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Abstract  

The goal of this study is to develop a model-based control chart for monitoring 

patient behavior in a staged thyroidectomy considering risk factors and clinical 

prescription. prospectively collected data are gathered from the thyroid surgery unit 

of a hospital located in Tehran, Iran for 80 staged thyroidectomy patients 

discharged from 2009 to 2013. A risk-adjusted state-space model is developed 

based on the staged thyroidectomy. Variables to be included in the model are 

determined as a part of the model building process. Performance criteria, clinical 

prescription and patient risk factors are three variable components for the model. 

The appropriate risk factors are directly involved in the model and no scoring 

system is used for the model construction. Model identification is performed in two 

steps; model order selection and parameter estimation. In the first step, Hankel 

singular value decomposition (HSVD) is used for detecting the model order and in 

the second step, unknown parameters are estimated by the prediction error 

minimization (PEM) method. For monitoring patient responses, a group individual 

(GI) control chart is introduced and applied to a real-world problem. Results 

indicate that the suggested control chart can monitor the staged thyroidectomy 

patient’s behavior with an acceptable accuracy. Also, computer-aided diagnosis 

(CAD) systems can be developed based on the proposed identification and 

monitoring method. 
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Introduction  
 

Statistical modelling is a simplified, mathematically-formalized way to approximate reality 

which makes data analysts able to understand and interpret the information more strategically. 

Monitoring is a periodic tracking of any running process by systematically gathering and 

analyzing data [1]. A substantial application of statistical modelling and monitoring is for 

surgical operation analysis. One of the surgical operations is thyroid cancer surgery and its most 

common type is thyroidectomy [2]. Sometimes, thyroidectomy is performed at two different 

stages; first, excision of the dominant lobe and removal of the second side later. This is called 

staged thyroidectomy [3]. Despite considerable attention to staged thyroidectomy accreditation, 

statistical modeling and monitoring of this process have not been addressed adequately. 

However, these techniques can help surgeons ensure surgical process quality and inform them 
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about critical events. In modelling and monitoring the staged thyroidectomy two main features 

should be considered; risk adjustment and cascade property. 

Risk adjustment includes considering the staged thyroidectomy patient’s inherent 

differences through some risk factors [4]. The use of appropriate risk factors and risk adjustment 

models play a key role in predicting costs and pays for performance (P4P) in medical centers 

[5]. Studies [6-10] applied risk adjustment for analyzing therapeutic processes. Juhnke et al. [5] 

provided a comprehensive review of papers that considered patient risk factors published from 

1980 to 2016. They divided risk score calculation systems into three categories: patient death, 

patient mortality, and patient health status risk score calculation systems. In recent years, De 

Cassai et al. [11], Howard et al. [12], and Knuf et al. [13] contributed to the development of 

such scoring systems and Zeng [14] provides some examples of performance criteria and risk 

factors widely used in some applications of HSR. 

All mentioned research used risk scores but none of them attempted to model the risk-

adjusted (RA) processes by considering the relations between the performance criteria, the 

decision variables, and the risk factors. The use of the scoring systems usually overestimates 

the operational risk [5]. Moreover, using different scoring systems leads to different results and 

consequently raises issues and problems among physicians [15]. 

For the risk-adjusted monitoring of therapeutic processes, Koestier et al. [16] discussed some 

methods. Monitoring of therapeutic processes is usually done through the use of risk-adjusted 

control charts which was first introduced by Lie et al. [17] to adjust the risk of infants who had 

Down syndrome based on their mother's age. They were followed by many researchers such as 

Alemi and Olivier [18], Cook et al. [19], Sego et al. [20], Grigg and Spiegelhalter [21], Steiner 

and Jones [22], Szarka and Woodall [23], Paynabar and Jin [24], Shojaei and Niaki [25], and 

Tian et al. [26]. In recent years, Zhang and Woodall [27, 28, 29] proposed dynamic probability 

control limits for risk-adjusted Bernoulli CUSUM control charts and evaluated the effect of 

estimation error on its performance. Sparks [30] developed a joint monitoring with the 

combination of EWMA p chart and risk-adjusted control chart. Sachlas et al. [31], Begun et al. 

[32], and Roy et al. [33] provided some examples of using risk-adjusted control charts in 

healthcare. Ali et al. [34] investigated the effect of estimation error for risk-adjusted control 

charts. Ding et al. [35] proposed a new risk-adjusted EWMA control chart for monitoring the 

continuous survival times of patients. Rafiei and Asadzadeh [36] used DEA and NSGA-II 

approach for designing a risk-adjusted CUSUM control chart. Keshavarz et al. [37] and 

Keshavarz and Asadzadeh [38] considered unmeasurable categorical influential covariates in 

designing a risk-adjusted CUSUM control chart in phase I monitoring. Kazemi et al. [39] 

proposed a risk-adjusted multivariate Tukey’s CUSUM control chart as a robust chart. Also, 

Grigg and Farewell [40], Woodall [41], Cook et al. [42], and Woodall et al. [43] reviewed the 

use of risk-adjusted control charts in health services. However, none of these methods 

comprises the cascade property which doesn’t make them suitable for monitoring staged 

thyroidectomy. 

Cascade property is a property of multi-stage processes, like the staged thyroidectomy in 

which the performance criteria of the second stage are also affected by the first stage [44]. To 

involve the inherent differences of patients in multi-stage therapeutic processes, some studies 

proposed risk-adjusted models with spotting on the cascade property. Among these studies, are 

Funatogawa et al. [45, 46], Funatogawa et al. [47], and Funatogawa and Funatogawa [48], who 

tried to model such processes using autoregressive (AR) models taking into consideration the 

mixed effects, and Funatogawa and Funatogawa [49], who proposed models based on mixed-

effects with a linear state-space approach for the therapeutic processes considering the latent 

variable. Sibanda [50] provided a graphical O/E model for such issues and Rastgoomoghadam 

et al. [51] continued to use a similar approach for modeling thyroid cancer surgery based on 

Sibanda [50]. Recently, Kazemian et al. [52] considered the risk factors of patients and used 
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the linear state-space approach to model the therapeutic process of glaucoma disease. Sogandi 

et al. [53] also proposed a method to monitor the multi-stage therapeutic processes using a linear 

state-space model and risk-adjusted control chart considering logistic regression. They used 

control charts with dynamic probability control limit (DPCL) for this purpose. The mentioned 

studies usually assumed the inherent differences of the patients randomly and did not consider 

the effects of each patient’s risk on the outcomes. In addition, their methods, due to 

consideration of many model assumptions especially for the dimensions of the model variables, 

have limited applications in the real world. 

Considering the literature review, it appears that despite few studies aimed at risk-adjusted 

modeling and monitoring multi-stage therapeutic processes, none of them meets the needs of 

staged thyroidectomy. Therefore, accurate and applicable modeling of staged thyroidectomy 

and providing a model-based control chart is a topic that requires more research to address real-

world problems. So, the aim of this study is to propose a model-based method for monitoring 

patient responses to staged thyroidectomy. A state-space model (SSM) is considered as a 

vehicle to address this issue and a group individual (GI) control chart is suggested for 

monitoring purposes. The suggested model considers the lab test error, the between stages 

transition error, the patient risk factors, and the surgery team interventions, simultaneously. 

Besides, the introduced monitoring procedure is a novel graphical approach for visual control 

of the patient response to the staged thyroidectomy. All thyroid cancer surgery units can 

evaluate and approve their therapeutic process using computer-aided diagnosis (CAD) systems 

designed based on the suggested modelling and monitoring scheme. 

The rest of the paper is organized as follows. In Section 2.1, the staged thyroidectomy 

process is described and the proposed model is presented. System identification, model 

parameters estimation and design of control chart are discussed in Section 2.2. The performance 

of the proposed method is evaluated in Section 3 and the application of the proposed method to 

a hospital data set are discussed. Finally, concluding remarks and future research areas are 

presented in Section 4. 

 

Theory 
 

Setting 

 

A state-space model is developed to simulate and forecast patient behavior using data related 

to patients who had staged thyroidectomy from 21/4/2009 to 23/10/2013 in a hospital located 

in Tehran, Iran. The condition of the data set is presented in Table A.1. For data gathering, a 

pathology request form is designed based on the thyroid cancer structured reporting protocol of 

the royal college of pathologists of Australasia [54]. Moreover, this form complies with the 5th 

national audit report of the British Association of endocrine and thyroid surgeons [55]. The 

form is presented in Table A.2. 

The serum thyroglobulin level (TG) is the main performance criterion which is considered 

as the output variable which should be monitored at each stage of the staged thyroidectomy. In 

the present study, the nonlinear behavior of the patient’s response to the treatment is captured 

by including the velocity and acceleration of TG. This is an effective way to linearize a 

nonlinear model. Therefore, in addition to TG, TG2 and TG3 statistics are also defined as output 

variables. By considering these output variables, the staged thyroidectomy can be interpreted 

as a multivariate two-stage therapeutic process. 

After a time period determined by the surgeon, patients should be treated with a certain 

amount of radioactive iodine to eliminate the remnants of cancerous tumors which were not 

removed and also those spread beyond the thyroid. The time interval between stages of surgery 

and when the radioactive iodine receive varies for different patients depending on the body 
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resistance, tumor size, invasion rate, and so on. These time intervals are input variables to be 

determined by the surgery team. Besides, variables such as relevant medical treatment, level of 

invasion, and radioactive iodine dose can also be considered as other input variables. 

Among the risk factors for the staged thyroidectomy are sex, weight, age, tumor size, 

previous thyroid operation, family history, and hyper/hypothyroidism history. In addition to the 

patient risk factors, the type of operation can also be considered as an operational risk factor. 

The schematic picture of the staged thyroidectomy, along with the output variables (y), the 

input variables (u), and the risk factors (z) are shown in Fig. 1. In Fig. 1, 𝑧𝑘 represents the kth 

risk factor, 𝑢𝑘𝑡 represents the kth input variable at stage 𝑡, and 𝑦𝑘𝑡 represents the kth output 

variable at stage 𝑡. 

 

 
Fig. 1. A representation of the staged thyroidectomy 

 

Based on the patient data set, the both values of the risk factor ‘age’ and the output variable 

‘TG’ in stage I of the staged thyroidectomy is shown for 80 patients in Fig. 2. 

 

 
Fig. 2. Simultaneous change of age and TG in stage I of the staged thyroidectomy 
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The primary use of state-space models is to estimate the values of the latent variables [56]. 

Latent variables are those characteristics of the process that cannot be directly observed and 

measured.  In other words, these characteristics of the process are latent in the various stages 

and their values can only be estimated through statistical relations. Among these variables are 

the actual condition of patients after surgery, the actual range of pain in patients, the 

unmeasurable risk factors, etc. The interested readers are invited to study Commandeur and 

Koopman [56] for more information about state-space models. 

Assuming a multivariate normal distribution for errors and considering a linear relationship 

between each surgery stage, the risk-adjusted state-space model for the staged thyroidectomy 

is defined as in Eq. 1. The structure of the model considers two key errors; the observation error 

and the transition error. 

 

 Qt = [zt … zt]8×5    ,    Mt = Qt × ut ,   gt = [ut́   zt́  Mt
́ ] 1́×21 

(1) {

yt = Cxt + ωt;                             𝑡 = 1. … . 160
xt = Ax(t−1) + Hgt + νt;                  𝑡 = 2𝑖, 𝑖 = 1,2, … ,80

xt = Ax0i + Hgt + νt;               𝑡 = 2𝑖 − 1, 𝑖 = 1,2, … ,80,
  

 

where zt (8 ×  1) is the risk factors vector at state 𝑡, ut (5 ×  1) is the input variables vector 

at state 𝑡, yt (3 ×  1) is the output variables vector at state 𝑡, xt (𝑚 ×  1) is the latent variables 

vector at state 𝑡, C (3 ×  𝑚) is the observation matrix that determines how the latent variables 

are observed as output variables, A (𝑚 ×  𝑚) is the state transition matrix governing the thyroid 

surgery stages progression dynamics, H (𝑚 ×  21) is the effect matrix that captures the effects 

of the risk factors and input variables on the latent variables, x0i (𝑚 ×  1) indicates the zero 

state latent variables vector for  patient 𝑖, νt is the state transition error vector at state 𝑡, and ωt 

is the observation error vector at state 𝑡. Moreover, 𝑖 is the counter of patients and 𝑡 is the 

counter of states. It is clear that the total number of states is twice the total number of patients 

in the two-stage thyroid cancer surgery (max {𝑡} = 2 ∗ max{𝑖}). Eq. 1 is a risk-adjusted state-

space model with periodically linear parameter varying. 

 

Statistical Methods 

 

In Eq. 1, despite the vectors gt and yt which are known for all states, the latent variable (xt) and 

the matrices C, A, and H are unknown. So, it is necessary to estimate their values. This is called 

model identification. In model identification, two steps should be taken; determining the 

dimension of the latent variable, which is called model order selection, and estimating the 

values of the model unknown parameters. 

Hankel singular values decomposition (HSVD) is used for model order selection. The 

purpose of HSVD is to divide time series into a small set of components. The full description 

of HSVD is presented by Kung [57] and Danilov and Zygliavsky [58]. According to HSVD, 

the Hankel matrix is defined as follows. 

 

(2) H = [

𝑦1 𝑦2 𝑦3 ⋯ 𝑦159 𝑦160

⋮ ⋮ ⋮ ⋱ ⋮ 0
𝑦159

𝑦160

𝑦160

0
0 ⋯
0 0

0 0
0 0

],  

 

𝑆𝑉𝑖 =
𝜆𝑖

∑ 𝜆𝑖
𝑑
𝑖=1

 indicates the value of the dimension 𝑖 for the latent variable where 𝜆𝑖 is the 𝑖th 

eigenvalue for matrix O = HH𝑇 and 𝑑 = 𝑚𝑎𝑥 {𝑖;  𝜆𝑖 > 0}. One can use 𝑙𝑛(𝑆𝑉) instead of 𝑆𝑉 
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[59]. By determining 𝑆𝑉𝑖 values, those dimensions with a low 𝑆𝑉 that do not provide significant 

information to the model are excluded. 

Prediction error minimization (PEM) is used to estimate the values of the unknown matrices. 

PEM is a numerical optimization method that tries to minimize the loss function as a weighted 

function of the parameter estimation error. The full description of PEM is provided in Lijung 

[60]. The objective function of PEM is as follows. 

 

(3) 𝑉𝑇(𝜃) =
1

2∗80
∑ ∑ eit(θ)𝑇 eit(θ)2

𝑡=1
80
𝑖=1 + 𝑅𝜃2,  

 

where 𝜃 is the set of unknown parameters, 𝑅 is the regularization parameter, and eit(θ) is the 

estimation error in state 𝑡 defined as eit(θ) = yi(t) − yî(t|θ) where yi(t) is the real vector of 

the output variables of patient 𝑖 in state 𝑡 and yî(t|θ) is the estimated vector of the output 

variables of patient 𝑖 in state 𝑡. 

PEM tries to minimize the loss function value by performing numerous replications until the 

difference of the two consecutive values is less than 𝜀0 or the number of replications is greater 

than 𝛽. In the PEM, numerical iterations are done based on the least squares estimation which 

is about estimating parameters by minimizing the squared discrepancies between observed data 

and their expected values. 

Large values of the estimation errors show that the patient response to thyroid surgery team 

prescriptions is not rational and has variation. The control chart should determine whether this 

variation should be considered as a random or assignable cause. For this purpose, a model-

based GI control chart is suggested. For designing a GI control chart, defining a statistic and a 

control limit (CL) is vital. The individual statistic used in this study is 𝑇𝑖𝑡
2 = eit

𝑇∑−1eit for 𝑖 =
1,2, . . , 80 and 𝑡 = 1 𝑎𝑛𝑑 2 where ∑ is the variance of the estimation errors. So, the group 

individual statistics is as follows. 

 

(4) 𝐺𝑋𝑖 = max
1≤𝑡≤2

(
𝑇𝑖𝑡

2−3

√2∗3
) ;    𝑖 = 1. … . 80.  

 

For a given value of type I error (α), the value of control limit for the GI control chart can 

be determined in phase I monitoring using Monte Carlo simulation. 

 

Results and discussion 
 

Three types of accuracy metrics are used for the performance evaluation of the model. The first 

metric is mean square error (MSE) defined as 𝑀𝑆𝐸 =
1

2∗80
∑ ∑ eit

𝑇 eit
2
𝑡=1

80
𝑖=1 . The second metric 

is the value of loss function (LF). This metric contains the effects of the model order, the fixed 

weights, and the regularization parameter used for estimation. The smallest MSE and LF values 

yield the better model accuracy. The third metric is a normalized root mean squared error 

(NRMSE) expressed as a percentage defined as fit percent (FP). FP is separately calculated for 

each output variable as FP = 100(1 −
‖y−ŷ‖

‖y−y̅‖
) where, y is the measured output variable, ŷ is the 

estimated output variable, y̅ is the mean of the output variable, and ‖. ‖ indicates Euclidean 

norm of the vector. FP varies between negative infinity (bad fit) to 100 (perfect fit). If the value 

of FP is equal to zero, then the model is no better than a straight line equal to the mean of the 

data. 

Fig. 3 presents 𝑙𝑛(𝑆𝑉) values for each dimension of the latent variable from HSVD. 
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Fig. 3. 𝑙𝑛(𝑆𝑉) values for each dimension of the latent variable 

 

Based on Fig. 3, there is no sudden decrease in the Hankel singular values for the staged 

thyroidectomy data. It reveals that the relation between the input variables and the output 

variables is complicated, so a high dimension latent variable is needed. The model order can be 

set as nine to obtain a proper accuracy. Table 1 presents the quality metrics by considering the 

various regularization parameters for the staged thyroidectomy patient data. 

 
Table 1. Model accuracy for various regularization parameters for the staged thyroidectomy patient data 

 Accuracy Metrics  

R MSE LF FP (TG) FP (TG2) FP (TG3) 

0 0.638 0.000 41.627 60.186 75.312 

0.01 4.680 0.005 37.034 30.310 21.633 

0.05 5.380 0.015 30.459 22.184 16.485 

0.1 5.075 0.027 36.290 26.696 18.463 

0.5 1.284 0.038 31.459 49.023 62.834 

1 1.565 0.058 24.745 42.469 59.234 

5 3.750 0.109 12.273 23.269 33.107 

10 5.244 0.157 16.157 18.243 18.705 

50 6.862 0.035 2.103 5.866 7.160 

100 6.889 0.056 2.857 5.358 6.999 

 

By adding the term 𝑅𝜃2 to the loss function, the values of the parameters which have little 

effect on the loss function are leaded to zero, so the parameters movement to the destructing 

values are stopped and the loss function matrix can be changed to a matrix with the better 

computational property. This procedure is called regularization. Since the problem is the loss 

function minimization, by considering the small value for the parameter 𝑅, fewer parameters 

lead to zero. Assuming the model order of nine, and considering various values for the 

regularization parameter, the best accuracy of the identified model is achieved by 𝑅 = 0 when 

MSE equal to 0.638 and LF is about zero. This shows that in the staged thyroidectomy data, the 

model identification method is able to estimate all the parameters and no parameter is moved 

to zero. In this situation, the accuracy metric FP is estimated as 41.63, 60.19, and 75.31 for each 

output variable, respectively. Moreover, the comparison of the estimated output variable values 

and their actual values is given in Fig. 4. Visual comparison of the estimated values and real 

values indicates that the model identification method can estimate the output variables 

reasonably. It is clear that the model fitness is well for TG2 and TG3 and acceptable for TG. 
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Fig. 4. Comparison of the estimated (dotted line) and actual (solid line) performance criteria values for the 

staged thyroidectomy patient data 

 

The control limits for various type I error are obtained using Monte Carlo simulation. In the 

simulation, the actual model order is set to 9, the output variables dimension is set to 3, the 

number of replications is set to 1000, the number of states for each patient is set to 2, the 

matrices C, A, and H are fixed with their estimated values, and the error term follows a 

multivariate normal distribution. Table 2 shows the values of the control limits for the various 

type I errors. 

 
Table 2. Values of the upper control limit for given type I error 

Type I 

error 
0.05 0.02 0.01 0.005 0.0027 0.002 0.001 

CL 4.9723 5.8319 6.6052 7.3902 7.8290 8.2038 8.8964 

 

Finally, monitoring the patient response to the staged thyroidectomy using a GI control chart 

is illustrated in Fig. 5, considering type I error equal to 0.005. Moreover, 14 other patients’ data 

are gathered from the Hospital database in 2014 which were considered as the new samples. 

Their statistics are plotted in the GI control chart as represented in Fig. 5. 

 

 
Fig. 5. GI control chart for the 80 staged thyroidectomy patient and the 14 new patient 

 

The control limit values for the GA control chart, which are stated in Table 2, are general 

and applicable for any real staged thyroidectomy data risk adjust by state-space model. For the 



Advances in Industrial Engineering, Spring 2021, 55(2): 177-189 

 185 

current 80 staged thyroidectomy patient data, it can be seen that all samples are in control. 

Therefore, the control limits are set properly. Moreover, for the 14 new patient data, the value 

of 𝐺𝐼90 and 𝐺𝐼91 exceeds the control limit and an out-of-control signal is triggered. Therefore, 

some root-cause analysis should be performed at the 2nd stage operation of the 90th patient and 

the 1st stage operation of the 91th patient. This root-cause analysis could result in surgery team 

malfunctions, lack of TG test accuracy, the occurrence of metastasis, etc. 

To the best of the authors' knowledge, there is no similar study for staged thyroidectomy. 

Comparing to the previous works on therapeutic processes [49-53], it should be noted that the 

proposed method takes into account fewer assumptions especially for the latent variable 

dimension and the number of stages of the therapeutic process. State-space models build on 

practical knowledge and physical laws of real systems [54]. One of the advantages of such a 

model is its applicability to model complex interactions between different stages of a process 

by defining a state variable. Therefore, it can state that the proposed model is more realistic 

than other alternatives. Moreover, the previous studies have mostly focused on phase II 

monitoring instead of parameter estimation in phase I. While present study tries to address 

parameter estimation and reaches better accuracy of estimation regarding the quality metrics. 

As the final point, it has to declare that the proposed model-based control chart is more 

graphical than the traditional scoring system already used. 

In practice, the proposed modelling and monitoring scheme can be used as Computer-aided 

diagnosis (CAD) systems for staged thyroidectomy and other multi-stage surgical operations. 

CAD systems are among the most important current needs of the medical community. These 

systems work as physicians’ medical assistants to improve the accuracy of prescriptions and 

evaluate the performance of the surgical team.  

 

Conclusion 
 

The monitoring scheme developed in this study increases the accuracy of therapeutic processes 

analysis, especially for the staged thyroidectomy because of considering the risk adjustment, 

the cascade property, the transmission error, and the test error simultaneously using linear state-

space modeling. For this purpose, a risk-adjusted state-space model is proposed and its model 

order and parameters are estimated using HSVD and PEM methods, respectively. For parameter 

estimation, MSE metric is equal to 0.638 and LF metric is about zero. A GI control chart is 

introduced based on the identified model. Using a model-based control chart can help 

physicians to trace the process and evaluate patient responses to prescriptions. 

For future studies, Use of other identification methods or different types of control charts 

can be a valuable area. Furthermore, Non-normal and non-linear state-space modelling of multi-

stage multivariate therapeutic processes and the use of robust group multivariate control charts 

for monitoring such processes are interesting topics for researchers. In this paper, the staged 

thyroidectomy is investigated as an example of multivariate multi-stage therapeutic processes. 

Applying the proposed method for other clinical processes may provide a wide range of 

applications for practitioners. Designing application software based on the proposed model can 

also be helpful. 
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Appendix 
 

Table A.1. Condition of patient data set from 2009 to 2013 

 Characteristics 

 Year Sex Age Weight 

Condition 

2009 5 

Men 22 

<20 2 <50 2 

2010 6 20 - 30 26 50 – 60 34 

2011 25 30 - 40 36 60 – 70 27 

Women 58 2012 22 40 - 50 12 70 – 80 15 

2013 22 >50 4 >80 2 
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Table A.2. Pathology request form for thyroid cancer 

Sex:  Male □ Female □  Weight:  Age: 

Date of First Operation:    Date of Release (After Stage I): 

Date of Iodine Radioactive Receive: 

Date of Second Operation:    Date of Release (After Stage II): 

Type of Operation: Total Thyroidectomy □ Near-total Thyroidectomy □ 

Previous thyroid Operation: Yes □ No □ 

Tumor Size: 

Relevant Medical Treatments (Intervention Before Stage I): 

 

Relevant Medical Treatments (Intervention Before Stage I): 

 

Family History: 

 

Hyper/Hypothyroidism History: 

 

Level of Invasion: Minimally □  Moderate □  Widely □ 

Number of Involved Lymph Nodes After stage I: 

Number of Involved Lymph Nodes After stage II: 

 

Serum Thyroglobulin (After Stage I): 

Serum Thyroglobulin (After Stage II): 

Iodine Radioactive Dose: 
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