charts. Profiles are classified 

based on the structure of the association of the explanatory and the response variables, which 

are monitored by different methods in Phase I and Phase II [1]. 

Phase I is a retrospective analysis that aims at determining the process stability and 

parameter estimation. Nevertheless, Phase II analysis aims at prompt detection of the changes 

in the process parameters. The use of different metrics aims to evaluate and compare control 

charts in Phases I and II. In Phase I, a commonly used measure is the false alarm rate, indicating 

the probability of occurrence of at least one false alarm, whereas in Phase II some properties of 

the run length distribution are used for performance evaluation.  

For monitoring simple linear profile, which is a simple linear regression model between a 

response and an explanatory variable, Kang and Albin [2], Kim et al. [3], Stover and Brill [4], 

Mahmoud and Woodall [5], Mahmoud et al. [6], Mahmoud et al. [7] and Noor al-Sana et al. [8] 
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proposed some methods in Phase I or II. When there is more than one explanatory variable in 

a linear regression model, we are dealing with a multiple linear profile, which has been 

investigated by Mahmoud [9], Jensen et al. [10], Amiri et al. [11], Parker and Finley [12]. 

Moreover, Noorossana et al. [13], Eyvazian et al. [14], Ayoubi et al. [15], Zou et al. [16] 

suggested several ways to monitor multivariate linear profiles, including a linear regression 

relationship of multiple response variables with one or more explanatory variables. Nonlinear 

profiles, which are more complicated than other types of profiles due to the nonlinear regression 

relationship of response and explanatory variables, are also studied by Ding et al. [17], Williams 

et al. [18], Vaghefi et al. [19] and Williams et al. [20] by two parametric and nonparametric 

methods. 

Many investigations of Phase II profile monitoring are based on the presumption of knowing 

the in-control parameters and designing the control chart according to known parameters. This 

assumption simplifies the development and evaluation of the control chart, but in practical 

environments, there are unknown parameters of the process, requiring estimations from in-

control phase I samples. The estimator variability affects the chart performance when the 

estimated parameters are used rather than known parameters to design a control chart. Woodall 

and Montgomery [21] explicitly suggested that more work is required to examine the effects of 

estimating parameters on the performance of control charts. Many researchers have investigated 

the effects of the estimated parameters on the control chart performance, including Chen [22], 

Chakraborti [23], Albers and Kallenberg [24] Jones et al. [25,26], Maravelakis and Castagliola 

[27], Mahmoud and Maravelakis [28], Shu et al. [29], Castagliola and Maravelakis [30], Champ 

et al. [31], Castagliola et al. [32]. 

In Phase I, the estimation technique with the least effects on the control chart performance 

in Phase II is selected as the more appropriate method. Therefore, in order to evaluate this effect, 

a reasonable metric is needed. Run length (RL) represents the number of samples considered to 

achieve an out-of-control signal by the chart. Many related works have used the average run 

length (ARL) metrics to measure the parameter estimation effects on Phase II monitoring. 

However, given the skewness of run length distribution with the assumption of unknown 

process parameters, applying ARL along with standard deviation of run length (SDRL) leads 

to a better judgment of Phase II performance. On the other hand, Jones and Steiner [33] and 

Zhang et al. [34,35] used the standard deviation of ARL (SDARL) as a new performance metric. 

Taking independent phase I samples, various estimation values and consequently different in-

control ARL are obtained. Thus, a novel variability source, namely practitioner to practitioner 

variability, is added to the process that causes ARL to become a random variable. Therefore, 

the chart performance is evaluated using the mean and standard deviation of ARL. Researchers 

usually set the average of ARL (AARL) value equal to the designated in-control value of ARL 

and SDARL between 5 to 10 percent of the desired in-control ARL [36]. Obviously, in the case 

of knowing the process parameters, the SDARL value will be expectedly equal to zero. 

So far, the measurement of the parameter estimation effects on Phase II control chart 

performance in profile monitoring has been considered in a few studies. Woodall and 

Montgomery [37] proposed this subject as an issue that needs more attention. Mahmoud [38] 

considered methods suggested in the studies of Kang and Albin [2], Kim et al. [3] and Mahmoud 

et al. [7] to monitor simple linear profiles. These three methods were evaluated and compared 

using estimated parameters concerning ARL and SDRL metrics. According to the simulation 

results, the estimated parameters strongly affect the mentioned methods’ performance in Phase 

II. They also showed that a higher number of Phase I samples results in better in-control ARL, 

which should nearly equal the desired in-control ARL. However, in most of the practical 

examples, taking many samples required a great amount of cost and time. Therefore, to 

overcome this challenge, they used corrected limits wider than the original control limits 

according to known parameters. Applying corrected limits allows practitioners to take fewer 
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samples from the process when the parameters are unknown. The results of simulations 

proposed in the study of Kang and Albin [2] has a better in-control performance than other rival 

techniques, and the method proposed in the study of Mahmoud et al. [7] shows the best overall 

out-of-control performance. Aly et al. [36] selected three monitoring methods, similar to 

Mahmoud [38], and compared them based on the SDARL metric, which includes practitioner-

to-practitioner variability. As they indicated, the method of Kim et al. [3] had the smallest in-

control SDARL value, which shows the superior performance of this method rather than the 

other ones. Yazdi et al. [39] evaluated the impacts of the estimated parameters on the 

multivariate simple linear profiles. They compared three control chart approaches, including 

MEWMA, MEWMA-3 and MEWMA / 𝜒2 introduced by Noorossana et al. [13] concerning 

AARL, SDARL and CVARL metrics. The authors claimed that the CVARL metric, which was 

previously applied by Aly et al. [40] to investigate the performance of multivariate adaptive 

EWMA control chart, leads to more reliable decisions. According to the results, the estimated 

parameters significantly influence the in-control and out-of-control performance. When the 

process is out-of-control, they showed that MEWMA and MEWMA / 𝜒2 techniques have a 

better performance compared to MEWMA-3 concerning CVARL. 

The polynomial profiles, on which the present work primarily concentrates, describe a 

polynomial regression model between explanatory and response variables. Kazemzadeh et al. 

[41] introduced three methods to monitor polynomial profiles in Phase I: the change point 

approach, the F-approach as well as the 𝑇2 method. Zou et al. [42] introduced a new MEWMA 

control chart to monitor general linear profiles, which can also be applied for polynomial 

profiles monitoring in Phase II. Kazemzadeh et al.[43] investigated polynomial profiles Phase 

II monitoring using a new technique based on orthogonal transformation. Amiri et al. [44] 

provided a case study in the automotive industry. They considered a second order polynomial 

regression between the torque that an engine produced and the engine speed in revolutions/min 

when autocorrelation was present within each profile (sample). For checking the process 

stability in Phase I, they used a 𝑇2-based procedure after reducing the number of process 

parameters. They monitored Phase II using a linear mixed model method whose development 

was carried out by Jensen et al. [10]. Kazemzadeh et al. [45] considered polynomial profiles 

when autocorrelations were present between samples, suggesting two methods to monitor 

autocorrelated polynomial profiles using a first order autoregressive model (AR(1)) and 

according to time series analysis approaches. Abdella et al. [46] developed two approaches 

using a double exponentially weighted moving average (dEWMA) control chart for polynomial 

profiles Phase II monitoring, and simulations showed a desirable performance of both 

techniques. 

As far as the authors know, the impact of estimated parameters on the control charts 

performance in Phase II monitoring of polynomial profile is a research gap that has not been 

investigated, yet. In this study, two estimation methods in Phase I monitoring of polynomial 

profiles consisting of F-approach and 𝑇2 approach provided by Kazemzadeh et al. [41], are 

selected and the impact of estimated parameters on the performance of three Phase II methods 

is evaluated and compared. These methods are the MEWMA control chart that Zoe et al. 

introduced [42], the Orthogonal method that Kazemzadeh et al. introduced [43] and the 

dEWMA-OR chart proposed by Abdella et al. [46]. Selecting two estimation methods (F-

Approach and T2 Approach) is due to their superior performance than the other one. 

The main contribution of this research is summarized as follows for clarification purposes: 

  Evaluating the impact of estimating parameters in Phase I on the performance of control 

charts in Phase II for polynomial profiles, that has not been investigated for this type of 

profile so far. 

 Using AARL and SDARL metrics with better performance evaluation for evaluating 

the in-control performance 
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 Investigate the effect of sample size for estimating parameters in phase I on Phase II 

methods performance 

 Determining a proper method for estimating parameters in phase I of polynomial profile 

that leads to better performance of Phase II control charts 

 Determining proper methods to monitor phase II polynomial profile in the case of 

parameter estimation in phase I 

The present article has the following structure: Section 2, presents some control charts to 

monitor polynomial profiles in Phase I and II. Section 3 evaluates the effect of estimated 

parameters on the performance of selected methods. Finally, Section 4 summarizes conclusions, 

along with suggestions concerning further research. 

 

Control charts to monitor polynomial profiles in Phase I and II 
 

A polynomial profile of p order with only one explanatory variable is defined as follows: 

 
𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋

2 +⋯+ 𝛽𝑝𝑋
𝑝 + 𝜀                                                                               (1) 

 

For each sample, the ith observation is determined in the form of (𝑥𝑖𝑗 , 𝑦𝑖𝑗) where 𝑦𝑖𝑗 follows 

the following relationship with explanatory variable: 

 
𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖𝑗 + 𝛽2𝑋𝑖𝑗

2 +⋯+ 𝛽𝑝𝑋𝑖𝑗
𝑝
+ 𝜀𝑖𝑗         𝑖 = 1,2, … , 𝑛𝑗          𝑗 = 1,2, …                       (2) 

 

In the above model, 𝜀𝑖𝑗 represents a random variable, following 𝑁~(0, 𝜎2) normal 

distribution. In most of the related studies, fixed values are assumed for the explanatory 

variable. Therefore, Eq. 2 can be rewritten such as: 

 
𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑋𝑖

2 +⋯+ 𝛽𝑝𝑋𝑖
𝑝
+ 𝜀𝑖𝑗         𝑖 = 1,2,… , 𝑛        𝑗 = 1,2, …                         (3) 

 

Phase I control charts 

 

F-Approach 

Kazemzadeh et al. [41] proposed this control chart for polynomial profiles Phase I 

monitoring and is an extension of the F method that Mahmoud and Woodall [5] suggested to 

monitor simple linear profiles. This method merges all m samples of size 𝑛𝑗  into a big sample 

with a size of 𝑁 = ∑ 𝑛𝑗
𝑚
𝑗=1 , then the following relation defines 𝑚− 1 indicator variable: 

 

𝑍𝑗𝑖 = {
1     if observation 𝑖 belongs to sample 𝑗
0                          otherwise                    

       𝑖 = 1,2, … , 𝑁         𝑗 = 1,2, . . , 𝑚 − 1       (4) 

 

Fitting of the merged data to the following model takes place: 

 
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 +⋯+ 𝛽𝑝𝑋𝑖

𝑝
+ 𝛽01𝑍1𝑖 + 𝛽11𝑍1𝑖𝑋𝑖 +⋯+ 𝛽𝑝1𝑍1𝑖𝑋𝑖

𝑝
+⋯+ 𝛽0𝑚′𝑍𝑚′𝑖 + 𝛽1𝑚′𝑍𝑚′𝑖𝑋𝑖 +⋯+

𝛽𝑝𝑚′𝑍𝑚′𝑖𝑋𝑖
𝑝
+ 𝜀𝑖                𝑖 = 1,2, … , 𝑁                                                        (5) 

 

where 𝑚′ = 𝑚 − 1 and mth sample is known as the reference sample. 

In order to estimate the parameters of this model, a polynomial regression model in Eq. 6 is 

used with a separate fitting of every sample m times. 

 
𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑥𝑖𝑗 + 𝛽2𝑗𝑥𝑖𝑗

2 +⋯+ 𝛽𝑝𝑗𝑥𝑖𝑗
𝑝
+ 𝜀𝑖𝑗      𝑖 = 1,2, … , 𝑛𝑗      𝑗 = 1, … ,𝑚                      (6) 
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The following hypothesis is tested to examine all m models equality: 

 

{
𝐻0:   𝛽01 = 𝛽11 = ⋯ = 𝛽𝑝1 = ⋯ = 𝛽0𝑚′ = 𝛽1𝑚′ = ⋯ = 𝛽𝑝𝑚′ = 0

𝐻1:                                      H0  is not true                                                   
                                        (7) 

 

The null hypothesis leads to the following reduced model: 
 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 +⋯+ 𝛽𝑝𝑋𝑖
𝑝
+ 𝜀𝑖                              𝑖 = 1,2, … , 𝑁                                              (8) 

 

The following relation shows the standard test statistic for 𝐻0 testing: 

 

𝐹 =
𝑆𝑆𝐸(𝑅)−𝑆𝑆𝐸(𝐹)/(𝑑𝑓𝑅−𝑑𝑓𝐹)

𝑆𝑆𝐸(𝐹)/𝑑𝑓𝐹
                                                                                                       (9) 

 

In which SSE(F) and SSE(R) represent the residual sum of squares obtained through model 

fitting (5) and (8). The test statistic follows F distribution with (𝑝 + 1)(𝑚 − 1) and 𝑁 − (𝑝 +
1)𝑚 degrees of freedom subject to the null hypothesis. 

Mahmoud and Woodall [5] suggested a univariate control chart for error variance monitoring 

in conjunction with the global F-test concerning linear profiles, when 𝑛𝑗 = 𝑛. Kazemzadeh et 

al. [41] extended it for variable sample sizes for polynomial profiles. In their study, the test 

statistic is 𝐹𝑗, shown in Eq. 10, which follows F distribution with  (𝑛𝑗 − 𝑝 − 1)   and  

∑ (𝑛𝑖 − 𝑝 − 1)
𝑚
𝑖≠𝑗   degrees of freedom subject to the null hypothesis.  

 

𝐹𝑗 =
((𝑛𝑗−𝑝−1)(𝑀𝑆𝐸𝑗)/𝜎

2(𝑛𝑗−𝑝−1))

(∑ (𝑛𝑖−𝑝−1)
𝑚
𝑖≠𝑗  𝑀𝑆𝐸𝑖/𝜎

2∑ (𝑛𝑖−𝑝−1))
𝑚
𝑖≠𝑗

                                                                                      (10) 

 

The lower and upper control limits regarding the F statistic is obtained by: 

 
𝑈𝐶𝐿 = 𝐹𝑛𝑗−𝑝−1,∑ (𝑛𝑖−𝑝−1)

𝑚
𝑖≠𝑗 ,𝛼 2⁄

                 𝐿𝐶𝐿 = 𝐹𝑛𝑗−𝑝−1,∑ (𝑛𝑖−𝑝−1)
𝑚
𝑖≠𝑗 ,1−𝛼 2⁄

                           (11) 

 

T2 Approach 

Kazemzadeh et al. [41] introduced another Phase I method to monitor polynomial profiles, 

known as T2 control chart and using the following relation to obtain the chart statistic: 

 

𝑇𝑗
2 = (�̂�𝑗 − �̅̂�)

𝑇 Σ̂−1 (�̂�𝑗 − �̅̂�)                                                                                                  (12) 

 

where �̂�𝑗 is the estimation of profile parameters for sample j, which is obtained using the least 

squares method as = (𝑋′𝑋)−1 𝑋′𝑌  where X and Y represent the observation matrix and the 

response vector, respectively. �̅̂� is the average vector of �̂�𝑗s over m samples as �̅̂� =
1

𝑚
∑ �̂�𝑗
𝑚
𝑗=1 . 

Estimation of the covariance matrix takes place according to successive differences in 

parameter estimators. Williams et al. [18] described the vector �̂�𝑖 as �̂�𝑖 = �̂�𝑖+1 − �̂�𝑖 , 𝑖 =
1,2, … ,𝑚 − 1. Therefore, �̂� is a (𝑚 − 1)  ∗  (𝑝 +  1) matrix which is obtained according to 

Eq. 13. 

 

�̂� =

[
 
 
 
�̂�1
𝑇

�̂�2
𝑇

⋮
�̂�𝑚−1
𝑇 ]

 
 
 
                                                                                                                             (13) 
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They estimated the variance-covariance matrix by 𝑆 =
𝑉𝑇×𝑉

2(𝑚−1)
 and calculated the chart 

statistic as follows: 

 

𝑇𝑗
2 = (�̂�𝑗 − �̅̂�)

𝑇 𝑆−1 (�̂�𝑗 − �̅̂�)                                                                                                 (14) 

 

A specified value of Type I error probability is obtained by selecting the upper control limit 

for this control chart. 

 

Phase II 

 

MEWMA method 

To simultaneously monitor all parameters of general linear profiles, such as polynomial 

profiles, in Phase II, Zoe et al. [42] suggested using a multivariate exponentially weighted 

moving average (MEWMA) control chart, introduced firstly in the study of Lori et al. [47]. In 

this method, for each sample j, 𝑍𝑗(𝛽) and 𝑍𝑗(𝜎) are calculated according to Eqs. 15 and 16. 

 
𝑍𝑗(𝛽) = (�̂�𝑗 − 𝛽)/𝜎                                                                                                                  (15) 

𝑍𝑗(𝜎) = ∅
−1{𝐹(

(𝑛−𝑝−1)�̂�𝑗
2

𝜎2
 ; 𝑛 − 𝑝 − 1)}                                                                                (16) 

 

where �̂�𝑗 = (𝑋′𝑋)
−1𝑋′𝑦𝑗, �̂�𝑗

2 =
1

𝑛−𝑝−1
(𝑌𝑗 − 𝑋�̂�𝑗)

𝑇 (𝑌𝑗 − 𝑋�̂�𝑗), ∅
−1(. ) represents the standard 

normal cumulative distribution function inverse and 𝐹(. ;  𝜈) represents the chi-squared 

distribution function having 𝜈 freedom degrees. 

𝑍𝑗 vector is determined as ( 𝑍𝑗
′(𝛽), 𝑍𝑗(𝜎))

′ , which is a (𝑝 + 2)-variate random vector and 

has a multivariate normal distribution with zero mean vector and covariance matrix of Σ =

[(𝑋′𝑋)
−1 0

0 1
] for an in-control process. Accordingly, 𝑊𝑗 statistic is calculated for each sample 

as follows: 

 
𝑊𝑗 = 𝜆𝑍𝑗 + (1 − 𝜆)𝑊𝑗−1                 𝑗 = 1,2, …                                                                          (17) 

 

where 𝑊0 represents a (𝑝 + 2)-dimensional starting vector and 𝜆 indicates the smoothing 

constant (0 < 𝜆 ≤ 1). Finally, 𝑈𝑗 statistic is calculated as follow: 

 
𝑈𝑗 = 𝑊′𝑗  Σ

−1 𝑊𝑗                                                                                                                      (18) 

 

The chart signals when 𝑈𝑗 > 𝐿
𝜆

2−𝜆
, where selection of 𝐿 > 0 aims at achieving a certain in-

control ARL. 

 

Orthogonal technique 

In this method that Kazemzadeh et al. [43] introduced, the transformation of polynomial 

regression into orthogonal polynomial regression takes place. So, there are independent 

regression parameters and they can be monitored, independently. However, applying this 

technique can be criticized in the case of studying a high-order polynomial profile (for example 

when 𝑝 > 2) because of too many charts required to monitor the process. In the case of an in-

control process, the transformed regression models in Phase II can be written in the following 

form: 
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𝑦𝑖𝑗 = 𝐵0𝑃0(𝑥𝑖) + 𝐵1𝑃1(𝑥𝑖) + 𝐵2𝑃2(𝑥𝑖) + ⋯+ 𝐵𝑝𝑃𝑝(𝑥𝑖) + 𝜀𝑖𝑗                                               (19) 

 

where 𝑃𝑢(𝑥𝑖) shows a uth order orthogonal polynomial described as follow: 

 
∑ 𝑃𝑟(𝑥𝑖)𝑃𝑠(𝑥𝑖)
𝑛
𝑖=1 = 0              𝑟 ≠ 𝑠                 𝑟, 𝑠 = 0,1, … , 𝑝                                                      (20) 

𝑃0(𝑥𝑖) = 1                    𝑖 = 1,2, … , 𝑛            

 

The least squares estimator of 𝐵𝑙𝑗 is: 
 

�̂�𝑙𝑗 =
∑ 𝑃𝑙(𝑥𝑖)𝑦𝑖𝑗
𝑛
𝑖=1

∑ 𝑃𝑙
2(𝑥𝑖)

𝑛
𝑖=1

             𝑖 = 1,2, … , 𝑛        j = 1,2, …       l = 0,1, … , p                                  (21) 

 

Using separate EWMA charts for monitoring profile parameters, chart statistic is calculated by: 

 
𝐸𝑊𝑀𝐴𝑙(𝑗) = 𝜆�̂�𝑙𝑗 + (1 − 𝜆)𝐸𝑊𝑀𝐴𝑙(𝑗 − 1)               𝑗 = 1,2, …                                         (22) 

 

where 𝜆 is smoothing constant and 𝐸𝑊𝑀𝐴𝑙(0) = 𝐵𝑙 
The following relation shows the upper and lower control limits for the chart statistic: 

 

𝐿𝐶𝐿 = 𝐵𝑙 − 𝐾𝑙√
𝜆

(2−𝜆)
 .

𝜎2

∑ 𝑃𝑙
2(𝑥𝑖)

𝑛
𝑖=1

𝑈𝐶𝐿 = 𝐵𝑙 + 𝐾𝑙√
𝜆

(2−𝜆)
 .

𝜎2

∑ 𝑃𝑙
2(𝑥𝑖)

𝑛
𝑖=1

                                                                                              (23) 

 

In which, the selection of 𝐾𝑙(> 0) aims at achieving a certain in-control ARL. 

Based on the approach that Crowder and Hamilton [48] introduced, the EWMA statistic, and 

the following relations are used to obtain the upper control limit to monitor the error variance: 

 
𝐸𝑊𝑀𝐴𝐸(𝑗) = max{𝜆(𝑀𝑆𝐸𝑗 − 1) + (1 − 𝜆)𝐸𝑊𝑀𝐴𝐸(𝑗 − 1), 0}      𝑗 = 1,2, …                     (24) 

𝑈𝐶𝐿 = 𝐿𝐸√
𝜆 𝑉𝑎𝑟(𝑀𝑆𝐸𝑗)

2−𝜆
                                                                                                             (25) 

 

where 𝐸𝑊𝑀𝐴𝐸(0) = 0 , 𝑀𝑆𝐸𝑗 = (∑ 𝑒𝑖𝑗
2𝑛

𝑖=1 )/𝑛, 𝑉𝑎𝑟(𝑀𝑆𝐸𝑗) =
2𝜎4

𝑛
 and the selection of 𝐿𝐸 (>0) 

aims at achieving a certain in-control ARL. 

For a second-order polynomial regression and the case of equally-spaced levels of x, 

Kazemzadeh et al. [43] obtained the regression parameters of the transformed model according 

to the regression parameters of the original model by: 

 

{
 
 

 
 𝐵2 =

𝛽2𝑑
2

𝜆2
                                                     

𝐵1 =
𝑑

𝜆1
(𝛽1 + 2𝛽2�̅�)                                

𝐵0 = 𝛽0 + �̅�𝛽1 + [�̅�
2 + (

𝑛2−1

12
)𝑑2] 𝛽2

                                                                                 (26) 

 

Where regression method in the original model is least squares and 𝑑 denotes the distance of 

the x levels, and 𝜆𝑗𝑠  have constants values. This method develops the step shifts occurring in 

the transformed model parameters and results in faster detection in Phase II. 

 

dEWMA-OR method 

Basically, Phase II profile monitoring methods performance according to EWMA statistic 

in detecting small process shifts is remarkable. Abdella et al. [46] used the double EWMA 
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(dEWMA) statistic that Shamma et al. [49] proposed, with less variability and greater 

smoothing properties compared to the EWMA chart [49]. In the dEWMA-OR method, the 

orthogonal model is used instead of the original polynomial profile, and each parameter is 

monitored by a separate dEWMA chart. This technique is a modified version of the Orthogonal 

method that Kazemzadeh et al. [43] introduced. The dEWMA chart statistics for monitoring 𝑏𝑙 
in jth sample is as follows. 

 

𝑑𝐸𝑊𝑀𝐴𝑏𝑙(𝑗) = 𝜆2
(𝑏𝑙) 𝐸𝑊𝑀𝐴𝑏𝑙(𝑗) + (1 − 𝜆2

(𝑏𝑙)) 𝑑𝐸𝑊𝑀𝐴𝑏𝑙(𝑗−1)             𝑙 = 0,1, … , 𝑝 

where 

𝐸𝑊𝑀𝐴𝑏𝑙(𝑗) = 𝜆1
(𝑏𝑙) 𝑏𝑙𝑗 + (1 − 𝜆1

(𝑏𝑙)) 𝐸𝑊𝑀𝐴𝑏𝑙(𝑗−1)              𝑗 = 1,2, …                                (27) 

 

where 𝜆1
(𝑏𝑙), 𝜆2

(𝑏𝑙) ∈ (0,1) are the smoothing constants and 𝑑𝐸𝑊𝑀𝐴𝑏𝑙(0) = 𝐸𝑊𝑀𝐴𝑏𝑙(0) = 𝐵𝑙. 

Calculation of the upper and lower control limits for the dEWMA is as follows: 

 

𝐿𝐶𝐿 = 𝐵𝑙 − 𝐿𝑙√𝜎𝑑𝐸𝑊𝑀𝐴(𝑏𝑙)
2             

𝑈𝐶𝐿 = 𝐵𝑙 + 𝐿𝑙√𝜎𝑑𝐸𝑊𝑀𝐴(𝑏𝑙)
2                                                                                                      (28) 

 

where 𝐿𝑙 > 0 is the sigma level and 𝜎𝑑𝐸𝑊𝑀𝐴(𝑏𝑙)
2  represents the 𝑑𝐸𝑊𝑀𝐴𝑏𝑙 statistic variance.  

In a polynomial profile where 𝜆1
(𝑏𝑙) = 𝜆2

(𝑏𝑙) = 𝜆, the following shows estimation of the 

asymptotic 𝑑𝐸𝑊𝑀𝐴𝑏𝑙 statistic variance: 

 

𝜎𝑑𝐸𝑊𝑀𝐴(𝑏𝑙)
2 = 𝜎(𝑏𝑙)

2 𝜆(2−2𝜆+𝜆2)

(2−𝜆)3
                                                                                                  (29) 

 

where the variance of the least square estimator of 𝑏𝑙 (𝜎(𝑏𝑙)
2 ) is obtained by: 

 

𝜎(𝑏𝑙)
2 =

𝜎2

∑ 𝑃𝑙
2(𝑥𝑖)

𝑛
𝑖=1

                                                                                                                        (30) 

 

For monitoring error variance, Abdella et al. [46] proposed another univariate dEWMA chart 

with following statistics: 

 
𝑑𝐸𝑊𝑀𝐴𝐸(𝑗) = 𝑀𝑎𝑥{𝜆2𝐸  𝐸𝑊𝑀𝐴𝐸(𝑗) + (1 − 𝜆2𝐸)𝑑𝐸𝑊𝑀𝐴𝐸(𝑗−1) , 0} 

𝐸𝑊𝑀𝐴𝐸(𝑗) = 𝜆1𝐸(𝑀𝑆𝐸𝑗 − 1) + (1 − 𝜆1𝐸)𝐸𝑊𝑀𝐴𝐸(𝑗−1)                                                           (31) 

 

𝜆1𝐸 and 𝜆2𝐸 are smoothing parameters that are always considered as constant values. 

The method obtains the upper control limit as follows: 

 

𝑈𝐶𝐿𝐸 = 𝐿𝐸√𝜎𝑑𝐸𝑊𝑀𝐴(𝐸)
2                                                                                                           (32) 

 

where 𝐿𝐸 > 0 is the sigma level, and 𝜎𝑑𝐸𝑊𝑀𝐴(𝐸)
2  represents the 𝑀𝑆𝐸𝑗 variance. When 𝜆1𝐸 =

𝜆2𝐸 = 𝜆𝐸, the following equation shows the estimation of the 𝑀𝑆𝐸𝑗  asymptotic variance: 

 

𝜎𝑑𝐸𝑊𝑀𝐴(𝐸)
2 =

𝜆𝐸(2−2𝜆𝐸+𝜆𝐸
2 )

(2−𝜆𝐸)
3  𝜎𝑀𝑆𝐸

2 = 
2𝜆𝐸𝜎

4(2−2𝜆𝐸+𝜆𝐸
2 )

𝑛(2−𝜆𝐸)
3                                                                      (33) 
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The main problem of the dEWMA-OR method, like the Orthogonal method, is the large 

number of control charts when a large order polynomial profile is under study. 

 

The estimated parameters’ impacts on the performance of phase II 

polynomial profile approaches 
 

To evaluate the estimated parameters' effects on Phase II performance, a second order in-control 

polynomial profile model is considered as Eq. 34. Montgomery et al. [50] don’t recommend 

using a higher order polynomial profile, unless with justifying reasons or excuses. 

 
𝑦𝑖𝑗 = 3 + 2𝑥𝑖 + 𝑥𝑖

2 + 𝜀𝑖𝑗          𝑖 = 1,2, … ,10         𝑗 = 1,2, …                                                 (34) 

 

According to the above model, 𝛽0 = 3, 𝛽1 = 2 and 𝛽2 = 1. 

 𝑦𝑖𝑗 denotes the value of the response variable in ith observation of jth sample. 𝜀𝑖𝑗 is 

independent error variable with a distribution of 𝑁 ~ (0,1). The values of the explanatory 

variable (𝑥𝑖) are assumed to be fixed in all samples as 𝑥 =  1, 2, 3, … , 10.  

Note that for decreasing the effect of multicollinearity in MEWMA method, subtraction of 

average x-values takes place from every x. So, x values of -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 

2.5, 3.5, 4.5 can be obtained. 

The smoothing parameter (𝜆) for all methods is considered as 0.2. This value is usually 

applied in many related researches due to proper performance in detecting small shifts in Phase 

II such as [42], [43], and [46]. 

 

The in-control performance 

 

In this study, different values of sample size (m) such as 30, 100, 500, 1000, 2000 and 5000 are 

selected for Phase I estimation. Also, different metrics, including ARL, SDRL, AARL and 

SDARL are calculated using the Monte Carlo simulation method for the evaluation of 

parameter estimation effects on the performance of Phase II. The following presents the steps 

of the suggested Monte Carlo simulation algorithm: 

1. Control limits of underlying control charts are chosen so that produce an overall in-

control 𝐴𝑅𝐿 = 200 with the assumption of knowing the parameters. Kazemzadeh et al. 

[43] and Abdella et al. [46] introduced these limits which are shown in Table 1. 

2. m profiles are generated based on known parameters using 𝑁 ~ (0,1) and the estimation 

of profile parameters is carried out using the F or 𝑇2 method. 

3. A random sample with 𝑛 =  10 is generated indicating a new sample in Phase II. 

4. Calculation of the chart statistic is according to the estimated parameters and 

comparisons with the control limits as Table 1 shows. 

5. Repetition of steps 3-4 continues until sending an out-of-control signal by the chart, and 

run length (RL) is recorded. 

6. Repetition of steps 3-5 continues 10,000 times, obtaining in-control ARL and SDRL 

values. 

Parameter estimation in Phase 1 was performed using different sample sizes (m) such as 30, 

100, 500, 1000, 2000 and 5000, and the results were compared to examine the sample size 

effects on the performance of Phase II monitoring approaches. Note that, the simulation 

replication is set as 10000. A similar approach has been applied by Kazemzadeh et al. [44], 

Mahmoud [38], Aly et al. [36], Yazdi et al. [39]. 

In addition to the ARL and SDRL metrics, the use of the average and ARL (AARL and 

SDARL) standard deviation aims at evaluating the parameter estimation effects, which reflects 

the practitioner-to-practitioner variations, as Zhang et al. [34] have argued. For this aim, in Step 
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2, Phase I estimates are generated and repetition of steps 2-6 continues 10,000 times. Then, the 

AARL and SDARL values are calculated. 

 
Table 1. Control limits of three competing methods under in-control condition 

UCL LCL Parameter Method 

1.5389 - - MEWMA 

52.827 52.173 𝛽0 

Orthogonal 
6.5569 6.4431 𝛽1 
2.0899 1.9101 𝛽2 

0.53517 - 𝜎 

52.7092 52.2908 𝛽0  

 

dEWMA-OR 
6.5364 6.4636 𝛽1 

2.0576 1.9424 𝛽2 

0.2959 - 𝜎 

 

Tables 2 and 3 summarized the values of in-control AARL and SDARL based on different 

m values. The last column shows the results when parameters are known, which mean that we 

can assume that an infinite (∞) number of in-control samples are available in Phase I. In-control 

AARL and SDARL trends for all m values using estimated parameters by F and 𝑇2 methods 

are shown in Figs. 1 and 2. 

 
Table 2. Values of in-control AARL concerning three competing methods in the case of using m Phase I 

samples for unknown parameter estimation 

m Estimation 

method 
Control chart 

∞ 5000 2000 1000 500 100 30 

200.2 
199.17 197.55 194.68 189.54 157.77 109.39 F 

Orthogonal 
186.33 171.40 152.93 130.70 75.60 39.42 T2 

200.2 
199.86 199.77 198.38 197.85 191.37 181.80 F 

MEWMA 
199.53 199.51 198.07 197.32 190.38 177.31 T2 

199.8 
199.48 196.94 193.00 185.38 145.07 92.35 F 

dEWMA-OR 
181.73 162.92 144.21 120.58 62.71 30.60 T2 

 

 

Table 3. In-control SDARL values for three competing methods in the case of using m Phase I samples for 

unknown parameter estimation 

m Estimation 

method 
Control chart 

∞ 5000 2000 1000 500 100 30 

2.2 
2.87 3.57 5.24 8.70 26.84 41.27 F 

Orthogonal 
16.90 30.19 42.43 53.63 61.56 65.71 T2 

3.8 
7.25 10.06 13.91 18.84 37.09 51.41 F 

MEWMA 
7.83 10.10 13.74 19.38 37.51 53.39 T2 

2.8 
3.06 4.35 6.90 11.77 31.85 43.62 F 

dEWMA-OR 
21.84 36.66 47.95 56.99 60.48 65.04 T2 
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Fig. 1. AARL comparison of three rival methods concerning various m values 

 

 
Fig. 2. SDARL comparison of three rival methods concerning various m 

 

Results of simulations show that the in-control performance of control charts based on 

estimated parameters is not the same as the case of known profile parameters. So, Phase I 

parameter estimation strongly affects the performance of Phase II monitoring. According to Fig 

1, it can be inferred that using both estimation methods, the MEWMA technique has a better 

performance compared to other competing approaches due to larger values of AARL. 

Table 3 summarized the values of SDARL regarding various m values, showing that by 

increasing m, SDARL values decrease. Table 3 and Fig 2 show that Orthogonal and dEWMA-

OR methods have slightly similar performance in terms of SDARL values in the case of 

estimating the profile parameters using the F method, however, the Orthogonal method 

generally gives the best SDARL performance for all m values. When 𝑇2 method is applied for 

parameter estimation, the MEWMA chart performance is superior to other competing ones.  

According to Table 2, the MEWMA method gives the best AARL performance out of the 

competing charts when the profile parameters are estimated by either F or 𝑇2 approaches. It 
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should be mentioned that the simulation studies have also been considered based on ARL metric 

and this result is similar to ARL-based results. Based on the results in Table 2, higher values of 

in-control ARL and AARL are obtained by an increase in m value. It is because of decreasing 

variability in the estimators sampling distribution, which occurs by an increase in m. When 

there is an increase in m, there is a decrease in estimation error and the values of in-control ARL 

and AARL come to the designated value, which justifies taking larger values of m when 

estimated parameters are used instead of known parameters. 

 

The out-of-control performance 

 

Out-of-control performance evaluation for the mentioned monitoring methods according to 

estimated parameters also plays a very important role in detecting the shifts (changes) in the 

process as soon as possible. For this aim, in the first profile generated in Phase II, according to 

Step 3 of the simulation algorithm presented in Section 3.1, some sustained step shifts are 

created in one of the parameters 𝛽0, and σ. Note that, according to the known parameters, the 

out-of-control ARL tends to 1 and the SDRL tends to standard deviation of the geometric 

distribution. 

For an out-of-control condition, the control limits should be found according to the known 

parameters and chart statistic should be obtained according to the estimated parameters. 

Therefore, under such kind of set up, an out-of-control signal is due to two variability sources, 

including the effect of parameter estimation plus assignable causes. To compare performance 

fairly, the design of the control charts has to produce a same in-control desired ARL. As 

previously stated, in-control ARL, using estimated parameters, is smaller than the expected one 

according to known parameters. As shown by the results, to achieve the specified ARL, too 

many Phase I samples will be required for estimating parameters, while collecting samples 

requires a long time. To put is another way, long waiting for data collection may result in shifts 

in profile parameters that will affect the performance of the in-control ARL. To solve this 

problem, wider control limits are applied, called “corrected limits”. The corrected limits are 

recently used in some previous research related to the effects of estimating parameters, 

including Quesenberry [51], Jones [52], Champ et al. [31] and Mahmoud and Maravelakis [53]. 

Corrected limits are calculated due to the parameter estimation variability. Using corrected 

limits for an out-of-control process ensures that the chart provides an out-of-control signal only 

due to the profile parameters shifts, not the estimation variability. Hence in Step 1 of the 

proposed simulation algorithm, the corrected limits are used for comparison of the out-of-

control performance of the three rival methods. We obtained the corrected limits by 10,000 

replications of the Monte Carlo simulation discussed in Section 3.1 for each monitoring method 

to obtain 𝐴𝑅𝐿0 ≅ 200.  Tables 4-6 summarize the simulated corrected limits values according 

to m in-control Phase I samples. 
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Table 4. Corrected limits for Orthogonal method to obtain ARL = 200 when using F and 𝑇2estimation methods 

for the unknown parameter estimation based on different m values 

Estimation method (Phase I) 

Control 

Limits 
Method T2 F 

m m 

500 100 30 500 100 30 

52.846 52.900 52.968 52.830 52.837 52.855 UCL 
Control chart for 

monitoring 𝛽0 
52.142 52.135 52.121 52.170 52.162 52.150 LCL 

0.53998 0.55012 0.55130 0.53800 0.54170 0.54450 UCL 
Control chart for 

monitoring 𝜎 

 

Table 5. Corrected limits for dEWMA-OR method in order to achieve ARL = 200 when using F and 

𝑇2estimation methods for the unknown parameter estimation based on different m values 

Estimation method (Phase I) 

Control 

Limits 
Parameter 

T2 F 

m m 

500 100 30 500 100 30 

52.7361 52.7565 52.7699 52.7130 52.7209 52.7317 UCL 
Control chart for 

monitoring 𝛽0 
52.2702 52.2445 52.2201 52.2875 52.2791 52.2692 LCL 

0.3062 0.3095 0.3285 0.2968 0.2980 0.3161 UCL 
Control chart for 

monitoring 𝜎 

 
Table 6. Corrected limits for MEWMA method in order to achieve ARL = 200 when using F and 𝑇2estimation 

methods for the unknown parameter estimation based on different m values 

  

 

 

 

 

 

  

A comparison of the out-of-control performance of rival methods has been provided 

concerning ARL and SDRL, and Tables 7 and 8 show the results of simulations. AARL and 

SDARL metrics do not differ much in choosing the superior methods. The size and type of the 

shifts are the same as the one used in Kazemzadeh et al. [43]. 

The last six rows of Tables 7 and 8 show the values of the out-of-control ARL and SDRL in 

the case of obtaining the charts statistic according to known parameters.  The simulated results 

show that using estimated parameters not only affects the in-control performance but has strong 

impacts on the out-of-control ARL and SDRL performance of all rival approaches. Obviously, 

we expect that both metric decreases with an increase in the m value which agrees with 

numerical simulation results. 

 

 

 

  

 

Estimation method 

Control Limits 
T2 F 

m m 

500 100 30 500 100 30 

1.5410 1.5510 1.5775 1.5409 1.5501 1.5720 UCL 
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Table 7. Values of out-of-control ARL and SDRL for three rival methods in the case that 𝛽0 changes into 𝛽0 +
𝛿𝜎, when using F and 𝑇2estimation methods for the unknown parameter estimation based on different m values 

    Phase I 

method 
metric 

Phase II 

method 
m 

1 0.9 0.2 0.1 

2.55 2.85 39.63 163.52 F  

ARL 
Orthogonal 

30 

2.82 3.19 169.30 192.18 𝑇2 

0.70 0.84 33.42 155.92 F  

SDRL 1.60 1.87 193.39 218.62 𝑇2 

2.76 3.10 32.40 110.76 F  

ARL 
MEWMA 

2.71 3.03 33.95 125.41 𝑇2 

1.05 1.31 40.71 127.82 F  

SDRL 0.72 0.85 40.26 149.70 𝑇2 

4.15 4.48 29.70 105.77 F  

ARL dEWMA-

OR 
4.61 4.99 48.61 184.18 𝑇2 

0.79 0.89 21.46 94.71 F  

SDRL 0.79 0.91 38.62 256.98 𝑇2 

2.38 2.64 29.24 97.88 F  

ARL 
Orthogonal 

500 

2.48 2.76 35.30 131.29 𝑇2 

0.61 0.74 23.48 91.55 F  

SDRL 0.69 0.82 29.35 125.04 𝑇2 

2.63 2.93 29.91 94.55 F  

ARL 
MEWMA 

2.63 2.93 30.35 97.07 𝑇2 

0.68 0.80 24.97 92.69 F  

SDRL 0.67 0.80 25.69 95.02 𝑇2 

3.96 4.25 24.05 78.83 F  

ARL 
 

dEWMA-

OR 

4.24 4.55 31.00 124.84 𝑇2 

0.58 0.64 16.23 68.31 F  

SDRL 0.58 0.68 22.08 115.09 𝑇2 

2.35 2.62 28.32 91.47 - ARL 
Orthogonal 

∞ 

0.59 0.73 22.37 85.70 - SDRL 

2.61 2.93 29.81 92.11 - ARL 
MEWMA 

0.65 0.80 24.16 85.97 - SDRL 

3.90 4.19 22.72 71.28 - ARL dEWMA-

OR 0.55 0.62 14.78 62.86 - SDRL 

 

Table 7 shows the estimated values of out-of-control ARL and SDRL for various changes 

from 𝛽0 into 𝛽0 + 𝛿𝜎. Based on known parameters, the dEWMA-OR approach had a more 

acceptable performance compared to others in the detection of small shifts concerning ARL. 

However, by increasing the shift size, the Orthogonal method has the smallest ARL values for 

medium to large shifts (δ≥0.4). In addition, it is inferred based on simulation results that the 

dEWMA-OR approach performs better compared to other competing methods in terms of 

SDRL. Applying the F estimation method and for all values of m, the dEWMA-OR method has 

the best ARL and SDRL performance compared to others for detecting small shifts. For large 

shift sizes, the Orthogonal method outperforms the dEWMA-OR method. On the other hand, 

using the T2 estimation method, the MEWMA method has the best ARL values for small to 

medium size of m, but for large sample size (for example m = 500), the Orthogonal method 

outperforms the MEWMA method in detecting medium to large shifts. Moreover, MEWMA 

and dEWMA-OR methods perform better than the Orthogonal method based on the SDRL 

metric for all values of m. The results show that using the F method for parameter estimation 

in Phase I generally results in higher performance of control charts in Phase II. 
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Table 8. Values of out-of-control ARL and SDRL for three competing approaches in the case that 𝝈 shifts to 𝛿𝜎, 

when using F and 𝑇2estimation methods for unknown parameter estimation based on different m values 
    Phase I 

method 
metric 

Phase II 

method 
m 

2 1.9 1.2 1.1 

1.63 1.79 13.15 41.11 F 
ARL 

Orthogonal 

30 

1.64 1.81 14.37 52.78 𝑇2 

0.71 0.82 9.80 37.22 F 
SDRL 

0.73 0.82 10.91 49.33 𝑇2 

2.22 2.46 20.10 67.25 F 
ARL 

MEWMA 
2.29 2.53 22.41 80.47 𝑇2 

0.85 0.96 21.14 87.64 F 
SDRL 

0.89 1.01 24.19 106.66 𝑇2 

2.44 2.89 12.53 34.94 F 
ARL 

dEWMA-

OR 
2.72 2.95 13.68 44.05 𝑇2 

0.71 0.79 7.02 28.77 F 
SDRL 

0.73 0.79 7.85 37.30 𝑇2 

1.61 1.78 13.07 40.67 F 
ARL 

Orthogonal 

500 

1.60 1.78 13.52 45.61 𝑇2 

0.70 0.80 9.79 36.21 F 
SDRL 

0.71 0.80 10.24 41.10 𝑇2 

2.19 2.43 15.88 46.83 F 
ARL 

MEWMA 
2.18 2.41 15.86 47.69 𝑇2 

0.83 0.93 12.02 42.61 F SDRL 

0.82 0.92 11.69 43.22 𝑇2 

2.57 2.79 11.93 32.48 F ARL 

dEWMA-

OR 

2.61 2.84 12.71 36.71 𝑇2 

0.70 0.76 6.69 25.91 F SDRL 

0.70 0.77 7.30 29.85 𝑇2 

1.59 1.75 12.94 39.45 - ARL 
Orthogonal 

∞ 

0.70 0.79 9.62 35.56 - SDRL 

2.17 2.39 15.71 46.32 - ARL 
MEWMA 

0.81 0.93 11.63 41.08 - SDRL 

2.56 2.77 11.85 32.33 - ARL dEWMA-

OR 0.69 0.76 6.61 25.00 - SDRL 

 

Table 8 summarizes the out-of-control ARL and SDRL values in the case of σ changes into 

𝛿σ. According to the results obtained, when parameters are known, the Orthogonal method 

performs uniformly better in out-of-control ARL except for small shifts. As evidence shows, 

the dEWMA-OR approach has the best performance concerning the SDRL metric. 

 In the case of profile parameter estimation by either F or T2 method in Phase I, the dEWMA-

OR method performs the best in out-of-control ARL to detect small Phase II shifts. 

Nevertheless, the Orthogonal method has a more acceptable performance in comparison to its 

rivals in the detection of larger shifts for all m values. Like the conditions of knowing the 

parameters, it is observed that the dEWMA-OR method has a better performance compared to 

its rivals concerning the SDRL metric. The ARL and SDRL values obtained based on the F 

estimation method, are smaller than those obtained for the T2 method. Therefore, when the 

profile parameters are unknown, according to all the above simulation results, it is strongly 

recommended to apply the F method for Phase I parameters estimation. 

 

Conclusion 
 

Although previous studies have deeply investigated profile monitoring, evaluating the 

parameter estimation impacts in Phase I on the control charts performance in Phase II has been 

under less attention of researchers. The present study mainly aims at investigating the 
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performance of several Phase II polynomial profile monitoring approaches in the case of 

unknown profile parameters that require estimation. We studied three Phase II monitoring 

methods, including MEWMA, Orthogonal and dEWMA-OR along with two Phase I estimation 

methods such as F and T2. The performance of mentioned monitoring methods subject to in-

control as well as out-of-control conditions was evaluated concerning the metrics of ARL, 

SDRL, AARL and SDARL.  

Simulation results showed that estimating parameters seriously affects run length 

performance in all monitoring methods during Phase II in the case of estimating the profile 

parameters according to a small to moderate number of Phase I samples. According to the study 

findings, concerning in-control ARL and AARL, the MEWMA method has a more acceptable 

performance compared to other rivals, and concerning SDARL, the Orthogonal method 

performs totally better than all others. Under out-of-control conditions, as the comparison of 

Phase II approaches regarding ARL revealed, although the dEWMA-OR method performed the 

best in the detection of small changes in 𝛽0 and σ, the Orthogonal method performed better in 

the detection of larger changes. It has been proven that applying the F method instead of the T2 

method for Phase I estimation results in better control charts performance in Phase II. In 

addition, it is also obvious that the performance of all methods improves by increasing m. 

It is suggested to investigate parameter estimation effects on the performance of Phase II 

monitoring approaches in different profile types, including nonlinear profiles. Besides, 

proposing control charts for monitoring auto correlated polynomial profiles during parameter 

estimation can be an attractive subject to study in this direction. 
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