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Abstract  

Ensuring urban safety and preventing crime are paramount responsibilities of municipal 

managers. Police patrolling plays a crucial role in securing urban areas, yet limited 

resources and budget constraints necessitate an efficient patrolling system. This study 

introduces a multi-objective mathematical programming model aimed at maximizing the 

total effectiveness of a police patrolling system while minimizing associated costs. The 

approach utilizes a two-stage bi-objective Mixed Integer Linear Programming based on 

the K-windy postman problem. In the first stage, the model determines optimal locations 

for constructing police stations, while in the second stage, it allocates vehicle modes, plans 

patrolling routes, and assigns crew members to each vehicle. For small-size problems, the 

model is solved using the ε-constraint method, whereas a cluster-based algorithm is 

proposed for tackling medium- and large-size problems. To illustrate the model's 

applicability, a real-world case study involving various city zones in Tehran, Iran is 

examined. The proposed model offers a practical tool for optimizing police patrolling 

systems in similar urban settings. 
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Introduction 

 

Physical as well as emotional security plays a substantial role in human life. When all aspects 

of security are fulfilled, citizens become more dynamic and active in their social activities. 

Security assurance, in all aspects such as economic, social, and cultural, is one of the main 

duties of any government. Crime occurrence, which is one of the most important issues strongly 

affecting the safety of people in a region, can be reduced by police patrolling (Sherman & 

Weisburd, 1995). Implementing a patrolling system incurs expenditures for governments due 

to fixed and variable costs. As a result, improving the performance of city patrolling systems is 

considered a significant challenge.  

The efficient allocation of police resources is crucial for maintaining public safety, and this 

necessitates the application of advanced techniques from operations research and logistics. The 

police patrolling routing problem is a specialized variant of the vehicle routing problem (VRP), 

which is a well-studied problem in operations research. The VRP involves determining the 

optimal set of routes for a fleet of vehicles to traverse in order to deliver goods or services to 

various locations. Similarly, in the police patrolling context, the objective is to design patrol 
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routes that maximize coverage and visibility while minimizing response time to incidents and 

operational costs. Incorporating principles from vehicle routing and crew scheduling, the police 

patrolling routing problem also addresses the constraints related to patrol officers' working 

hours, work shift patterns, and the geographical layout of the patrolled area. Effective patrolling 

not only deters crime through visible police presence but also ensures rapid response to 

incidents, thereby enhancing public trust and safety. Advanced algorithms and optimization 

techniques, such as integer programming, heuristic methods, and metaheuristics, are often 

employed to solve these complex problems. 

Recent advancements in technology, such as Geographic Information Systems (GIS), real-

time data analytics, and predictive policing models, have further refined the strategies for police 

patrol routing. These technologies enable law enforcement agencies to analyze crime patterns, 

predict potential hotspots, and allocate patrol units more effectively. By integrating these 

technologies with robust operational research methodologies, it is possible to develop dynamic 

patrol routing systems that adapt to real-time information, thereby improving the efficiency and 

effectiveness of police operations. Moreover, the economic implications of police patrolling 

systems cannot be overlooked. Governments must balance the need for security with budgetary 

constraints, making the optimization of patrolling routes a critical area of study. Reducing fuel 

consumption, minimizing overtime costs, and ensuring the equitable distribution of patrol 

resources are essential considerations in the design of an optimal patrolling strategy. 

This paper aims to explore the police patrolling routing problem by examining various 

models and approaches that have been proposed in the literature. It will delve into the 

integration of vehicle routing problem methodologies with real-world constraints specific to 

police patrolling. The rest of this paper is organized as follows: In Section 2, conducted on 

similar problems are reviewed/ In Section 3, the problem and the mathematical model of the 

suggested problem are described. Section 4 presents the problem solution approaches. Lastly, 

Section 5 is dedicated to concluding remarks and directions for future research. 

 

Literature Review  

 

Police patrolling is a critical activity in urban safety and crime prevention, necessitating 

efficient routing and scheduling strategies to maximize effectiveness while minimizing costs. 

Recent studies have addressed various aspects of optimizing police patrol routes and schedules 

using advanced mathematical models and algorithms. In this section, we review the literature 

related to the problem domain discussed in this research. 

 

Arc Routing Problems  

Routing problems are divided into two broad categories: arc routing problems (ARP) and 

node routing problems (NRP). In node routing problems, the objective is to find a route that 

covers all or a subset of nodes, while in arc routing problems, the objective is to find a route 

that covers either all or a subset of a graph. Fig 1 demonstrates how node routing and arc routing 

work. When the objective is to find the route that covers all nodes, a feasible answer is 

1→2→3→4. However, when the objective is to find a route that covers all arcs, a feasible 

answer is 1→3→2→1→4→2→3→4. In the police patrolling problem, the coverage of all 

streets is the objective; thus, the problem should be considered as an Arc Routing Problem. 

Arc routing problems encompass various applications such as street sweeping (Bodin & 

Kursh, 1978), newspaper delivery (Applegate et al., 2002)), traffic monitoring (Li et al., 2018), 

winter road maintenance such as snow plowing and salt spreading ((Perrier et al., 2007) and 

(Perrier et al., 2008)), garbage collection (Amponsah & Salhi, 2004), prize collecting (Vincent 

& Lin, 2015), and police patrolling ((Shafahi & Haghani, 2015), (Chawathe, 2007), (Takamiya 

& Watanabe, 2011)), all requiring efficient routing strategies to cover predefined arcs or edges 
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in a network. 

 

 
Figure 1. Node Routing and Arc Routing 

 

A considerable number of arc routing applications are of the Chinese Postman Problem 

(CPP) type. The CPP, also known as the route inspection problem, was first proposed by the 

Chinese mathematician Mei-Ko (1962). It involves finding the shortest route for a mailman to 

cover all the arcs of a closed circuit. In real cases, especially in large networks, allocating one 

postman (vehicle) to cover the whole network might not satisfy time constraints. Therefore, it 

may be logical to use more than one vehicle to minimize the total cost or the time of network 

routing. Considering multiple postmen in the CPP is called the k-CPP. Thomassen (1997)  

shows that the k-Chinese Postman Problem is NP-hard. In the k-CPP problem, the objective is 

generally to cover all the arcs in the network using k postmen in minimum time or at minimum 

cost. Akyurt et al. (2015) presented a mathematical model for road maintenance operations in 

winter and used a genetic algorithm to solve their model. However, the Min-Max k-CPP (MM 

k-CPP), which was first mentioned by Frederickson et al. (1976), is also a common objective 

in the literature. This objective aims to minimize the cost of the most costly tour. Ahr and 

Reinelt (2002) introduced a heuristic and lower bound, and later in 2006 they introduced a Tabu 

Search for solving the MM k-CPP (Ahr & Reinelt, 2006). 

In the police patrolling system for a city, covering each street is one of the main objectives. 

The direction of a police vehicle on a two-way street might not be a real issue since the street 

is covered regardless of vehicle direction, unlike most arc routing problems such as snow 

plowing, order delivery, salt spreading, and road maintenance. However, in the case of an uphill 

or downhill street or varied traffic load, the direction of vehicles is important. Furthermore, in 

the case of having a one-way street, the time or cost for traversing the opposite direction could 

be set to a large number. Thus, in real cases, the appropriate routing for police patrolling 

problem could be formulated as a Windy Postman Problem (WPP). In the Windy Postman 

Problems, introduced by Minieka (1979), the graph is undirected and the cost or time of 

traversing each arc in each direction might be different. The IP formulation of WPP is as follows 

where C≔〖(C_ij,C_ji)_({i,j}∈E) is the cost function of a WPP and x≔〖(x_ij,x_ji)〗
_({i,j}∈E) is the incidence vector of a WP tour of graph G (Win, 1987): 

 

𝑀𝑖𝑛 ∑ (𝐶𝑖𝑗𝑥𝑖𝑗 + 𝐶𝑗𝑖𝑥𝑗𝑖)

{𝑖.𝑗}∈𝐸

 

(1) 
𝑥𝑖𝑗 + 𝑥𝑗𝑖 ≥ 1      ∀{𝑖. 𝑗} ∈ 𝐸 

∑ (𝑥𝑖𝑗 − 𝑥𝑗𝑖) = 0    ∀𝑖 ∈ 𝑉

{𝑖.𝑗}∈𝛿(𝑖)

 

𝑥𝑖𝑗 . 𝑥𝑗𝑖 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟        ∀ {𝑖. 𝑗} ∈ 𝐸 

 

According to Eiselt et al. (1995), WPP contains CPP, DCPP (Directed Chinese Postman 
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Problem), and MCPP (Mixed Chinese Postman Problem), making it NP-hard. Numerous 

variants of WPP are found in the literature, used by researchers to address real-world problems. 

Lum et al. (2017) tackled the Windy Rural Postman Problem with Zigzag Time Windows 

(WRPPZTW), where some streets can be serviced in a single traversal using zigzag service. 

They developed a hybrid heuristic that combines insertion and local search techniques with 

integer programming. Their heuristic was compared to an exact procedure on small instances 

and tested for scalability on larger grid instances. Keskin et al. (2023) addressed a variant of 

the Hierarchical Windy Postman Problem (HWPP) with linear precedence and variable service 

costs. They proposed an integer linear mathematical model and developed a heuristic that adapts 

a layer algorithm to handle asymmetric costs, demonstrating that it performs faster and more 

effectively than a commercial solver on test instances. Samanifar et al. (2024) introduced two 

models of the WPP and rural WPP, incorporating uncertainty theory, which had not previously 

been applied to these models. They transformed the uncertain problem into a deterministic one 

and used the Lagrangian heuristic method to solve it. They presented corresponding Lagrangian 

algorithms for both the WPP and rural WPP, applied them to examples, and solved them using 

both direct and Lagrangian methods. Khorramizadeh and Javvi (2024) formulated an integer 

programming model for the Windy Profitable Location Rural Postman Problem (WPLRPP) and 

proved a theorem regarding the dimension of the polyhedron. They adapted valid inequalities 

and developed a branch-and-cut algorithm, showing it solves larger instances faster than other 

algorithms in the literature. In this paper, a bi-objective model is introduced, which considers 

the minimization of patrolling costs and the maximization of its effectiveness, and a k-WPP 

based formulation is chosen to closely match real-world cases for the police patrolling problem. 

 

Literature Reviews and Classification Schemes 

There is extensive literature on the vehicle routing problem, and numerous review articles 

have been written on this topic. However, since there are fewer articles on police patrolling 

routing problems, there are also fewer review articles available in this area. Samanta et al. 

(2022) conducted a comprehensive review of police patrol methods, focusing on operations 

research approaches. They presented a novel classification scheme for organizing existing 

research based on problem type, objective, and modeling approach, revealing practical 

challenges and opportunities for future research in urban security and smart city planning. 

Dewinter et al. (2023) reviewed 30 articles on the dynamic vehicle routing problem (DVRP) 

related to policing to identify suitable methods for the police patrol routing problem (PPRP). 

They highlighted that hybrid genetic algorithms, routing policies, and local search methods are 

the most valuable solutions for this problem. Thabet et al. (2023) conducted a systematic 

literature review to classify common objectives, problems, and solutions in optimizing police 

patrol routes and predicting crime locations. They analyzed 31 research papers, categorizing 

the methods into five main types: machine learning, mathematical, simulation, stochastic, and 

recommendation systems.  

 

Mathematical Formulations and Optimization Models 

Each problem can be modeled in various ways depending on different conditions and 

assumptions, and different solution methods can be used for it. Police patrolling problems are 

no exception to this rule. So far, a wide range of assumptions, models, and solution methods 

have been chosen by researchers for this category of problems. Reis et al. (2006) presented an 

evolutionary multi-agent-based simulation tool named GAPatrol to design effective patrol route 

strategies. Chen (2012) presented a mathematical formulation for the patrol route planning 

problem and proposed an algorithm developed from the cross entropy method to solve small-

size and an approximate CE algorithm for large-size problems, balancing convergence time 

with optimality. Takamiya and Watanabe (2011) proposed a route planning method for the 
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police patrol routing problem to minimize the response time estimated using the Network 

Voronoi Diagram (NVD) and used Local Search to optimize the routes. Willemse and Joubert 

(2012) presented a heuristic algorithm based on Tabu Search for the problem of road patrolling. 

Keskin et al. (2012) developed a mixed integer linear programming model for determining 

patrol routes for state troopers and solved the model using local and Tabu Search-based 

heuristics. 

 Chircop et al. (2013) proposed a column generation approach for routing and scheduling 

patrol boats to provide complete patrol coverage. Li and Keskin (2014) presented a mixed 

integer linear programming model for the dynamic patrol routing problem for state troopers 

with the objective of maximizing the critical location coverage benefit and minimizing total 

costs, and proposed a heuristic algorithm to solve the problem. Shafahi and Haghani (2015) 

presented a mixed integer programming formulation for security patrolling and discussed four 

different cases of the model. Dewil et al. (2015) modeled the maximum covering and patrol 

routing problem (MCPRP) as a minimum cost network flow problem (MCNFP) and showed 

that several practical additions to the MCPRP, like overlapping work shifts and different origin 

and destination locations of patrol cars, can be modeled using multi-commodity MCNFP. 

 Muaafa and Ramirez-Marquez (2017) proposed a multi-objective heuristic optimization 

approach for patrolling strategy improvement, aiming to minimize vulnerability and cost. Chen 

et al. (2023) developed a novel real-time patrol route planning algorithm using deep 

reinforcement learning, specifically the Integrated Double Q-Network (IDQN) method. They 

empirically tested the algorithm, demonstrating its practical viability and utility in enhancing 

police patrolling efficiency and urban security management. Joe et al. (2023) addressed the 

challenge of dynamically dispatching and rescheduling police patrols in response to incidents 

by developing a Deep Reinforcement Learning-based solution. Their approach uses neural 

networks with Temporal-Difference learning and a rescheduling heuristic to optimize both 

incident response times and patrol presence. They also introduced a reward function that 

balances these dual objectives without needing predefined weights. Jiang et al. (2022) proposed 

a model to optimize the allocation and patrol paths of city inspectors to minimize average 

response time and the number of inspectors. They developed a priority patrol and multi 

objective genetic algorithm (DP-MOGA) and tested it with data from Zhengzhou, China, 

demonstrating that their algorithm efficiently generates patrol routes and outperforms existing 

methods in stability and efficiency. 

 Tohyama and Tomisawa (2022) introduced the police officer patrol problem (POPP), an 

edge routing decision problem related to the vertex cover problem, where a single police officer 

must visually confirm all streets from intersections. They proved that solving the POPP on 

mixed graphs is NP-complete. Katole et al. (2023) developed a distributed online algorithm to 

balance patrolling between priority and non-priority locations, ensuring that non-priority sites 

are visited within finite time frames. The algorithm creates offline patrol routes called "Rabbit 

Walks," which consist of three segments for exploring non-priority locations. 

 Chen et al. (2022) investigated a patrol routing problem to combat maritime crime by 

proposing a novel approach to identify suspicious ships and enhance patrol efficiency. They 

developed three mathematical programming models tailored to different scenarios based on the 

availability of aerial photographs and conducted extensive numerical experiments to validate 

their models' effectiveness and efficiency. Rumiantsev et al. (2023) proposed a method to 

construct optimal patrol routes in terrain using a modified Hamiltonian circuit search algorithm. 

This method efficiently generates closed paths on terrain maps with over 100 vertices, 

significantly reducing execution time compared to standard brute-force algorithms. Their 

algorithm demonstrates 17 times lower time complexity growth, enabling real-time 

performance for larger graphs. Sá et al. (2022) addressed the challenge of optimizing police 

patrol routes in crime-prone urban areas by creating the PolRoute-DS dataset. Wong et al. 
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(2023) addressed the challenge of police patrol scheduling by proposing a Multi-Agent 

Reinforcement Learning (MARL) solution to manage the Dynamic Bi-objective Police Patrol 

Dispatching and Rescheduling Problem (DPRP). They utilized an Asynchronous Proximal 

Policy Optimization-based (APPO) actor-critic method to dynamically reschedule patrols, 

improving both computational efficiency and solution quality compared to existing heuristic-

based RL approaches. Kajita et al. (2024) implemented an optimization algorithm for police 

patrol routes based on a crime prediction map to deter cable theft in Belo Horizonte, Brazil. 

Their field experiment over two months showed a 79% reduction in crimes in the targeted area 

and demonstrated that optimized patrols had a significant crime deterrent effect, even extending 

to areas not directly patrolled. They used GPS data to assess and validate the impact of these 

optimized patrols.  

 

Our Contribution  

The main contributions of this research may be outlined as follows. 

 

• Model assumptions and mathematical formulation 

Numerous studies have been conducted on police patrolling problems, and various methods 

have been proposed to solve them. Additionally, different assumptions have been considered 

for defining the problem. According to our review, the majority of research in the field of 

police patrol routing focuses primarily on routing and scheduling, while fewer studies 

address location-routing problems and crew assignment. To the best of our knowledge, no 

paper examines location-routing and crew assignment for police patrolling simultaneously. 

Addressing these aspects concurrently could significantly impact police patrolling issues. 

Determining the optimal locations for police stations throughout the city, identifying the 

routes that patrol vehicles should follow, and assigning crews based on their skill levels, 

specialties, and wages are particularly crucial, especially when various scenarios are 

possible. For instance, specific situations such as bombings or hostage situations may require 

different expertise. The practical benefit of our model lies in its ability to optimize police 

station locations, patrol routes, and crew assignments in a unified framework. This is crucial 

in urban environments where crime patterns vary, and different scenarios such as bomb 

threats or hostage situations may arise. In such cases, assigning police officers with the right 

skill sets and expertise to the right locations at the right time can dramatically improve 

response effectiveness, potentially saving lives. This model also helps reduce operational 

costs by optimizing routes and scheduling based on wages and skill levels, ensuring that 

limited resources are used most effectively. The real-world applicability is clear, as law 

enforcement agencies face constant pressure to improve response times and resource 

allocation. 

 

• Arc clustering approach 

A vast variety of methods have been introduced for solving police patrolling problems, each 

demonstrating varying degrees of effectiveness. Given that this issue is a location-routing 

problem and simultaneously involves the allocation of police stations along with routing, we 

hypothesized that clustering could yield good performance. Considering this problem as an 

edge-routing problem, we developed a novel edge clustering algorithm tailored for this type 

of problem, which exhibits very good performance. In practice, the clustering approach helps 

law enforcement agencies design patrol routes that are more logical and efficient, reducing 

overlap and ensuring comprehensive coverage of high-priority areas. This not only improves 

patrol efficiency but also minimizes unnecessary travel, saving time and fuel costs. 

Moreover, by clustering streets based on their geographical proximity and risk level, police 

departments can dynamically adjust patrols to focus on areas with higher crime rates or 
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urgent situations, making patrolling more adaptive and responsive to real-time conditions. 

 

Problem Description  

 

In the presented mathematical model, a real application of the k-windy postman problem is 

considered. One of the challenges in security patrolling is determining the optimal number of 

police stations and their locations to minimize the total cost while maximizing effectiveness. 

Therefore, a bi-objective mathematical model is presented to optimize the trade-off between 

costs and effectiveness. Effectiveness is defined as a quality measure that needs to be 

quantitatively assessed through expert opinion and encompasses several dimensions: response 

times (how quickly patrol units can respond to incidents), coverage quality (how well the patrol 

routes cover high-risk or high-crime areas), resource optimization (how efficiently resources 

like vehicles, personnel, and time are utilized), and incident resolution (how well the assigned 

crews' expertise matches the type of incident they are responding to, such as bomb threats or 

hostage situations). 

Another challenge is the variety of scenarios in the police patrolling problem. in these types 

of problems, various scenarios can arise, and the probability of each scenario can be significant. 

For instance, there may be times when the probability of bombings or terrorist attacks is higher, 

while at other times, the likelihood of theft is greater. When the probability of a bombing is 

higher, personnel with bomb disposal expertise can have a greater impact on operations. 

Conversely, in a theft scenario, those with expertise in theft investigation or high-speed pursuit 

can be more effective. Additionally, vehicle selection plays a crucial role; bomb-equipped 

vehicles might be more suitable in bombing scenarios, whereas motorcycles could be more 

effective in pursuit scenarios. Given the importance of scenario consideration in this problem, 

we have modeled it as a multi-scenario problem. 

The proposed model also considers the possibility of multimodal vehicle selection. It is 

assumed that the number of each vehicle mode is accessible in the market. Determining how 

many of each vehicle should be bought from the market might cause a significant cost reduction 

and/or increase in effectiveness. For example, in security patrolling, different vehicles (e.g., 

car, motorcycle) could be used, and each of them might differ in their fixed cost, variable cost, 

effectiveness rate, and capacity. The effectiveness rate of each mode determines the preventive 

effect on crime reduction in society. The presented model assumes equivalent length for each 

work shift; therefore, all vehicles are required to return to their depot stations for reporting 

before the end of the work shift. Furthermore, the minimum number of times each arc should 

be traversed in each work shift and under each scenario can be set as parameters. This 

assumption is vital for crime hotspot areas.  

The patrolling problem involves various issues, such as crew assignment and scheduling. 

Several challenges in patrolling crew scheduling lead to more complex situations: 

1. More than one person is usually allocated to each vehicle. 

2. The wages of personnel are usually high due to the skills they possess, the difficulty of their 

tasks, and the associated risks. 

3. There are different experts (e.g., driver, bomb disposal expert, narcotics officer). 

4. The grades of personnel (e.g., officer, major) vary. 

We tackled the aforementioned challenges by defining related sets for each crew member. 

Each crew member is defined by a grade and a set of skills that determine their effectiveness. 

Additionally, the wage of each crew member and the maximum number of work shifts a crew 

member is allowed to work in a day can be set as parameters. Also, a crew member cannot work 

two consecutive work shifts. The minimum number of expertise and grades under each scenario 

can be defined in the model. The sets and indices, parameters, and decision variables used in 

the presented model are summarized in Table 1. 
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Table 1. Sets and indices, parameters, and decision variables 

Sets and indices 

𝑉 Set including all nodes in the network 

𝐸 Set including all edges in the network 

𝑖, 𝑗, 𝑙 Index of nodes 𝑖, 𝑗, 𝑙 ∈ 𝑉 

𝑘 Index of vehicles 𝑘 ∈ {1,2, … , 𝐾} 

𝑡 Index of work shifts 𝑡 ∈ {1,2, … , 𝑇} 

𝑠 Index of scenarios 𝑠 ∈ {1,2, … , 𝑆} 

𝑝 Index of crew members 𝑝 ∈ {1,2, … , 𝑃} 

𝑒 Index of expertise 𝑒 ∈ {1,2, … , 𝐸} 

𝑔 Index of grades 𝑔 ∈ {1,2, … , 𝐺} 

Parameters 

𝐹𝑆𝑖 fixed cost of setting a station in node i 

𝐹𝑉𝑘 fixed cost of vehicle k 

𝑁𝑖𝑗
𝑡𝑠 minimum number of times that the edge ij should be traversed in work shift t under scenario s 

𝑇𝑚𝑎𝑥  the maximum allowed time for vehicle to finish their tour 

𝑇𝑘 the time that it takes for each vehicle k in order to traverse a unit of distance 

𝐷𝑖𝑗  the distance between node i and node j 

𝑀 A large number 

𝑉𝑉𝑘 Variable cost for each distance unit for vehicle k 

𝑉𝑃𝑘 Variable cost for pollution emission for each distance unit for vehicle k 

𝐹𝑢𝐶𝑘 Fuel consumption of for each distance unit for vehicle k 

𝐹𝑢𝐶𝑎𝑝𝑘 Fuel capacity of vehicle k 

𝑊𝐸𝑘
𝑠 The effectiveness weight of vehicle k under scenario s 

𝑊𝑃𝑔𝑒
𝑠  The effectiveness weight of each person with grade g and expert mode e under scenario s 

𝑊𝑅𝑖𝑗
𝑡  Weight of edge (𝑖, 𝑗) ∈ 𝐸 in work shift t for each distance unit 

𝑊𝐺𝑝 Wage of person p 

𝑌𝐺𝑝𝑒𝑔 A binary 3-dimensional matrix which is 1 if person p with expertise e has grade g 

𝑌𝐸𝑝𝑒𝑔 A binary 3-dimensional matrix which is 1 if person p with expertise e has grade equal or above g 

𝑀𝑎𝑥𝑆𝑝 Maximum allowed work shifts for person p 

𝑉𝑐𝑎𝑝𝑘 Crew capacity of vehicle k 

𝑃𝑚𝑖𝑛𝑘 Minimum number of people in vehicle k 

𝐷𝐸𝑒
𝑡𝑠 Minimum number of expertise e needed for work shift t under scenario s 

𝐷𝐺𝑔
𝑡𝑠 Minimum number of grades equal to or above g needed for work shift t under scenario s 

𝜑𝑠 Probability of scenario s 

Decision variables 

𝑥𝑖𝑗𝑘
𝑡𝑠  the number of times that vehicle k traversed on edge ij under scenario s in work shift t 

𝑢𝑘
𝑡𝑠 1 if vehicle k is used in work shift t under scenario s, and zero otherwise 

ℎ𝑖𝑘
𝑡𝑠 1 if vehicle k starts from node i in work shift t under scenario s, and zero otherwise 

𝑦𝑖  1 if a station in node i is constructed, and zero otherwise 

𝑏𝑖𝑘
𝑡𝑠 1 if node i visited by vehicle k in work shift t under scenario s, and zero otherwise 

𝑓𝑖𝑗𝑘
𝑡𝑠  

The dummy variable in charge of flow of fictional commodity transferred by vehicle k from node i 

to node j in work shift t under scenario s 

𝑧𝑝𝑘
𝑡𝑠  1 if person p is allocated to vehicle k in work shift t under scenario s, and zero otherwise 

 

As mentioned before, some parameters and limitations might change in different situations 

(e.g., terrorist attack threats, high-ranking officials' visits, official ceremonies, etc.) which 

necessitates defining multiple scenarios in the model and leads to a multi-stage mathematical 

formulation. Each scenario has specific constraints, such as the minimum number of times each 

arc should be traversed, and the different expertise and grades that should be assigned. 

Considering a multi-stage k-WPP, the problem is formulated as a two-stage mixed-integer 

linear mathematical formulation. Decision variables are divided into two categories in the two-

stage programming approach. The first-stage decisions are not reliant on scenario realization 

and can be made before a scenario is realized. Second-stage decisions, on the other hand, are 

scenario-dependent variables that rely on scenario realization. In the presented mathematical 



Advances in Industrial Engineering, June 2025, 59(1): 133-152 

 141 

 

model, decision variable 𝑦𝑖 (equal to 1 if a station in node iii is constructed and zero otherwise) 

is scenario-independent (a first-stage variable). The value of all other variables can be 

determined in the second stage depending on which scenario occurs. The entire mathematical 

formulation for the aforementioned problem can be seen in the following: 

 

𝑉𝐸𝐹𝑠 = ∑ ∑ 𝑢𝑘
𝑡𝑠

𝑡

 𝑊𝐸𝑘
𝑠

𝑘

 ∀𝑠 (2) 

𝑃𝐸𝐹𝑠 = ∑ ∑ ∑ 𝑌𝐺𝑝𝑔𝑒𝑊𝑃𝑔𝑒
𝑠

𝑒

∑ ∑ 𝑧𝑝𝑘
𝑡𝑠

𝑡𝑘𝑔𝑝

 ∀𝑠 (3) 

𝑆𝐹𝐶 = ∑ 𝑦𝑖  𝐹𝑆𝑖

𝑖

  (4) 

𝑉𝐹𝐶𝑠 = ∑ ∑ 𝑢𝑘
𝑡𝑠 𝐹𝑉𝑘

𝑘𝑡

 ∀𝑠 (5) 

𝑃𝑊𝐺𝑠 = ∑ ∑ ∑ 𝑧𝑝𝑘
𝑡𝑠  𝑊𝐺𝑝

𝑡𝑘𝑝

 ∀𝑠 (6) 

𝑃𝑉𝐶𝑠 = ∑ ∑ ∑ ∑ 𝑥𝑖𝑗𝑘
𝑡𝑠  𝐷𝑖𝑗𝑊𝑅𝑖𝑗

𝑡  (𝑉𝑉𝑘 + 𝑉𝑃𝑘)

𝑘𝑗𝑖𝑡

 ∀𝑠 (7) 

𝑀𝑎𝑥 𝐸𝐹𝐹 =  ∑ 𝜑𝑠

𝑠

(𝑉𝐸𝐹𝑠 + 𝑃𝐸𝐹𝑠)  (8) 

𝑀𝑖𝑛 𝐶𝑆𝑇 =  𝑆𝐹𝐶 + ∑ 𝜑𝑠

𝑠

(𝑉𝐹𝐶 𝑠 + 𝑃𝑊𝐺𝑠 + 𝑃𝑉𝐶𝑠)  (9) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

∑ ℎ𝑖𝑘
𝑡𝑠

𝑖

=  𝑢𝑘
𝑡𝑠 ∀ 𝑘, 𝑡, 𝑠 (10) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑡𝑠 ≤ 𝑀 𝑢𝑘

𝑡𝑠

𝑗|(𝑖.𝑗)∈𝐸𝑖

 ∀ 𝑘, 𝑡, 𝑠 (11) 

∑ ∑ ℎ𝑖𝑘
𝑡𝑠

𝑘𝑡

 ≤ 𝑀 𝑦𝑖  ∀ 𝑖, 𝑠 (12) 

∑(𝑥𝑖𝑗𝑘
𝑡𝑠 + 𝑥𝑗𝑖𝑘

𝑡𝑠 ) ≥   𝑁𝑖𝑗
𝑡𝑠

𝑘

 ∀ 𝑖, 𝑗|(𝑖, 𝑗) ∈ 𝐸, 𝑡, 𝑠 (13) 

∑ 𝑥𝑖𝑙𝑘
𝑡𝑠 = ∑ 𝑥𝑙𝑗𝑘

𝑡𝑠

𝑗|(𝑙.𝑗)∈𝐸𝑖|(𝑖.𝑙)∈𝐸

 ∀ 𝑙 ∈ 𝑉, 𝑘, 𝑡, 𝑠 (14) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑡𝑠  𝐷𝑖𝑗  𝑊𝑅𝑖𝑗

𝑡𝑠 𝑇𝑘  ≤ 𝑇𝑚𝑎𝑥

𝑗|(𝑖.𝑗)∈𝐸𝑖

 ∀ 𝑘, 𝑡, 𝑠 (15) 

∑ 𝑥𝑗𝑖𝑘
𝑡𝑠

𝑗|(𝑗.𝑖)∈𝐸

+ ∑ 𝑥𝑖𝑗𝑘
𝑡𝑠

𝑗|(𝑖.𝑗)∈𝐸

≤ 2𝑀𝑏𝑖𝑘
𝑡𝑠 ∀ 𝑖, 𝑘, 𝑡, 𝑠 (16) 

∑ 𝑓𝑖𝑗𝑘
𝑡𝑠 − ∑ 𝑓𝑗𝑖𝑘

𝑡𝑠

𝑗|(𝑗.𝑖)∈𝐸𝑗|(𝑖.𝑗)∈𝐸

≤ −1𝑏𝑖𝑘
𝑡𝑠  + 𝑀ℎ𝑖𝑘

𝑡𝑠 ∀ 𝑖, 𝑘, 𝑡, 𝑠 (17) 

∑ 𝑓𝑖𝑗𝑘
𝑡𝑠 − ∑ 𝑓𝑗𝑖𝑘

𝑡𝑠

𝑗|(𝑗.𝑖)∈𝐸𝑗|(𝑖.𝑗)∈𝐸

≥ −1𝑏𝑖𝑘
𝑡𝑠 − 𝑀 ℎ𝑖𝑘

𝑡𝑠 ∀ 𝑖, 𝑘, 𝑡, 𝑠 (18) 

𝑀𝑥𝑖𝑗𝑘
𝑡𝑠 ≥ 𝑓𝑖𝑗𝑘

𝑡𝑠  ∀ 𝑖, 𝑗|(𝑖, 𝑗) ∈ 𝐸, 𝑘, 𝑡, 𝑠 (19) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑡𝑠  𝐷𝑖𝑗

𝑗|(𝑖.𝑗)∈𝐸𝑖

𝑊𝑅𝑖𝑗
𝑡  𝐹𝑢𝐶𝑘 ≤ 𝐹𝑢𝐶𝑎𝑝𝑘 ∀ 𝑘, 𝑡, 𝑠 (20) 

∑ 𝑧𝑝𝑘
𝑡𝑠

𝑝

≤ 𝑉𝑐𝑎𝑝𝑘  ∀ 𝑘, 𝑡, 𝑠 (21) 

∑ ∑ ∑ 𝑧𝑝𝑘
𝑡𝑠  𝑌𝐸𝑝𝑒𝑔  ≥ 𝐷𝐸𝑒

𝑡𝑠

𝑘𝑔𝑝

 ∀ 𝑡, 𝑒, 𝑠 (22) 

∑ ∑ ∑ 𝑧𝑝𝑘
𝑡𝑠  𝑌𝐺𝑝𝑒𝑔  ≥ 𝐷𝐺𝑔

𝑡𝑠

𝑘𝑒𝑝

 ∀ 𝑡, 𝑔, 𝑠 (23) 

∑ ∑ 𝑧𝑝𝑘
𝑡𝑠  ≤ 𝑀𝑎𝑥𝑆𝑝

𝑘𝑡

 ∀ 𝑝, 𝑠 (24) 
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∑(𝑧𝑝𝑘
𝑡𝑠 + 𝑧𝑝𝑘

𝑡−1.𝑠)  ≤ 1

𝑘

 ∀𝑝, 𝑠, 𝑡 = 2, … , 𝑇 (25) 

∑(𝑧𝑝𝑘
1.𝑠 + 𝑧𝑝𝑘

𝑇.𝑠)  ≤ 1

𝑘

 ∀ 𝑝, 𝑠 (26) 

∑ 𝑧𝑝𝑘
𝑡𝑠  ≥ 𝑢𝑘

𝑡𝑠

𝑝

𝑃𝑚𝑖𝑛𝑘 ∀ 𝑘, 𝑡, 𝑠 (27) 

∑ 𝑧𝑝𝑘
𝑡𝑠  ≤ 𝑀𝑢𝑘

𝑡𝑠

𝑝

 ∀ 𝑘, 𝑡, 𝑠 (28) 

𝑥𝑖𝑗𝑘
𝑡𝑠 ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ∀ 𝑖, 𝑗, 𝑘, 𝑡, 𝑠 (29) 

𝑓𝑖𝑗𝑘
𝑡𝑠 ≥ 0 ∀ 𝑖, 𝑗, 𝑘, 𝑡, 𝑠 (30) 

𝑦𝑖 , 𝑢𝑘
𝑡𝑠, ℎ𝑖𝑘

𝑡𝑠 , 𝑏𝑖𝑘
𝑡𝑠, 𝑧𝑝𝑘

𝑡𝑠 ∈ {0,1} ∀ 𝑖, 𝑘, 𝑝, 𝑡, 𝑠 (31) 

 

Equation (2) shows total vehicle effectiveness, and equation (3) shows total person 

effectiveness, both of which are used in police patrolling. Equation (4) addresses the station 

fixed cost, equation (5) concerns the vehicle fixed cost, equation (6) pertains to person wages, 

and equation (7) involves vehicle variable cost and pollution emission cost. Equations (2)-(3) 

and (5)-(7) are defined under scenario s. The objective function (8) maximizes the total 

expected value of total effectiveness, while the objective function (9) minimizes the expected 

value of total cost. It is evident that objective functions (8) and (9) conflict with each other, as 

the total cost increases if the total effectiveness of the system increases. Constraint set (10) 

states that if a vehicle is used, it should start from a node, and if the vehicle is not used, it cannot 

start from a node. Constraint set (11) ensures that a vehicle can only traverse an edge if it is 

being used. Constraint set (12) ensures that a vehicle can only start from a node if a station is 

built at that node. Constraint set (13) enforces that the number of times an edge is traversed is 

equal to or more than the required number. Constraint set (14) enforces the equality of output 

and input flow for each node. Constraint set (15) ensures that each vehicle completes its tour 

before the given time. 

Constraint sets (16)-(19) are for sub-tour elimination and discontinuity prevention. Several 

sub-tour elimination constraints have been proposed in the literature and are discussed by 

Limon (2015). The formulation of case 1 proposed by Shafahi and Haghani (2015) is used for 

modeling in the presented paper. However, in case 1, the origins and destinations are the same 

and are given by users. In the presented model, although the origins and destinations are the 

same for each vehicle, the origins for each vehicle should be determined by the model. The sub-

tour constraints presented by them in case 1 are as follows: 

 

∑ 𝑥𝑗𝑖𝑘

𝑗

+ ∑ 𝑥𝑖𝑗𝑘

𝑗

≤ 2𝑀𝑏𝑖𝑘  ∀ 𝑖. 𝑘 (32) 

∑ 𝑦𝑖𝑗𝑘 − ∑ 𝑦𝑗𝑖𝑘

𝑗𝑗

= −1𝑏𝑖𝑘 ∀ 𝑖 ∈ (𝑉 − 𝑂𝑘). 𝑘 (33) 

𝑦𝑖𝑗𝑘 ≤ 𝑀𝑥𝑖𝑗𝑘  ∀ 𝑖. 𝑗. 𝑘 (34) 

 

In these constraint sets, 𝑥𝑖𝑗𝑘 is a positive integer variable representing the number of times 

edge 𝑖𝑗 is traversed by vehicle k, 𝑦𝑖𝑗𝑘 is a continuous positive variable representing the flow of 

a fictional commodity being transferred from node 𝑖 to node 𝑗 using vehicle 𝑘, 𝑏𝑖𝑘 is a binary 

variable that equals one if node 𝑖 is visited by vehicle 𝑘 and zero otherwise, 𝑂𝑘 is the origin for 

vehicle 𝑘, and 𝑀 is a large number. However, in the presented paper, since the origin for each 

vehicle is unknown, the constraint is converted into two inequality constraints which remain 

neutral for a vehicle in the case where node 𝑖 is a starting node for it. 

Constraint set (20) ensures that the route allocated to a vehicle has sufficient fuel capacity. 

Constraint set (21) ensures that the number of personnel allocated to a vehicle does not exceed 
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its capacity. Constraint set (22) guarantees the minimum number of experts that should be 

allocated to a work shift. Constraint set (23) ensures scheduling crew members with the required 

or higher grade. Constraint set (24) ensures that the maximum number of work shifts for a 

person does not exceed their capacity. Constraints (25)-(26) ensure that a person does not work 

in two consecutive work shifts. Constraints (27)-(28) ensures that the crew could be assigned 

to a vehicle if it is being used. Constraints (29)-(31) are restrictions on the variables. 

 

Solution Approach 

 

As the mentioned problem is proven to be NP-hard, and due to the complexity of the model, 

solving even the average-size problems in a reasonable amount of time is not possible. 

However, in the case of police patrolling problem, the small-size problems occur practically. 

Using security patrolling in a college campus, small villages, industrial park, etc. can be 

formulated by the presented model, and the small-size problem can be solved in a reasonable 

amount of time. In this research, both exact solution and a heuristic approach is presented in 

order to solve both small-size as well as medium and large size problems. 

 

The 𝛆-Constraint Method 

Using the ε-constraint method, the bi-objective model presented in the previous section can 

be transformed into a single-objective formulation. The ε-constraint method, first introduced 

by Haimes (1971), is among the most popular methods for solving multi-objective 

programming models. This method is particularly suitable when one objective, such as the 

effectiveness of the patrolling system in our research, is of higher importance than the cost. The 

ε-constraint method offers several advantages, as outlined by Mavrotas (2009): 

• For linear problems, the ε-constraint method alters the original feasible region and can yield 

non-extreme solutions. In contrast, the weighting method applied to the original feasible 

region tends to produce corner solutions, potentially requiring many redundant runs. The ε-

constraint method efficiently utilizes each run to produce effective solutions. 

• In multi-objective integer and mixed-integer linear programming problems, the ε-constraint 

method can generate supported efficient solutions, whereas the weighting method may not. 

• The weighting method heavily depends on finding appropriate scaling factors, which 

significantly impact the results and lack a specified method for determination. In contrast, 

the ε-constraint method does not require scaling factors. 

• Unlike the weighting method, the ε-constraint method allows for easy specification of the 

number of generated Pareto optimal solutions by adjusting the number of grid points within 

each objective function range. 

In the ε-constraint method, all objectives except one are transformed into constraints, with 

upper bounds set for each. This approach simplifies the complexity of solving a multi-objective 

model by focusing on minimizing or maximizing one objective at a time, while treating the 

other objectives as inequality constraints. 

 
𝑀𝑖𝑛𝑥∈𝜒 {𝑍(𝑥) = 𝑍1(𝑥). 𝑍2(𝑥). … . 𝑍𝑁(𝑥)} (35) 

 

Where 𝑍(𝑥) represents the vector of all objective functions, 𝑥 denotes the space of decision 

variables, and 𝜒 is the set of feasible solutions. Using the ε-constraint method, the multi-

objective problem formulated in Eq. (35) can be transformed into a single-objective problem in 

Eq. (36) along with a set of constraints in Eq. (37). In this transformed problem, only one 

objective is minimized, while the remaining objectives are treated as inequality constraints with 

upper bounds. 
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𝑀𝑖𝑛𝑥∈𝜒 𝑍𝑛(𝑥) (36) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

𝑍𝑖(𝑥) ≤ 𝜀𝑖 ∀𝑖 ∈ {1.2. … . 𝑁} − {𝑛} (37) 

 

In our bi-objective model, we apply the ε-constraint method, prioritizing the effectiveness 

objective function as the primary objective due to its higher importance over the cost function. 

The cost objective function is transformed into a constraint with an upper bound, represented 

as Eq. (38) and constraints (10)-(31). 

 

𝑀𝑎𝑥 𝐸𝐹𝐹 =  ∑ 𝜑𝑠

𝑠

(𝑉𝐸𝐹𝑠 + 𝑃𝐸𝐹𝑠)  (8) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

𝑆𝐹𝐶 + ∑ 𝜑𝑠

𝑠

(𝑉𝐹𝐶𝑠 + 𝑃𝑊𝐺𝑠 + 𝑃𝑉𝐶𝑠)  ≤ 𝜀 (38) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (10) − (31)  

 

Dataset Preparation  

Given that the problem is NP-hard, obtaining results for large-scale instances is not feasible 

within polynomial time. However, for small-scale instances, optimal solutions can be achieved 

in a reasonable amount of time. To tackle this, we utilized four real-world datasets and 

employed the General Algebraic Modeling System (GAMS) software, version 24.1. 

The small-scale problems were solved using the ε-constraint method, applied to instances 

from various areas depicted in Fig 2. For example, in Fig 2(c), the node set 𝑣 ∈
{1.2.5.8.11.12.15.17} are potential candidates for station locations (with fixed costs set high 

for other edges). The edge sets {2.3}. {3.4}. {4.5}. {5.19}. {17.18} 𝑎𝑛𝑑 {18.2} must be traversed 

at least 3 times during a work shift, while other edges should be traversed at least once during 

a work shift. 

 

Figure 2. Dataset representation 
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Tradeoff Between Effectiveness and Total Cost 

Examining the impact of varying cost tolerance (ε) on patrolling effectiveness is crucial. 

Analyzing the tradeoff between cost and effectiveness empowers decision makers to make 

informed decisions across different scenarios. Details regarding the datasets and numerical 

results are provided in Table 2, while Fig 3 illustrates the Pareto front curve derived from these 

results. ε represents the maximum allowable total cost, allowing decision makers to tailor 

patrolling strategies according to the available budget. 
 

Table 2. Obtained numerical results 

Dataset 
Indices 

𝜺 𝑳𝑩 𝑼𝑩 Runtime (seconds) 
i*k*t*s*p*e*g 

Dataset1 7*4*3*2*6*3*3 

611.700 18116.000 18116.000 15.523 

577.180 18013.000 18013.000 166.681 

541.500 17784.000 17784.000 141.796 

507.360 16844.000 16844.000 111.484 

474.960 15404.000 15404.000 143.599 

440.720 14141.000 14141.000 176.194 

406.880 12721.000 12721.000 403.51 

370.380 11438.000 11438.000 118.373 

337.080 9838.000 9838.000 33.987 

Dataset2 8*8*3*4*7*2*2 

2623.720 88332.000 88332.000 24.463 

2373.280 82294.000 82294.000 128.638 

2121.880 75696.000 75696.000 121.856 

1873.300 66627.000 66627.000 218.61 

1623.400 57009.000 57009.000 144.293 

1372.500 47402.000 47402.000 119.018 

1123.700 37424.000 37424.000 157.894 

872.080 27148.000 27148.000 121.381 

624.400 14748.000 14748.000 54.254 

Dataset3 12*6*3*1*8*2*3 

8620.132 315476.977 315476.977 448.808 

7593.462 288194.977 288194.977 863.124 

6566.792 260007.283 260007.283 814.547 

5540.121 231787.806 231787.806 721.946 

4513.451 199533.357 199533.357 1485.231 

3486.781 153903.522 153903.522 803.917 

2460.111 108640.463 108640.463 759.88 

1433.440 63010.520 63010.520 1030.91 

406.77 10908.057 10908.057 126.28 

Dataset4 19*6*3*1*8*2*3 

14707.460 540450.181 540450.181 534.486 

13032.444 495501.805 495501.805 7345.237 

11357.429 449282.564 449282.564 8732.62 

9682.413 403178.393 403178.393 7612.002 

8007.397 354947.877 354947.877 6519.43 

6332.381 280506.249 280506.249 6998.023 

4657.366 206428.724 206428.724 4528.972 

2982.350 127351.894 127351.894 4329.922 

1307.334 36007.043 36007.043 429.475 

 

Cluster-First, Route-Second 

As previously noted, the problem is established as NP-hard, making it impractical to find 

optimal solutions for large-scale problems within a reasonable timeframe. Therefore, heuristic 

and/or meta-heuristic approaches are employed to find feasible solutions. Arc routing problems 

fall under the category of vehicle routing problems (VRP). Bowerman et al. (1994) classified 

heuristic approaches for VRP into five categories: 

• Cluster-first, route-second 

• Route-first, cluster-second 

• Improvement/exchange 

• Simpler mathematical representation 
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• Savings/insertion 

 

 
Figure 3. Datasets Pareto front 

 

Each of these categories is suited to problems with distinct characteristics. In this study, the 

optimization of a police patrolling problem is pursued, where it is typically expected that each 

vehicle traverses adjacent streets in the optimal solution, returning to its starting point. 

Therefore, employing a clustering method for geographic areas is logical. Among the clustering 

procedures mentioned, the cluster-first, route-second method appears most effective (Dondo & 

Cerdá, 2007). This algorithm initially groups nodes into clusters and assigns each vehicle to a 

specific cluster. Subsequently, it determines the optimal vehicle route for each cluster 

independently. However, clustering nodes may lead to some edges being removed. For 

instance, let graph 𝐺 = (𝑉, 𝐸)  clustered into 𝐺1 = (𝑉1. 𝐸1) and 𝐺2 = (𝑉2. 𝐸2). In node 

clustering, the edge {𝑒16. 𝑒58} must either be removed or assigned to a specific cluster (Fig 4), 

highlighting the significance of cluster assignment decisions. 

Cluster-based algorithms in vehicle routing problems operate by selecting adjacent nodes 

and/or arcs. In the police patrolling problem, where all arcs must be traversed by vehicles, it is 

practical to choose arcs that are on average closer to a subgraph. Therefore, our proposed 

algorithm clusters the set of all edges and creates new subgraphs while ensuring that no edges 

are removed. The procedure of our proposed arc clustering algorithm is outlined as follows (Fig 

5): 

  

a) Dataset1 Pareto front b) Dataset2 Pareto front 

  
c) Dataset3 Pareto front d) Dataset4 Pareto front 
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Figure 4. Node clustering 

 

Step 0: let graph 𝐺 = (𝑉, 𝐸) where 𝑉 is the set of vertices and 𝐸 is the set of edges. Each vertex 

𝑣𝑖   is represented as coordinates (𝑥𝑖. 𝑦𝑖) in a 2D dimension.  

Step 1: for each edge 𝑒𝑖𝑗 connecting vertices (𝑣𝑖 . 𝑣𝑗), calculate the midpoint using 

𝑣𝑖𝑗 =́ (
𝑥𝑖+𝑥𝑗

2
.

𝑦𝑖+𝑦𝑗

2
). 

Step 2: Cluster the midpoints obtained in Step 1 using the k-means clustering method. Each 

cluster yields a set of arcs, each connecting two nodes. 

Step 3: For each cluster, create a subgraph using the set of arcs and nodes obtained in Step 2. 

Step 4: let �́�𝑐 = (�́�𝑐. �́�𝑐) denote a cluster obtained in Step 3. For each cluster let �̈�𝑐 = 𝐺 − �́�𝑐.  

Step 5: remove all vertices from �̈�𝑐 where 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣�̈�
𝑐 = 0). 

Step 6: Add an edge between each pair of nodes where {𝑣�̈�
𝑐. 𝑣�̈�

𝑐} ⊆  �̈�𝑐 ∩ �̈�𝑑 .  ∀𝑑 ≠ 𝑐 with 

𝑤𝑖𝑗̈
𝑐 = 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑣𝑖  𝑡𝑜 𝑣𝑗 if the shortest path does not exist in �̈�𝑐. 

Step 7: Solve the problem separately for each graph �̈� separately using the exact method 

ensuring that the right-hand side of Constraint (13) for edges added in Step 6 is set to zero, 

and adjust the right-hand side of Constraint (15) to 
𝑇𝑚𝑎𝑥

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠
. 

The proposed algorithm is used in order to solve dataset3 and dataset4. Both datasets are 

clustered into two segments. The result of clustering dataset3 and dataset4 is shown in Figure 

6. 

The  ε-constraint method for each clustered dataset is used as a solving approach which is 

explained in Section 3.1. The numerical results are shown in Table 3 and the Pareto fronts for 

the clusters are shown in figure 7. 

Let graph 𝐺, which is clustered into 𝑘 subgraphs, be used. To solve each subgraph, the exact 

solution approach using the ε-constraint method is applied. Consequently, each cluster produces 

a set of Pareto front points. To estimate the curve-fit function of each set, the curves are fitted 

as second-order polynomials using the "Polyfit" function of MATLAB software. It is evident 

that the total cost equals the sum of each cluster's cost, and similarly, the total effectiveness 

equals the sum of each cluster's effectiveness. Therefore, for each dataset, the sum of the curve-

fit functions of each cluster is compared to that dataset's curve-fit function, as shown in Fig 8. 

The average runtimes using both the exact method and the proposed algorithm are presented in 

Table 4. 
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Figure 5. Proposed clustering algorithm 

 

 
Figure 6. Dataset clusters 
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Figure 7. Pareto Fronts for each clustered dataset 

 
Table 3. Numerical results for clustered datasets 

𝑫𝒂𝒕𝒂𝒔𝒆𝒕 
Indices 

𝜺 𝑳𝑩 𝑼𝑩 
𝑹𝒖𝒏𝒕𝒊𝒎𝒆 

(𝒔𝒆𝒄𝒐𝒏𝒅𝒔) i*k*t*s*p*e*g 

Dataset3-cluster1 7*6*3*1*8*2*3 

4367.197 157976.026 157976.026 56.262 

3842.472 144619.81 144619.81 143.562 

3317.747 130383.283 130383.283 214.895 

2793.021 116108.130 116108.130 143.002 

2268.296 99748.556 99748.556 154.764 

1743.571 76427.123 76427.123 83.642 

1218.846 53472.722 53472.722 105.653 

694.120 30145.244 30145.244 4.691 

169.395 4314.302 4314.302 3.958 

Dataset3-cluster2 7*6*3*1*8*2*3 

4379.811 157959.185 157959.185 60.034 

3867.364 145308.186 145308.186 179.231 

3354.917 131417.829 131417.829 202.317 

2842.470 117477.833 117477.833 195.76 

2330.023 102492.070 102492.070 133.252 

1817.575 79716.325 79716.325 121.402 

1305.128 57307.718 57307.718 83.674 

792.681 34442.252 34442.252 14.113 

280.234 7393.157 7393.157 3.843 

Dataset4-cluster1 13*6*3*1*8*2*3 

7392.814 270405.435 270405.435 363.452 

6570.117 248487.241 248487.241 1160.001 

5747.419 225929.954 225929.954 1142.317 

  
a) Dataset3-cluster1 Pareto front b) Dataset3-cluster2 Pareto front 

  
c) Dataset4-cluster1 Pareto front d) Dataset4-cluster2 Pareto front 
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4924.722 203294.263 203294.263 967.202 

4102.025 180062.117 180062.117 1343.269 

3279.327 144683.371 144683.371 1283.45 

2456.630 108304.607 108304.607 1045.998 

1633.932 66686.981 66686.981 914.113 

811.235 22226.539 22226.539 130.276 

Dataset4-cluster2 10*6*3*1*8*2*3 

7403.719 270417.957 270417.957 45.852 

6566.281 248359.921 248359.921 514.56 

5728.844 225452.693 225452.693 463.874 

4891.406 202479.610 202479.610 425.863 

4053.968 179110.834 179110.834 532.753 

3216.530 141892.409 141892.409 698.86 

2379.093 105036.419 105036.419 597.972 

1541.655 64713.891 64713.891 476.853 

704.217 19170.483 19170.483 26.144 
 

 
Figure 8. Datasets and clusters curve fit comparison 

 

Table 4. Average runtime for exact method and proposed algorithm 

 Exact method Cluster1 Cluster2 Clustering Function Proposed Algorithm 

Dataset3 783.8492 101.1588 110.4029 0.516 212.0777 

Dataset4 5225.574 535.2229 420.3034 0.682 956.2083 

 

Conclusion 

 

This paper presents a two-stage bi-objective Mixed Integer Linear Programming approach for 

location-routing and crew scheduling based on the K-windy postman problem in police 

patrolling. In the first stage, the model decides on the nodes for constructing police stations, 

while in the second stage, it determines the vehicle modes, patrolling routes, and crew 

assignments. The objective functions aim to maximize patrolling effectiveness and minimize 

total cost. The proposed model is validated using realistic datasets, with small-size problems 

solved using the ε-constraint method implemented in GAMS software. Given the NP-hard 

nature of the problem, an arc clustering algorithm is proposed to tackle medium and large-size 

problems efficiently. To validate this heuristic algorithm, results from two datasets are 

compared against an exact approach. The findings demonstrate that the cluster-based algorithm 

achieves satisfactory solutions in shorter runtimes. Due to the NP-hard complexity, evaluating 

the performance of the proposed algorithm against the exact solution for large-size problems 

remains impractical. This underscores the necessity for developing metaheuristic or alternative 

heuristic algorithms to benchmark against the cluster-based heuristic model proposed in this 

study. 
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