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Abstract  

This study addresses an integrated problem of hierarchical facility location and network 

design, which involves multiple decisions about the opening of facilities and network links 

at various levels. We introduce a novel multi-period model that integrates these problems, 

taking into account budgetary constraints and addressing the specific challenge of 

optimizing hierarchical upgrades for urban centers and transportation network links within 

each time period. The aim is to determine the optimal upgrade levels for urban centers and 

transportation network links in each time period, subject to a predefined budget. The 

proposed model is formulated as a mixed-integer linear programming problem. To solve 

the developed model, we employ a heuristic algorithm that combines simulated annealing 

with different neighborhood structures and fix-and-optimize strategies. The efficiency of 

the proposed algorithm is demonstrated through various instances, showing superior 

performance compared to the CPLEX solver, especially for larger problem instances. 

Furthermore, we illustrate the practical utility of this model in real-world decision-making 

processes, underscoring its efficacy. By addressing these factors, the proposed model 

provides valuable insights for organizational managers and planners. 
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Introduction 

 

Facility Location and Network Design Problem(FLNDP) arise from the integration of 

considerations for facility location and network design. These problems seek to create efficient 

systems by strategically placing facilities and designing communication links that connect 

demand nodes to facility nodes. FLNDP has a wide range of applications, including distribution 

and transportation systems. The primary goal is to design a network and facility locations that 

collectively minimize the overall costs associated with transportation, facility location, and link 

construction, while ensuring effective service delivery. 

In the current competitive landscape, the strategic design of hierarchical facility location and 

transportation networks is crucial for optimizing the performance of public service systems. 

This is especially true for scenarios where budget constraints and multiple time periods are key 
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considerations. Governments prioritize achieving equitable public service distribution and 

enhancing accessibility as core objectives [1][2]. To achieve these goals, the integration of 

facility location and network design considerations is paramount. Many systems providing 

services or products inherently exhibit hierarchical structures, considered essential for 

improving the quality of public services and reducing costs [3][4].Hierarchical systems 

interconnect facilities based on the nature of services they offer, and decisions on facility 

locations consider mutual connections and various hierarchy levels. Adopting a hierarchical 

approach to facility location has been shown to yield substantial enhancements in service 

performance and cost reduction [5][6], emphasizing the critical importance of strategically 

siting facilities offering services and products.  

Furthermore, the design of transportation networks plays a pivotal role in traffic and 

transportation planning. Communication networks are crucial for accessing facilities, 

determining link quality, travel time, and ease of travel to each facility. Therefore, investigating 

network design issues in a hierarchical manner is imperative due to their substantial economic 

impact [7]. The integration of these two critical aspects into real-world problems is particularly 

crucial in engineering contexts, especially within healthcare systems where service delivery 

directly influences human lives. Beyond service quality, minimizing access time to these 

facilities is indispensable [8].Consequently, the value of high-quality links becomes 

pronounced in reducing travel time to facilities, ensuring the timely utilization of services, 

especially in critical situations such as deliveries, accidents, heart attacks, brain attacks, and 

other emergencies. The hierarchical structure is a key factor in FLNDP for many real-world 

applications, particularly in public service sectors like healthcare. 

In real-world scenarios, decisions on facility location and network design are significantly 

influenced by budget constraints aligned with organizational investment policies. To address 

this, our study proposes a combined policy approach to model budget constraints, assuming 

separate organizations responsible for investing in facilities and network links, each managing 

its budget independently. Remaining investments at the end of a period are carried forward. 

The research aims to identify urban centers and transportation links eligible for hierarchical 

upgrades within budget limits, enhancing access to services at minimal cost. This study explores 

the integration of hierarchical facility location and network design, and budget constraints 

across multiple periods. Assuming all elements start at the first level, the model aims to 

strategically upgrade centers to higher hierarchy levels. Operating under fixed costs for 

openings, including operational and transportation expenses, the primary goal is to formulate a 

comprehensive problem that addresses these complexities simultaneously. 

The proposed model, which addresses hierarchical facility location, network design, and 

budget constraints over multiple time periods, represents a novel contribution to the field. Its 

application is particularly relevant to public services, where cost-effective and efficient service 

delivery is paramount. A specific budget for upgrading centers and links is allocated in each 

time period, leading to a specialized mathematical model. The problem’s inherent decisions 

regarding location and network design, considering the hierarchical structure and budget 

constraints, categorize it as NP-hard. This results in computational complexity that grows 

exponentially. To solve the proposed model, a Simulated Annealing (SA) algorithm has been 

employed in two modes: generating an initial solution randomly and generating a justified 

initial solution using fix-and-optimize algorithm. Finally, the results obtained from solving the 

samples using the simulated annealing algorithm have been compared with the results of the 

exact solution. 

Building upon the insights provided in the research, we have thoroughly explored and 

examined the following aspects: 

• Formulating a hierarchical facility location and network design problem considering varying 

time intervals. 
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• Considering budgetary constraints for facility location and network design separately. 

• Implementing a simulated annealing algorithm for solving the proposed model. 

The structure of the current study is outlined as follows: the next section presents a 

comprehensive analysis of existing literature on facility location and network design problems, 

followed by the exposition of the mathematical model in the subsequent section. In Section 4, 

the employed solution strategies are outlined, and the obtained results from solving the model 

with various samples are presented. Section 5 concludes the study with a comprehensive 

overview of findings and recommendations for potential avenues of further research. 

 

Literature Review 

 

The concept of facility location and network design has been extensively investigated in various 

contexts, primarily due to its profound influence on operational efficiency optimization. 

However, the confluence of these two problems has been relatively underexplored in academic 

literature. The following section aims to review the pertinent literature on facility location and 

network design problems, with a specific focus on integrating facility location and network 

design considerations. Furthermore, we aim to elucidate the challenges posed by hierarchical 

structures, multi-period models, and existing budgetary constraints within the FLNDP 

framework . 

 Over the past decades, FLNDP models have been the subject of numerous research studies. 

Daskin et al. (1993) pioneered the field by introducing the uncapacitated transportation network 

model for FLNDP[9]. Melkote (1996) contributed significantly to the development of three 

distinct FLNDP models [10]. Subsequently, Melkote and Daskin (2001) expounded upon these 

models in uncapacitated and capacitated scenarios, establishing foundational frameworks that 

have become widely referenced in scientific literature[11][9] .Cocking (2008) addressed the 

uncapacitated FLNDP, and diverse algorithms were studied to enhance both the lower and 

upper bounds for optimal solutions [12]. 

 Moreover, Drezner and Wesolowsky (2003) delved into a novel network design problem, 

presenting a model for optimizing the placement of a single facility within a network with 

candidate links. Each link incurs a specific construction cost, and transport links can be 

established as unidirectional or bidirectional. To address this challenge, the authors proposed 

multiple algorithms, including the gradient descent algorithm, SA, tabu search (TS), and genetic 

algorithm (GA)[13]. 

 Bigotte et al. (2010) formulated a novel optimization model rooted in the FLNDP for the 

holistic planning of urban hierarchy and transportation networks. Their model concurrently 

addressed various hierarchical levels of urban centers and network links. The outcomes of their 

study facilitated the identification of specific urban center and network link types deserving 

promotion to higher hierarchical levels, ultimately maximizing accessibility across all facility 

classes[14]. 

Contreras and Fernández (2012) established a comprehensive framework for addressing 

general supply chain network design issues, integrating strategic decisions on facility location 

and link selection into operational allocation and routing decisions for customer demands. Their 

work encompassed modeling aspects, alternative formulations, and algorithmic strategies for 

FLNDP[15]. In a subsequent study, they introduced a modified FLNDP version, aiming to 

minimize the maximum travel time within the network as a new objective. This model offered 

a generalized approach to the classic p-center problem, demonstrating results on instances with 

up to 100 nodes and 500 candidate link [16]. 

In a different approach, Ghaderi and Jabalameli (2013) proposed the Dynamic Uncapacitated 

Facility Location and Network Design Problem (DUFLNDP), addressing the dynamic (multi-

period) facility location problem integrated with network design. This model considered 
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constraints on the investment budget for opening facilities and constructing links during a 

planning horizon. The authors employed a greedy heuristic and a simulated annealing-based 

meta-heuristic for problem solution [17]. Furthermore, Rahmaniani and Ghaderi (2013) 

introduced a mixed-integer model considering different link types with varied capacities, 

transport, and construction costs to optimize facility location and transportation network design 

concurrently. The goal was to minimize total transportation and operating costs [18]. 

Rahmaniani and Shafia (2013) focused on the maximum covering facility location and 

network design problems under uncertainty. The objective was to locate a predefined number 

of facilities and optimize the network to maximize the total covered demand points [19]. In a 

separate study, Shishebori et al. (2013) introduced a mixed-integer nonlinear programming 

model to formulate the reliable budget-constrained FLNDP[20]. Shishebori and Babadi (2015) 

formulated a mathematical model for a robust and reliable budget-constrained FLNDP, 

considering parameter uncertainty and system disruption simultaneously. They utilized a 

commercial solver to solve the resulting model and illustrated the practical application through 

a real-world case study in the healthcare system of the Chaharmahal-Bakhtiari province in Iran 

[21]. 

In recent years, there has been a growing interest in integrated models addressing FLNDP. 

These NP-hard problems involve optimizing both facility locations and network design 

concurrently, playing a crucial role in diverse planning scenarios. Despite their computational 

challenges, Rahmanian and Ghaderi (2015) [22] introduced three solution methods derived 

from the variable neighborhood search algorithm to effectively tackle the capacitated FLNDP. 

These methods, incorporating exact techniques, consistently deliver high-quality solutions 

across various test instances with up to 100 nodes and 600 links, surpassing commercial solvers 

in terms of efficiency. Pearce and Forbes (2018) proposed an exact solution approach based on 

Benders’ decomposition to optimize multi-period facility location and network design 

considering budget constraints and unlimited capacity[23].  

Sadatasl et al. (2016) introduced a complex integer number programming model with fuzzy 

demands, considering backup facilities and multiple links between nodes [24]. In another paper, 

the problem of facility location and network design in a fuzzy environment has been explored. 

The model incorporates various link types with distinct capacities and costs, allowing for the 

selection of multiple links between nodes. To address customer demand uncertainty, an 

interactive fuzzy solution approach is applied, and a hybrid meta-heuristic algorithm (FIWO) 

based on firefly optimization and invasive weeds is developed for problem-solving. The model's 

performance is empirically tested, and the proposed algorithm is compared with alternative 

solution methods [25]. 

Brahami et al. (2020) highlighted the essentiality of devising a sustainable supply chain 

network within the intensely competitive contemporary landscape. The proposed multi-

objective model aimed to concurrently minimize costs and environmental impacts linked to 

transportation activities, integrating various environmental considerations for the planned 

network links. To tackle this, they introduced an adapted non-dominated sorting genetic 

algorithm II, utilizing mixed coding as an effective solution approach [26]. 

Pourrezaie-Khaligh et al. (2022) conducted a study addressing equity and accessibility in 

healthcare facility location/network design. The proposed DEL model aims to minimize system 

costs, enhance availability, and diminish inequality among demand nodes. The real-world case 

study highlights the model's performance, and a Fix-and-Optimize (FO) approach is introduced 

for large-scale problems, demonstrating its effectiveness across diverse test scenarios [27].  

The problem of hierarchical facility location and transportation design involves deciding on 

the upgrade of facilities and transportation network links. Despite the significance of 

hierarchical nature of facilities and network links in some real-world applications, previous 

research has conducted only a limited number of studies integrating these two issues. Previous 
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research by Narula and Ogbu (1979) focused on models for locating sequential unique and 

comprehensive hierarchical facilities[28], and Sahin and Sural (2007) explored hierarchical 

facility location models up to 2004[29]. Antones et al. (2009) developed a multi-period model 

for locating multi-level facilities in urban hierarchy planning[30], and Ghezavati et al.(2015) 

presented a hierarchical facility location model for disaster relief supply chain planning under 

uncertainty[31]. Rastaghi et al.(2018) proposed a multi-objective and multi-service allocation 

location model with capacity planning for health network design, including a hierarchical health 

service network model under human resource limitations[32]. In addition, Balakrishnan et 

al.(1994) investigated multi-level network design issues[33].  

All reviewed studies emphasize the significance and complexity of integrating facility 

location and transportation network design across diverse real-world scenarios, including urban 

hierarchy planning, disaster relief supply chain planning, and health network design. However, 

it is notable that only Bigotte et al. (2010) [14] introduced an optimization model capable of 

concurrently determining upgrades to urban centers and network links, thus impacting 

hierarchy levels within this integrated framework. Nevertheless, the model presented in this 

paper extends upon prior work by accounting for operational costs, budget constraints, and time 

periods. Additionally, this research introduces a heuristic algorithm based on Simulated 

Annealing with a fix-and-optimize approach to solve the problem. It is essential to acknowledge 

that real-world facility location and network design challenges frequently involve constraints 

such as budget limitations, and neglecting these constraints may result in model inaccuracies. 

Inspired by the existing literature, the model presented in this paper aims to investigate a 

hierarchical facility location and network design problem that accounts for various time periods 

and constrained budgets. According to the literature review, this is the first model introduced 

in the domain of dynamic hierarchical facility location and network design. The following 

section provides a comprehensive description of the problem under investigation. 

 

Problem Statement and Mathematical Formulation 

 

The current study focuses on the challenge of hierarchical multi-period facility location and 

network design problem. Initially assuming equivalence across all centers and links at the 

primary level, the study seeks to optimize the selection of centers and links for elevation to 

higher levels, aligning with budget constraints to minimize costs. The cost analysis 

encompasses operating expenses, fixed costs related to facility and link upgrades, as well as 

transportation costs. The determination of the maximum budget for facility and link upgrades 

in each period is predicated on an intricate evaluation considering these cost components . 

Within this framework, origin nodes correspond to urban centers or demand points, while 

facilities situated at destination nodes are tailored to fulfill the demands originating from other 

nodes. The problem is articulated as a minimum-cost flow model. To construct this model, a 

virtual node is introduced into the network, acting as the decisive terminal point regulating the 

entirety of the network's flow dynamics. The primary objective is to pinpoint the most cost-

effective flow between the demand centers and the virtual node. Moreover, the study integrates 

several critical assumptions crucial to thoroughly addressing the intricacies of this optimization 

problem.  

• Initially, all urban centers and network links are categorized, at a minimum, as level one. 

For example, in the establishment of health centers, each center begins at level one (health 

center), and the initial links are, at the least, basic dirt roads. 

• Each facility is interconnected across all levels of the urban hierarchy . 

• Higher-level centers possess the capacity to offer all services available at lower levels . 

• Residents in every urban center require services from all levels and derive benefits from the 

closest relevant facilities . 
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• Travel cost or time between two centers is contingent upon the level of the network link 

connecting them, where higher link levels imply shorter travel times. This parameter remains 

constant over time . 

• The number of urban centers to be upgraded in each hierarchy level is determined by the 

budget allotted for each period. 

• The parameters linked to the continual budget allocation for each period and those related to 

the expenses of enhancing facilities and links experience variations over time. These 

alterations are shaped by factors such as fluctuations in inflation rates or specific trends in 

population growth. 

• The virtual node serves as the terminal point for the entirety of the network's flow dynamics . 

The notations employed, encompassing sets, parameters, and decision variables, are listed 

below for reference within the mathematical modeling framework . 

 
Sets 

𝐿 Set of service levels denoted by 𝑙; 
𝑀 Set of link levels indexed by 𝑚; 

𝑇 Set of time periods indexed by 𝑡; 

𝑁 Set of urban centers by 𝑛; 

(𝑖, 𝑗) Link from center 𝑖 to center 𝑗; 

(𝑖, 𝑠) Link between center 𝑖 and the virtual node; 

𝐼1 Set of links (𝑖, 𝑗); 

𝐼2 Set of links (𝑗, 𝑖); 

𝐼3 Set of links (𝑖, 𝑠); 

𝐼 Collection encompassing all links; 

Decision variables 

𝑋𝑖𝑗𝑚
𝑘𝑙𝑡  

Fraction of the demand flow of level 𝑙 from center k transferred through link (𝑖, 𝑗) at level 𝑚 in 

period 𝑡. 

𝑉𝑖𝑗𝑚
𝑡

 
Binary variable with a value of 1 if link (𝑖, 𝑗) is upgraded to level 𝑚 in period 𝑡; otherwise, it equals 0. 

𝑈𝑖
𝑙𝑡  Binary variable with a value of 1 if center 𝑖 is upgraded to level 𝑙 in period 𝑡; otherwise, it is 0. 

𝑅𝑖𝑗𝑚
𝑡  Binary variable with a value of 1 if link (𝑖, 𝑗) is at level 𝑚 in period 𝑡; otherwise, it equals 0. 

𝑌𝑖
𝑙𝑡  Binary variable with a value of 1 if center 𝑖 is at level 𝑙 in period 𝑡; otherwise, it is 0. 

Parameters 

𝑠𝑖𝑗𝑚
𝑘𝑙𝑡

 
Travel cost to demand center 𝑘 for services at level 𝑙 through link (𝑖, 𝑗) with level 𝑚 during period 𝑡. 

𝑓𝑖
𝑙𝑡 Operating cost of center 𝑖 at level 𝑙 in period 𝑡. 

𝑔𝑖
𝑙𝑡  Fixed cost to upgrade center 𝑖 to level 𝑙 in period 𝑡. 

𝑐𝑖𝑗𝑚
𝑡  Fixed cost to upgrade link (𝑖, 𝑗) to level 𝑚 in period 𝑡. 

ℎ𝑖𝑗𝑚
𝑡  Operational cost of link (𝑖, 𝑗) at level 𝑚 in period 𝑡. 

𝑑𝑘
𝑙𝑡 Demand of center 𝑘 for service level 𝑙 in period 𝑡. 

𝑝𝑖𝑗𝑚
𝑡

 
Cost of transferring each unit of flow through link (𝑖, 𝑗) at level 𝑚 in period 𝑡. 

𝐿𝑖𝑗  Length of link (𝑖, 𝑗). 

𝑏1
𝑡 Available budget in period 𝑡 to upgrade the facilities. 

𝑏2
𝑡 Available budget in period 𝑡 to upgrade network links. 

 

Mathematical Modeling 

Based on the provided notations, the mixed-integer programming model for the studied 

problem is formulated as follows: 

 

𝑀𝑖𝑛 ∑ ∑ ∑ ∑ ∑ 𝑠𝑖𝑗𝑚
𝑘𝑙𝑡

𝑡𝑙𝑘𝑚(𝑖,𝑗)∈𝐼

 𝑋𝑖𝑗𝑚
𝑘𝑙𝑡 + ∑ ∑ ∑ 𝑓𝑖

𝑙𝑡

𝑡𝑙𝑖

𝑌𝑖
𝑙𝑡  + ∑ ∑ ∑  ℎ𝑖𝑗𝑚

𝑡 

𝑡𝑚(𝑖,𝑗)∈𝐼

𝑅𝑖𝑗𝑚
𝑡  (1) 

𝑠. 𝑡: 𝑋𝑖𝑗𝑚
𝑘𝑙𝑡  ≤  𝑅𝑖𝑗𝑚

𝑡  ∀ 𝑘 ∈ 𝑁 , (𝑖, 𝑗) ∈ 𝐼1 𝑙 ∈ 𝐿 , 𝑚 ∈ 𝑀 𝑡 ∈ 𝑇 (2) 

 𝑋𝑗𝑖𝑚
𝑘𝑙𝑡  ≤  𝑅𝑖𝑗𝑚

𝑡  ∀ 𝑘 ∈ 𝑁 , (𝑖, 𝑗) ∈ 𝐼1 𝑙 ∈ 𝐿 , 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (3) 

𝑋𝑖𝑠𝑚
𝑘𝑙𝑡  ≤  𝑌𝑖

𝑙𝑡  ∀ 𝑘, 𝑖 ∈ 𝑁 , 𝑙 ∈ 𝐿, 𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇 (4) 
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∑ ∑ 𝑋𝑖𝑠𝑚
𝑘𝑙𝑡

𝑚𝑖

= 1 ∀ 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝐿 , 𝑡 ∈ 𝑇 (5) 

∑ ∑ 𝑋𝑖𝑗𝑚 
𝑘𝑙𝑡

𝑚𝑖

=  ∑ 𝑋𝑗𝑠𝑚
𝑘𝑙𝑡

𝑚

+ ∑ ∑ 𝑋𝑗𝑖𝑚
𝑘𝑙𝑡

𝑚𝑖

 ∀ j, 𝑘 ∈ 𝑁: j ≠ 𝑘 , 𝑙 ∈ 𝐿 , 𝑡 ∈ 𝑇 (6) 

∑ 𝑅𝑖𝑗𝑚
𝑡

𝑚

 ≤  1 ∀ (𝑖, 𝑗) ∈ 𝐼1 , 𝑡 ∈ 𝑇 (7) 

∑ 𝑌𝑖
𝑙𝑡

𝑙

 ≤ 1 ∀ 𝑖 ∈ 𝑁 , 𝑡 ∈ 𝑇 (8) 

𝑌𝑖
𝑙,𝑡−1  + 𝑈𝑖

𝑙𝑡 = 𝑌𝑖
𝑙𝑡  ∀ 𝑖 ∈ 𝑁 , 𝑙 ∈ 𝐿 , 𝑡 ∈ 𝑇 (9) 

𝑅𝑖𝑗𝑚
𝑡−1  + 𝑉𝑖𝑗𝑚

𝑡 = 𝑅𝑖𝑗𝑚
𝑡  ∀ (𝑖, 𝑗) ∈ 𝐼1 , 𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇 (10) 

∑ ∑ ∑ 𝑔𝑖
𝑙𝑡′

𝑙𝑖

𝑡

𝑡′=1

𝑈𝑖
𝑙𝑡′ ≤ ∑ 𝑏1

𝑡′

𝑡

𝑡′=1

 ∀ 𝑡 ∈ 𝑇 (11) 

∑ ∑ ∑ 𝑐𝑖𝑗𝑚
𝑡′

𝑚𝑖.𝑗

𝑡

𝑡′=1

𝑉𝑖𝑗𝑚
𝑡′

≤ ∑ 𝑏2
𝑡′   

𝑡

𝑡′=1

 ∀ 𝑡 ∈ 𝑇 (12) 

𝑋𝑖𝑗𝑚
𝑘𝑙𝑡  ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐼 , 𝑙 ∈ 𝐿 𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇 (13) 

𝑌𝑖
𝑙𝑡  ∈ {0,1} ∀ 𝑖 ∈ 𝑁 , 𝑙 ∈ 𝐿 , 𝑡 ∈ 𝑇 (14) 

𝑅𝑖𝑗𝑚
𝑡 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐼1 , 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (15) 

𝑈𝑖
𝑙𝑡  ∈ {0,1} ∀ 𝑖 ∈ 𝑁, 𝑙 ∈ 𝐿 , 𝑡 ∈ 𝑇 (16) 

𝑉𝑖𝑗𝑚
𝑡 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐼1, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (17) 

 

Equation (1) present the objective function of the problem. In this problem, the objective is 

to minimize both customer travel costs and operational expenses associated with facilities and 

network links. Equations (2) and (3) denote that rreceiving the services of a demand center 

through network links is only possible if these links are built. Hence, the service at demand 

point 𝑘 for level 𝑙 is facilitated through link (𝑖, 𝑗) only when it is operational at level 𝑚. 

Equation (4) states that the fulfillment of the demand at point 𝑘 in level 𝑙 during period 𝑡 is 

contingent upon the existence of a facility at point 𝑖 with level 𝑙. 
Equation (5) delineates the linkage of flow originating from all demand centers, denoted as 𝑘, 

to the virtual node within the network. Essentially, this constraint ensures the fulfillment of 

various service demands across different points within each time period. Constraint (6) ensures 

that the demand flow from center 𝑘 entering node 𝑗 in each period must be equivalent to the 

flow exiting from node 𝑗 in the same period. Moreover, if a facility is established at node 𝑗, it 

guarantees that the demand from center 𝑘 will be supplied with located facility 

in 𝑗(𝑖. 𝑒. ∑ 𝑋𝑗𝑠𝑚
𝑘𝑙𝑡

𝑚 = 1). Constraint (7) denotes that the enhancement of the link between node 𝑖 

and node 𝑗 can only be elevated by a maximum of one level during period 𝑡. This implies that 

each link, within each period, is eligible for an upgrade of up to one level. Constraint (8) 

similarly asserts that facilities, represented by center 𝑖, are subject to an upgrade of no more 

than one level during period 𝑡. This implies that each center is eligible for an upgrade of up to 

one level within a given period. Equation (9) elucidates the relationship between the upgrading 

variables of the facilities and their operational status. This means that if facility 𝑖 is active in 

period 𝑡 − 1 (𝑌𝑖
𝑙,𝑡−1 = 1), the value of the design variable will be zero in period 𝑡(𝑈𝑖

𝑙𝑡 = 0). 

Equation (10) outlines a similar condition for network links akin to the ones for facilities. 

Constraints (11) and (12) concern the constraints related to the budget allocated for upgrading 

facilities and network links, ensuring that the incurred costs remain within the specified 

available budget. These constraints also allow any remaining budget in each period to carry 

over to the next period for utilization. Equations (13) through (17) represent constraints that 

define different variables of the problem. 
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Solving Algorithm 

 

 Initially, the model, with its objective to minimize costs, is solved using the CPLEX solver. 

This solver proves efficient for small to medium-sized dimensions, given the integration of 

location and hierarchical network design problems, as well as the incorporation of time periods. 

It can deliver an optimal solution within a reasonable computational timeframe. However, for 

larger dimensions within the solvable scope of CPLEX, an increase in the number of network 

and link levels results in a substantial rise in solution time. Consequently, the deployment of 

either exact or heuristic algorithms becomes indispensable for solving the proposed model. 

Various methods are available for addressing mixed-integer programming problems. In this 

study, we employed the SA algorithm to solve the model. Figure 1 presents diagram of the 

solution algorithm. 

 

 
Figure 1. Flowchart of the solution algorithm 

 

Solution Representation 

The studied problem, as defined in the mathematical model, encompasses five categories of 

decision variables, comprising four binary variables and one continuous variable with values 

between zero and one. Additionally, two of the binary variables serve as auxiliary variables 

incorporated into the modeling process (variables 𝑌𝑖
𝑙𝑡 and 𝑅𝑖𝑗𝑚

𝑡 ). The designed algorithm 

incorporates a variable associated with facility location in the solution structure, 𝑢𝑖𝑙
𝑡 guiding the 

exploration of the solution space. The remaining decision variables are determined by solving 

the mathematical model problem, assuming fixed values for this variable. 

 

Generating an Initial Solution  

To initialize the proposed simulated annealing algorithm, an initial solution for the problem 

is required. We utilize two distinct methods to generate these initial solutions: a simple random 

approach and an approach based on a fixed and optimized heuristic. The random approach 

serves as a baseline for comparison, while the fix-and-optimize approach aims to generate a 

more structurally desirable initial solution that improves the overall performance of the 

algorithm. Both of these approaches are described as follows. 

Start 
Determining the required 

data of the problem 

Setting the parameters of 

the algorithm 

Generating an initial solution 

by random or Fix and 

Optimize algorithm 

Checking the feasibility of the 

obtained solution for facility 

location variable 

Optimally solve the model by 

CPLEX solver and calculating 

the acceptance probability 

Select a neighborhood 

structure 

Generating a new solution 

based on the selected 

neighborhood structure 

Optimally solve the model by 

CPLEX solver and calculating 

the acceptance probability 

Show the best solution 

found by the algorithm 

End 

Yes No Is the stop 

condition 

satisfied? 



Advances in Industrial Engineering, June 2025, 59(1): 23-41 

 31 

Random Approach  

The process for creating the initial solution involves a random approach, where a solution 

for the location variable, represented as 𝑢𝑖𝑙
𝑡 , is generated. Initially, a random solution is created 

by assigning values of zero and one to each location variable. Subsequently, the feasibility of 

the generated solution is assessed, taking into account the defined budget constraint. If the 

solution proves to be feasible within the specified financial constraints, it is saved as a parameter 

for the given problem. Following this, the relaxed problem is solved using CPLEX solver and 

the resulting solution is recorded for subsequent steps of the main algorithm. 

 

Fix and Optimize Algorithm  

In the proposed algorithm, generating an initial solution by random may lead to solutions 

that do not meet the expected desirability. For example, the obtained solution for variable 𝑢𝑖𝑙
𝑡  

may be feasible in terms of the facility upgrade budget constraint, but may not be structurally 

desirable for the network. Therefore, finding an appropriate initial feasible solution can improve 

the performance of the algorithm. For this purpose, in this study, in addition to generating an 

initial solution randomly, the FO algorithm is also used to find an appropriate initial solution.  

The fix and optimize algorithm, designed to determine an initial feasible solution, follows a 

series of key steps. Initially, the algorithm precisely solves the primary problem, assuming 𝑡 =
1 and employing the CPLEX solver. During this stage, a feasible network is established, 

incorporating a specific number of edges and active facilities. The algorithm then iteratively 

increases the time period,𝑡. Subsequently, it progresses through the steps until 𝑡 ≤ 𝑇, activating 

and upgrading facilities randomly while adhering to the budget constraint specific to each time 

period. Finally, the primary problem is resolved, assuming all variables of  𝑢𝑖𝑙
𝑡  obtained from 

previous stages remain constant. This sequential process ensures the generation of an initial 

feasible solution by iteratively adjusting facility location variables, thereby enhancing the 

overall effectiveness of the algorithm. 

 

Checking the Feasibility of the Obtained Solution 

The solution derived for the hierarchical facility location variable requires budget 

justification. Subsequently, the feasibility of the obtained solution is assessed. Within this 

model, during each time period, the budget constraint governing the upgrading of facilities is 

integral to the obtained solution. To validate the solution's feasibility in each period, the total 

budget amount is computed based on the summation of the upgrade costs (denoted as 𝑔𝑖𝑙
𝑡 ) of 

facilities that have successfully transitioned to the upper level. If the total budget amount 

derived from the solution is lower than the predetermined budget, the solution is considered 

feasible. However, if the total budget amount exceeds the budgetary constraint, an iterative 

refinement process is initiated. During this iterative refinement, a facility is randomly selected, 

and its value is set to zero. This iterative process continues until a feasible solution is attained, 

aligning with the stipulated budget constraint. 

 

 Neighborhood Structures 

  One crucial element in neighborhood-based algorithms is the design of their neighborhood 

structure. In the SA algorithm, the process of generating the neighborhood structure should be 

formulated to satisfy two essential conditions: the possibility of creating a new neighborhood 

and the potential to generate all possible solutions. This study defines three neighborhood 

structures, ensuring compliance with these conditions. 

The variable  𝑢𝑖𝑙
𝑡  is identified with the (𝑖, 𝑙, 𝑡) index, where (3, 2, 2): 1 corresponds to 𝑢32

2 =
1. The number of elements in this variable, denoted as 𝑙𝑒𝑛, is equal to the product of the sizes 

of the sets 𝑁,𝐿 and 𝑇. In all the defined neighborhood structures, a consistent procedure has 

been employed to select an element from the given solution. The key element is chosen 
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randomly from the range [1, 𝑙𝑒𝑛]. 
To facilitate a better understanding of the neighborhood structures, an example is provided 

with three nodes, two service levels, and two time periods. It is important to note that, after 

creating a solution using each neighborhood structure, it must be checked for adherence to the 

budget constraint and corrected if necessary. 

A concise explanation of how each neighborhood structure generates a solution is provided 

below:  

 

|𝑁| = 3 , |𝐿| = 2, |𝑇| = 2 →  𝑢𝑖𝑙
𝑡 =  {

(1,1,1): 1          (2,1,1): 0          (3,1,1): 0
(1,1,2): 0          (2,1,2): 1          (3,1,2): 1
(1,2,1): 0          (2,2,1): 0          (3,2,1): 1
(1,2,2): 1          (2,2,2): 1          (3,2,2): 0

} 

 

First Neighborhood Structure 

Two distinct elements from the solution dictionary of  𝑢𝑖𝑙
𝑡  are chosen. To generate a new 

solution using the first neighborhood structure, the value corresponding to the first element is 

swapped with the value corresponding to the second element. For instance, in the context of the 

example under study, the process of generating a solution based on the first neighborhood 

structure unfolds as follows: 

In the initial step of the first neighborhood structure, two unique elements are selected from 

the solution vector of 𝑢𝑖𝑙
𝑡 . In this instance, the first element is identified by number 3, and the 

second element is denoted by number 10. Subsequently, the value associated with the first 

element is exchanged with the value associated with the second element. 

 

𝒖𝒊𝒍
𝒕 : {

(𝟏, 𝟏, 𝟏): 𝟏          (𝟐, 𝟏, 𝟏): 𝟎          (𝟑, 𝟏, 𝟏): 𝟎
(𝟏, 𝟏, 𝟐): 𝟎          (𝟐, 𝟏, 𝟐): 𝟏          (𝟑, 𝟏, 𝟐): 𝟏
(𝟏, 𝟐, 𝟏): 𝟎          (𝟐, 𝟐, 𝟏): 𝟎          (𝟑, 𝟐, 𝟏): 𝟏
(𝟏, 𝟐, 𝟐): 𝟏          (𝟐, 𝟐, 𝟐): 𝟏          (𝟑, 𝟐, 𝟐): 𝟎

}  −→     𝒖𝒊𝒍
𝒕 : {

(𝟏, 𝟏, 𝟏): 𝟏          (𝟐, 𝟏, 𝟏): 𝟎          (𝟑, 𝟏, 𝟏): 𝟎
(𝟏, 𝟏, 𝟐): 𝟎          (𝟐, 𝟏, 𝟐): 𝟏          (𝟑, 𝟏, 𝟐): 𝟎
(𝟏, 𝟐, 𝟏): 𝟏          (𝟐, 𝟐, 𝟏): 𝟎          (𝟑, 𝟐, 𝟏): 𝟏
(𝟏, 𝟐, 𝟐): 𝟏          (𝟐, 𝟐, 𝟐): 𝟏          (𝟑, 𝟐, 𝟐): 𝟎

}  

 

Second Neighborhood Structure 

Two distinct elements from the solution variable, 𝑢𝑖𝑙
𝑡  are chosen. To generate a solution using 

the second neighborhood structure, if the values of the selected elements are initially zero or 

one, they are inverted: zeros become ones, and ones become zeros. In simpler terms, if a facility 

is active, it will be deactivated, and if it is inactive, it will be activated.  

For instance, considering the example under study, the process of generating a solution based 

on the second neighborhood structure is outlined as follows. The selected numbers for elements 

fall within the range [1, 12] are 1 and 12. 

 

 𝑢𝑖𝑙
𝑡 =  {

(1,1,1): 1          (2,1,1): 0          (3,1,1): 0
(1,1,2): 0          (2,1,2): 1          (3,1,2): 1
(1,2,1): 0          (2,2,1): 0          (3,2,1): 1
(1,2,2): 1          (2,2,2): 1          (3,2,2): 0

}                𝑢𝑖𝑙
𝑡 =  {

(1,1,1): 0          (2,1,1): 0          (3,1,1): 0
(1,1,2): 0          (2,1,2): 1          (3,1,2): 1
(1,2,1): 0          (2,2,1): 0          (3,2,1): 1
(1,2,2): 1          (2,2,2): 1          (3,2,2): 1

}     

 

Third Neighborhood Structure 

To introduce more perturbation in the solution space, the third neighborhood structure is 

defined as follows: Three different elements are selected from the 𝑢𝑖𝑙
𝑡  variable. Subsequently, 

the positions of the first and third elements are swapped. Following this, the value of the second 

element is flipped: if it was initially 0, it becomes 1, and if it was initially 1, it becomes 0. 

According to the presented example, the result obtained from the third neighborhood structure 

is equal to: 

• The first selected element: 4 
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• The second selected element: 5 

• The third selected element: 11 

 

𝑢𝑖𝑙
𝑡 : {

(1,1,1): 1          (2,1,1): 0          (3,1,1): 0
(1,1,2): 0          (2,1,2): 1          (3,1,2): 1
(1,2,1): 0          (2,2,1): 0          (3,2,1): 1
(1,2,2): 1          (2,2,2): 1          (3,2,2): 0

}                𝑢𝑖𝑙
𝑡 : {

(1,1,1): 1          (2,1,1): 0          (3,1,1): 0
(1,1,2): 1          (2,1,2): 0          (3,1,2): 1
(1,2,1): 0          (2,2,1): 0          (3,2,1): 1
(1,2,2): 0          (2,2,2): 0          (3,2,2): 0

}   

 

Based on the third neighborhood structure, elements 5 and 11 are deactivated, and the fourth 

element is activated.  

 

The Probability and Cooling Functions  

To assess the validity of proposed solutions, a function is employed to determine solution 

acceptance using neighborhood structures in each iteration. In the context of the studied 

problem, if the objective function yields a value of zero, the solution is deemed invalid and 

excluded from further calculations. The acceptance criterion for selecting solution 𝑓(𝑗) over 

solution 𝑓(𝑖) is given by Equation (18): 

 

𝒑𝒓(𝒋) = {
𝟏                                         𝒇(𝒋) < 𝒇(𝒊) ≠ 𝟎

𝒆
(
𝒇𝒊−𝒇𝒋

𝒄𝒌
)
                                         𝒆𝒍𝒔𝒆           

 (18) 

 

The parameter 𝑐𝑘 is derived from Equation (19): 

 

𝑐𝑘+1 =
𝑐𝑘

1 + 𝛼𝑘𝑐𝑘

 (19) 

 

Here, 𝛼𝑘 is a factor ranging between zero and one, typically set to 0.995 in most cases. In 

the SA algorithm literature, 𝑐𝑘 is referred to as the cooling function. The algorithm can 

terminate when reaching a specific temperature, akin to completing a set number of iterations, 

serving as one of the stopping criteria. 

 

Stop Criterion 

The stop criterion in this research is defined as reaching a specific temperature, determined 

through an empirical trial-and-error approach. 

 

Numerical Experiments  

 

 In this study, we examined the performance of the SA and heuristic algorithms by solving the 

problems of various sizes. The algorithms were implemented in Python environment to solve 

the proposed model. Sample problems were solved on a computer with a Core i7, 2.5 GHz 

processor, and 8 GB of internal memory. As there were no similar sample problems available 

in the literature to use as a benchmark, we addressed this gap by generating random samples 

for problems of different dimensions. The method of generating problem data in our research 

closely follows the approaches used in the study by Ghaderi and Jabalameli (2013) [17]. It is 

important to note that, in the mentioned studies, the purpose of generating data was to simulate 

real-world situations. Table 1 provides specifications for the problems investigated in this 

study. In addition, Table 2 presents the values assigned to each parameter. 
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Table 1. Specifications of Investigated Instances 

Number of test problem 
The sets for the problem 

NODES L M T 

TP1 10 2 3 3 

TP2 10 2 3 5 

TP3 10 4 3 3 

TP4 10 4 4 3 

TP5 10 5 5 5 

TP6 20 2 3 3 

TP7 20 3 3 3 

TP8 20 3 4 4 

TP9 50 2 3 3 

TP10 50 4 4 3 

 
Table 2. Description of Investigated Instance Parameters 

Parameter Value Reference 

𝑑𝑙
𝑘𝑡 

𝑑𝑙
𝑘1 =  𝑈[50,100] 

𝑑𝑙
𝑘𝑡 = [1 + 𝑈(0,0.05)]𝑑𝑙

𝑘(𝑡−1)
 , 𝑡 ≥ 2 

[17] 

𝑝𝑖𝑗𝑚
𝑡  

𝑝𝑖𝑗1
1 = 𝐿𝑖𝑗, 𝑝𝑖𝑗1

2 = 1.2𝐿𝑖𝑗, 𝑝𝑖𝑗1
3 = 1.4𝐿𝑖𝑗 

𝑝𝑖𝑗2
𝑡 = [(0.06 , 0.08)] 𝑝𝑖𝑗1

𝑡  

𝑝𝑖𝑗3
𝑡 = [𝑈(0.05 ,0.03)] 𝑝𝑖𝑗2

𝑡  

𝑝𝑖𝑗4
𝑡 = [𝑈(0 ,0.02)] 𝑝𝑖𝑗2

𝑡  

[17] 

𝑐𝑖𝑗𝑚
𝑡  

𝑐𝑖𝑗1
1 = 1.3𝐿𝑖𝑗 , 𝑐𝑖𝑗1

2 = 1.4𝐿𝑖𝑗 , 𝑐𝑖𝑗1
3 = 1.5𝐿𝑖𝑗 

𝑐𝑖𝑗2
𝑡 =  [1 + 𝑈(0 , 0.05)]𝑐𝑖𝑗1

𝑡  

𝑐𝑖𝑗3
𝑡 =  [1.5 + 𝑈(0 , 0.05)]𝑐𝑖𝑗2

𝑡  

𝑐𝑖𝑗4
𝑡 =  [2 + 𝑈(0 , 0.05)]𝑐𝑖𝑗3

𝑡  

[17] 

ℎ𝑖𝑗𝑚
𝑡  

ℎ𝑖𝑗1
𝑡 =  [𝑈(0, 0.1)] 𝑐𝑖𝑗1

𝑡  

ℎ𝑖𝑗2
𝑡 =  [𝑈(0.1, 0.3)] 𝑐𝑖𝑗2

𝑡  

ℎ𝑖𝑗3
𝑡 =  [𝑈(0.3, 0.6)] 𝑐𝑖𝑗3

𝑡  

ℎ𝑖𝑗4
𝑡 =  [𝑈(0.6, 0.9)] 𝑐𝑖𝑗4

𝑡  

[17] 

𝑔𝑖𝑙
𝑡  

𝑔𝑖𝑙
1 = 𝑈[100 , 500] 

𝑔𝑖𝑙
𝑡 = [1 + 𝑈(0.02 , 0.1)]𝑔𝑖𝑙

𝑡−1 , 𝑡 ≥ 2 
[17] 

𝑓𝑖𝑙
𝑡 

𝑓𝑖2
1  = 0.5𝑔𝑖2

1  , 𝑓𝑖2
2 = 0.6𝑔𝑖2

2  , 𝑓𝑖2
3 = 0.7𝑔𝑖2

3  , 

𝑓𝑖3
1  = 0.5𝑔𝑖3

1  , 𝑓𝑖3
2 = 0.6𝑔𝑖3

2  , 𝑓𝑖3
3 = 0.7𝑔𝑖3

3  

𝑓𝑖4
1  = 0.5𝑔𝑖4

1  , 𝑓𝑖4
2 = 0.6𝑔𝑖4

2  , 𝑓𝑖4
3 = 0.7𝑔𝑖4

3  

[17] 

𝑆𝑖𝑗𝑙𝑚
𝑘𝑡  𝑆𝑖𝑗𝑙𝑚

𝑘𝑡 =  𝑃𝑖𝑗𝑚
𝑡 𝑑𝑙𝑘

𝑡  [14] 

 

Small Sample Network 

We examine a small-scale example featuring a network with 10 nodes organized into three 

time periods, along with two-level facilities. The links and facilities are both arranged in a two-

level structure. Initially, it is assumed that all centers and links belong to level 1. All relevant 

data for this instance has been generated according to the specifications outlined in Table 2. 

The network illustrated in Figure 2 depicts the configuration considered in this example. 
 

 
Figure 2. Illustration of the network used in the numerical example 
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The travel costs fluctuate across various levels, with the highest costs occurring at the lowest 

level and the lowest costs at the highest level. Similarly, operational and improvement costs for 

facilities and links adhere to a pattern where higher levels entail increased operational and 

improvement expenses. Table 3 provides details on the available budget for facilities and links, 

along with the budget consumed in each period for these respective levels. 
 

Table 3. Available and Used Budget for Links and Facilities per Period 

Consumed Budget Available Budget 
Period 

Links Facilities Links Facilities 

344.43 215.69 350 220 1 

350.58 152.87 370 228 2 

361.34 215.92 400 230 3 

  

After solving the model as illustrated in Figure 2, the following improvements have been 

made to the links: 

• Links (1-9) and (2-3) have been upgraded to level three. 

• Links (4-8), (8-9), (1-5), (5-6), (6-7), (3-7), and (2-10) have been upgraded to level 2. 

In Figure 3a, the network configuration represents the setup established in the initial period 

to access level two services, centered at node 5. During this phase, node 5 was elevated to level 

two. Notably, links (1-9) and (2-3) were upgraded to level three, while other links were elevated 

to level two. 

Figure 3b illustrates the network configuration in the first period to receive level 3 services, 

with center 9 being upgraded to this level. Similar to the previous instance, links (1-9) and (2-

3) were improved to level 3, while other links were upgraded to level 2 . 

Transitioning to the second period, as depicted in Figure 3c, all previously upgraded links 

retained their respective levels. While it's plausible for links to ascend to higher levels in 

subsequent periods, in this case, all existing links maintained their initial levels, while new links 

were upgraded. Links (3-10), (4-9), and (9-10) were elevated to level three during this period. 

Figure 3d, corresponds to the second period, portraying the interconnections between centers 

and the level of services provided. Notably, center 6 now routes to center 5 to access level 2 

services, while all other centers opt for level 2 services at center 1. Consequently, the network 

configuration underwent alterations in the second period, as depicted in Figure 3e. 

 

Algorithm Performance 

The results of solving the problems using the proposed algorithms are presented in Table 4. 

The table provides a thorough examination of algorithmic performance across various test 

problems. CPLEX delivers both lower and upper bounds effectively, particularly for smaller 

instances. In TP7, CPLEX successfully converges to a solution with a relatively low relative 

error within a time frame of 18,000 seconds. However, the obtained gap for TP6 is relatively 

large. As the dimensions of the test problem increase, CPLEX becomes unable to find feasible 

solutions within the allocated maximum CPU time, 76,270 seconds, rendering the problem 

unsolvable (TP8 to TP10). Nonetheless, we compare the results obtained by the heuristics, 

considering the lower bound computed by CPLEX as a reference.  

In contrast, the SA algorithm, employing both random initial solutions and a fixed-and-

optimize approach, consistently produces solutions with lower errors. Notably, the SA with FO 

initial solution demonstrates commendable performance, achieving solutions with minimal 

relative errors across test instances TP1-TP7. It also outperforms random SA, reaching 

solutions with significantly improved quality. Moreover, the FO algorithm efficiently discovers 

good initial solutions within a short computation time. Consequently, SA consistently 

outperforms CPLEX in terms of computational efficiency, especially evident in test problems 

TP8 to TP10. Overall, these results underscore the potential of SA algorithms, particularly those 

utilizing FO initial solutions, as efficient alternatives for solving intricate optimization 
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problems, surpassing CPLEX in specific scenarios. 
 

Figure 3. The outcome derived from solving the model depicted across two distinct time period 

 

Table 5 presents the performance of various algorithms in reaching the optimal solution 

within a specified time for the test problems. As anticipated, SA requires less CPU time to solve 

the problems compared to CPLEX. Furthermore, SA with FO consistently exhibits faster 

convergence, achieving solutions in significantly shorter times across the test problems 

compared to random SA. Overall, these findings underscore the effectiveness of the SA 

algorithm in efficiently reaching optimal or near-optimal solutions within a shorter timeframe 

compared to CPLEX across a diverse range of test problem. 

Table 6 presents the algorithm's performance in discovering improved solutions for each 

neighborhood structure during every iteration. In the random SA algorithm, the total number of 

improved solutions in neighborhood structures 1 to 3 were 65, 72, and 47, respectively. 

3a 3b 

3c 3d 

3e 

 initial network 

 Level two link 

 Level three link 

 Level two node 

 Level three node 
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Correspondingly, these values in the SA with FO algorithm are 48, 71, and 57. Notably, each 

neighborhood structure has proven effective in enhancing solution search, with the second 

structure exhibiting superior performance compared to the other two structures. 
 

Table 4. The Algorithms Result from Solving Sample Problems 

Test 

Problem 

CPLEX 
SA with Random Initial 

Solution 

SA with FO based 

Initial Solution 
 

FO Lower 

bound 

Upper 

bound 

Relative 

error 

 

The best 

solution 

Relative 

error 

The best 

solution 

Relative 

error 

TP1 3393798.9 3393798.9 0.0 3393798.9 0.0 3393798.9 0.0 6542783.9 

TP2 113150.3 113150.3 0.0 114120.1 0.84 113235.8 0.07 576892.7 

TP3 3854027.7 3854027.7 0.0 3855870.9 0.047 3854102.7 0.0019 5452371.8 

TP4 4044247.4 4044247.4 0.0 4045879.2 0.04 4044325.0 0.0019 7784521.3 

TP5 4612076.0 4612076.0 0.0 4613129.8 0.022 4612105.0 0.0006 9126452.4 

TP6 3565.1 4548.9 15.78 4893.2 27 3624.8 1.6 6437852.6 

TP7 105775.7 106110.6 1.36 107526.8 1.6 105902.8 0.19 562187.3 

TP8 6332.0 NA NA 18369.1 65 15604.8 59 19572.6 

TP9 12255.3 NA NA 22472.9 45 18864.9 35 22381.7 

TP10 1262.3 NA NA 14527.1 91 9659.8 86 15292.1 

 
Table 5 .Time Comparison for Solving Sample Problems 

Test 

Problem 
CPLEX 

The time of random SA to 

reach the best solution 

The time of SA with FO to 

reach the best solution 

The time of FO to 

reach the solution 

TP1 168 105 60 7 

TP2 98 89 32 6 

TP3 430 205 146 10 

TP4 760 996 389 9 

TP5 14790 1374 985 10 

TP6 18000 2293 1784 14 

TP7 18000 3725 2925 18 

TP8 76270 3657 2521 25 

TP9 76270 3635 2125 32 

TP10 76270 5632 2458 45 

Average 28105.6 2171.1 1342.5 17.6 

 

Sensitivity Analysis   

To assess the model's sensitivity to key parameters, variations were introduced in the budget 

and levels parameters for facility and network line upgrades. Sample problem TP6, representing 

an average scenario, was chosen for this investigation. Initially, a fixed value was assigned to 

the facilities and links budget, and subsequently, this fixed value was systematically increased 

or decreased by a certain percentage to assess the model's sensitivity to these parameters. As 

illustrated in Table 7, a decrease in the budget parameter correlates with an increase in solution 

time and objective function value. This observed phenomenon arises from the reduction of the 

network upgrade budget, encompassing both its lines and facilities. This reduction prompts the 

utilization of lines with higher transfer costs and an increased distance for service provision. A 

40% reduction in the budget results in the depletion of the solution space, rendering the problem 

infeasible. Conversely, augmenting the budget leads to cost reduction, with this effect being 

prominent up to a 10% increase in the budget across all time periods. Another noteworthy 

observation is the prolongation of problem-solving time due to a diminished network upgrade 

budget. A decrease in budget leads to longer computation times, reflecting the computational 

complexity associated with smaller resource allocations. Specifically, a 30% budget reduction 

extends the solution time from 14,760 seconds to 121,587 seconds. In contrast, an increase of 

over 5% in the budget facilitates the identification of optimal solutions within less than 900 

seconds. This intricate relationship between budget variations, cost implications, and 

computational efficiency underscores the nuanced dynamics at play in optimizing the proposed 

model. 
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Table 6. Algorithmic Performance in Discovering Improved Solutions for Each Neighborhood Structure During 

Every Iteration 
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0 0 1 0 2 0 0 1 0 0 2 1 0 2 0 TP1 

1 1 0 1 1 1 0 0 1 0 1 0 0 1 1 TP2 

0 2 0 2 0 0 1 0 1 1 2 0 1 0 1 TP3 

1 2 0 0 0 2 2 1 2 1 1 0 0 1 1 TP4 

0 0 2 0 1 0 0 0 1 0 2 2 0 1 2 TP5 

2 1 2 3 2 0 0 2 0 1 2 1 1 3 1 TP6 

0 3 3 1 3 2 0 4 2 2 1 3 1 2 2 TP7 

1 1 1 4 0 0 2 0 2 3 0 2 1 0 3 TP8 

1 3 2 1 2 0 1 2 3 0 0 5 2 3 1 TP9 

1 5 2 3 4 3 2 1 2 3 2 0 0 2 4 TP10 
7 18 13 15 15 8 8 11 14 11 13 14 6 15 16 Sum 

S
A

 w
it

h
 F

O
 

0 1 0 1 0 0 1 1 1 2 0 1 1 0 0 TP1 

0 2 1 1 1 0 0 1 1 0 0 1 0 1 1 TP2 

2 0 2 0 0 0 2 0 0 2 1 0 0 1 0 TP3 

2 0 0 0 2 2 1 2 1 1 0 0 1 0 1 TP4 

0 2 2 0 2 1 1 0 1 1 2 1 1 0 0 TP5 

2 2 0 4 0 0 2 0 0 2 1 1 3 1 3 TP6 

2 1 3 1 2 0 2 2 2 0 3 1 2 2 2 TP7 

1 1 4 0 0 2 0 2 4 2 0 0 3 1 1 TP8 

3 0 1 3 0 1 2 1 0 3 0 3 2 1 1 TP9 

3 1 2 3 2 3 0 3 1 4 1 3 2 2 2 TP10 
15 10 15 13 9 9 11 12 11 17 8 11 15 9 11 Sum 

 
Table 7. Sensitivity analysis of the model to the budget parameter for TP2 

Budget  

Changes 

Percent 

Link Budget per Period Facility Budget per Period Objective 

Function 

Value 

CPU Time 
𝒕𝟏  𝒕𝟐  𝒕𝟑  𝒕𝟏  𝒕𝟐  𝒕𝟑 

40 1200 1150 1050 1250 1200 1150 3504.26 370 

30 1125 1075 975 1175 1125 1075 3504.26 369 

20 1050 1000 900 1100 1050 1000 3504.26 341 

15 1012.5 962.5 862.5 1062.5 1012.5 962.5 3504.26 428 

10 975 925 825 1025 975 925 3504.26 529 

5 937.5 887.5 787.5 987.5 937.5 887.5 3536.28 812 

0 900 850 750 950 900 850 3728.75 14760 

-5 862.5 812.5 712.5 912.5 862.5 812.5 4022.18 37191 

-10 810 765 675 855 810 765 4164.58 53720 

-15 765 722.5 637.5 807.5 765 722.5 4259.87 69631 

-20 720 680 600 760 720 680 4548.9 80267 

-30 630 646 525 665 630 646 5183.86 121587 

-40 540 510 450 570 540 510 NA - 

 

Conducting another sensitivity analysis on the problem involves varying the number of 

facilities, link levels, and time periods to comprehensively grasp the impact of these variables. 

Based on the data provided in Table 11 for TP1, it is evident that as the number of facilities, 

link levels, and time periods increase, both the objective function's value and CPU time 
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experience a simultaneous increase. This observation implies that the problem becomes more 

intricate and computationally demanding with a larger number of facilities and link levels, as 

well as over extended time periods. 

Specifically, the objective function value, indicative of the total cost, rises in tandem with 

the scale of the problem—represented by an increase in the number of facilities, link levels, and 

time periods. Meanwhile, the CPU time, reflecting the computational effort required to solve 

the problem, exhibits an exponential increase. In this regard, with a 50% to less than 100% 

increase in the considered levels, the computational time correspondingly escalates to 1700 and 

15000 times higher, respectively. 

 
Table 8. Sensitivity Analysis of the Model to Varying Facility Levels and Links 

Number of Facility 

Levels 

Number of Link 

Levels 

Number of Time 

Periods 

Objective Function 

Value 

CPU 

Time 

2 2 2 2905264.8 0.22 

2 3 3 3393798.9 168 

3 3 3 4230554.8 400 

4 4 3 4044247.4 3760 

5 5 3 4452472.05 12487 

 

Conclusion 

 

Over the past decades, combinatorial optimization problems have garnered considerable 

attention. However, research studies have relatively limited coverage of hierarchical facility 

location and network design problems, which involve facilities and links at different levels. 

This research addresses this gap by developing a model that incorporates these factors, 

particularly relevant to the optimization of public service systems. These facilities are 

interconnected through the services they provide, and enhancing access to these facilities 

involves identifying links that require upgrading to a higher level. This problem is crucial due 

to its impact on public services and the need to make efficient use of limited resources. Previous 

studies in this area have not considered time periods and budget constraints, which are common 

in real-world scenarios. Therefore, incorporating these factors leads to a more realistic and 

efficient model that better reflects the complexities of decision-making in real-world 

applications. Since organization's managers face budget constraints when upgrade networks, it 

is crucial to consider these constraints in their decisions. Furthermore, network design decisions 

should be reevaluated at different periods. Hence, this research can greatly assist organizational 

managers and planners in making network design decisions in hierarchical networks by 

considering these two issues. 

The proposed model was solved using CPLEX solver for small and medium sizes, and its 

sensitivity to budget parameters was evaluated and analyzed. Our findings indicate that as 

budget values decrease below a certain threshold, both the objective function value and the 

solution time increase significantly. In this study, several problems of various dimensions were 

solved using the SA algorithm to examine the algorithm's performance and the model's 

behavior, and the results were compared. For solving the developed model, three neighborhood 

structures were proposed. Based on the presented results, it can be concluded that in the random 

SA problem, the efficiency of the second neighborhood structure surpasses the first and third 

ones. Also, the third neighborhood structure has the weakest performance in terms of 

improvement compared to the other two neighborhoods. The SA algorithm proposed in this 

study consistently outperforms a random SA algorithm in terms of speed and quality in solving 

various problems. The results of sensitivity analysis indicate that as budget values decrease 

below a certain threshold, both the objective function value and the solution time increase 

significantly. Conversely, as budget values increase, the model's sensitivity to these parameters 
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decreases. In the next step, the model's sensitivity analysis was performed with respect to 

facility levels. The results show that as the number of facility levels and links increases, both 

the solution time and the objective function value increase.  

The study suggests that by considering more realistic factors such as uncertainty in future 

applications, models can be improved. While our model assumes deterministic parameters, 

incorporating uncertainty through methods such as fuzzy logic or stochastic models could 

enhance the model's realism and provide more robust solutions. We also suggest considering a 

multi-objective model and allocating human resources to each center as one of the decisions to 

expand hierarchical facility location and network design models. Moreover, to better meet 

demand, the objective function can be adjusted to minimize unmet demands. In crisis situations, 

we suggest that different criteria should be taken into account when determining the location of 

medical centers. An exact solution method such as the branch and bound method is also suitable 

for solving the proposed model. The passage concludes by proposing the design of a network 

that takes crises into account in future research. 
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