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Abstract  

This study presents a mathematical optimization model for resource allocation and staff 

management during a pandemic, focusing on balancing patient demand, facility capacity, 

and resource utilization. The model aims to minimize total costs, including staffing, 

resource procurement, and penalties for unmet demand, while ensuring efficient patient 

assignment and facility operation. A key feature of the model is the integration of cross-

training strategy to enhance workforce flexibility, enabling staff to perform multiple roles 

and helping address staffing shortages during peak demand periods. The model accounts 

for multiple patient types, each with distinct resource requirements, and healthcare 

facilities with varying capacities for beds, ventilators, and staff. The results demonstrate 

that the model successfully optimizes resource allocation, achieving a 14.98% 

improvement in resource usage efficiency and a facility utilization rate of 69.19%. 

Through strategic implementation of staff transfers and cross-training policies, the model 

maintained high operational efficiency while improving facility utilization by 0.18%. 

These findings highlight the significance of a flexible workforce and strategic resource 

management in improving healthcare resilience and responsiveness during a pandemic. 
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Introduction 

 

Infectious diseases have persistently posed significant challenges to global health, with 

outbreaks often leading to widespread societal disruptions. A notable contemporary example is 

the COVID-19 pandemic, which has highlighted the complexities and demands placed on 

healthcare systems worldwide (Haren & Simchi-Levi, 2020; Ivanov, 2021; Ivanov & Dolgui, 

2020; Spieske et al., 2022). Caused by the SARS-CoV-2 virus, COVID-19 emerged in late 2019 

and has since infected millions, resulting in substantial mortality and overwhelming healthcare 

infrastructures (Johns Hopkins Coronavirus Resource Center, 2020).  

The challenges presented by pandemics extend beyond the immediate health risks of 

infectious diseases; they also place immense strain on healthcare resources and staffing. One of 

the primary issues is the sudden and overwhelming surge in demand for medical supplies and 

personnel (Barrett et al., 2020; Li et al., 2020; Paul & Chowdhury, 2021; Remko, 2020), which 

can quickly outstrip existing capacities. For instance, during the COVID-19 pandemic, 
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healthcare systems faced critical shortages of essential resources, such as personal protective 

equipment (PPE), ventilators, and hospital beds, complicating the delivery of care (Chamola et 

al., 2020; Grimm, 2021; Litton et al., 2021; Sen-Crowe et al., 2021; Winkelmann et al., 2022). 

This overwhelming demand not only tested the limits of health systems but also highlighted the 

need for better preparedness and supply chain management in the face of such crises. 

Compounding these resource challenges were staffing shortages, as illness and quarantine 

measures further reduced the available workforce (ASPR TRACIE, 2023). Remaining 

healthcare personnel were often required to take on additional responsibilities, leading to a cycle 

of increased workload and stress. In response to these challenges, many healthcare systems 

implemented cross-training strategies, enabling staff to perform multiple roles across different 

departments (ASPR TRACIE, 2024). This approach not only optimized the use of available 

personnel but also enhanced the flexibility of healthcare systems to adapt to the evolving needs 

of patients. Addressing these multifaceted challenges requires immediate interventions to 

support healthcare workers and long-term strategies aimed at enhancing resilience and 

preparedness for future pandemics. By prioritizing workforce support and resource 

optimization, health systems can better withstand the pressures of future outbreaks and ensure 

the effective delivery of care to those in need. 

To address these challenges, we propose a comprehensive mixed-integer programming 

model that integrates three critical dimensions of pandemic healthcare management: patient 

severity stratification, resource allocation, and workforce flexibility. The proposed model 

makes the following considerations. First, our model innovatively incorporates a staff cross-

training framework, recognizing that healthcare workforce adaptability is crucial during crisis 

periods. The framework considers four essential categories of healthcare professionals - general 

nurses, respiratory therapists, specialized nurses, and intensivists - and maps their potential for 

cross-specialty training based on skill compatibility. Second, our model incorporates dynamic 

patient flow management with length-of-stay considerations, allowing healthcare systems to 

better predict and manage resource needs over time. The model emphasizes patient severity 

classification, ensuring that patients are categorized based on their clinical needs, allowing for 

prioritized resource allocation. By incorporating travel time constraints and facility capacity 

limitations, our framework provides realistic solutions that consider both geographic access to 

care and system capacity constraints. Third, the model includes considerations for staff transfers 

between facilities and the gradual development of cross-training capabilities, providing 

healthcare administrators with practical tools for workforce development and deployment 

during crisis periods. Finally, our model addresses the critical need for flexibility in pandemic 

response by incorporating dynamic resource allocation capabilities. This allows healthcare 

systems to adapt to changing conditions while maintaining essential services across all 

facilities. 

The remainder of this paper is structured as follows. A review of related literature on 

healthcare supply chain network design in the pandemic context is provided in Section 2. In 

Section 3, the problem statement is presented, and the model formulation is described. 

Numerical experiments are conducted in Section 4. The paper is concluded in Section 5. 
 

Literature Review  
 

The efficient allocation of limited resources has emerged as a critical challenge across various 

domains, particularly in healthcare crisis management and emergency response (Cao & Huang, 

2012; Gupta et al., 2016). This became especially evident during the COVID-19 pandemic, 

which highlighted the crucial need for strategic distribution of healthcare resources including 

PPE, diagnostic equipment, medical facilities, and vaccines (Emanuel et al., 2020). 

The challenges posed by pandemics, such as COVID-19, have led to a surge in research 

focused on optimizing healthcare resource management and planning. Bertsimas et al. (2021) 
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proposed a deterministic optimization model that facilitates the sharing of ventilators across 

hospitals in different states in the U.S. This approach aims to ensure that ventilators are 

allocated efficiently, optimizing their use during surges in demand. Lampariello and Sagratella 

(2021) contributed to the literature by addressing a single-period allocation problem concerning 

COVID-19 test kits. Their model focuses on optimizing utility functions that enhance disease 

detection capabilities across various geographical areas, thereby improving testing accessibility 

and effectiveness. Further exploring resource distribution, Santini (2021) tackled the challenge 

of effectively distributing swabs and reagents to laboratories. By developing a deterministic 

integer programming model, he aimed to maximize the volume of COVID-19 tests performed, 

thereby addressing critical needs in testing capacity during the pandemic. The focus on personal 

protective equipment (PPE) is also vital, particularly regarding the distribution of surgical and 

respiratory masks. Dönmez et al. (2022) developed a multi-period, multi-objective, non-linear 

resource allocation model aimed at health centers facing acute shortages of PPE. Their model 

seeks to reduce deprivation costs associated with shortages while minimizing infection risks for 

both patients and healthcare workers, illustrating the complexity and importance of resource 

allocation decisions in pandemic scenarios. 

To address the inherent uncertainty in healthcare demand, Mehrotra et al. (2020) introduced 

stochastic programming techniques to simulate unpredictable patient demand resulting from 

the rapid spread of infectious diseases, aiming to enhance the redistribution of medical 

resources across hospitals. Building on this, Yin et al. (2023) developed a multi-stage stochastic 

programming model that accounts for dynamic transmission patterns and incorporates risk-

averse considerations, emphasizing the importance of adaptable resource management 

strategies in healthcare settings. While previous studies have primarily focused on resource 

allocation among existing healthcare facilities, Liu et al. (2023) shifted the focus to the strategic 

placement of testing centers to meet the changing demand for test kits during pandemics. Their 

two-phase optimization framework involves pre-positioning strategies to achieve specific fill 

rates, followed by dynamic capacity adjustments in response to real-time demand fluctuations. 

This proactive approach highlights the need for flexibility in healthcare facility planning during 

crises. Li et al. (2023) examined production planning for masks amidst uncertain demand, 

employing a two-stage stochastic model that addresses assembly line balancing and capacitive 

lot sizing from a risk-averse perspective. This research underscores the interconnectedness of 

supply chain management and healthcare resource availability in pandemic situations. Fattahi 

et al. (2023) contributed to the discourse on resource planning by proposing strategies to 

optimize healthcare system responses during epidemics. Their study utilized a multi-stage 

stochastic program and agent-based modeling to simulate various uncertainties, providing a 

framework for real-time decision-making to ensure efficient access to patient care without 

extensive capacity expansion. Addressing production and inventory challenges, Vahdani et al. 

(2023) developed a model focused on the multi-period production of consumable and reusable 

medical products. Their work introduced a customized epidemiological model that incorporates 

behavioral responses to health awareness, thus enhancing the relevance of their findings to real-

world scenarios. Post-pandemic, Alizadeh et al. (2024) explored the design of a green closed-

loop supply chain through a scenario-based two-stage stochastic programming model that 

considers uncertainties in greenhouse gas emissions. Their research offers insights into 

sustainable supply chain practices in healthcare contexts, advocating for robust modeling 

techniques to manage environmental impacts effectively. Kiss and Elhedhli (2024) addressed 

the issue of resource pooling to increase healthcare capacity. They proposed a model for 

capacity procurement and PPE distribution, incorporating private sector partnerships to enhance 

logistics and resource availability. Their approach illustrates the potential for innovative 

strategies in managing healthcare resources under supply constraints while prioritizing demand-

driven solutions. 
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In the realm of healthcare logistics during the COVID-19 pandemic, several studies have 

utilized robust optimization approaches to enhance resource distribution and management. 

Manupati et al. (2021) concentrated on the establishment of convalescent plasma bank facilities, 

aiming to determine optimal locations for plasma collection and streamline plasma flow. They 

developed a robust mixed-integer linear programming (MILP) model that accounted for supply 

chain costs, transportation time, and storage expenses, thus minimizing plasma waste due to 

perishability. Building on the theme of resource optimization, Baloch et al. (2022) focused on 

improving underutilized distribution networks to enhance government delivery systems for 

critical healthcare supplies. Their research tackled dynamic distribution planning, including the 

repurposing of storage facilities and the timely delivery of personal protective equipment (PPE) 

across various jurisdictions. By employing a robust framework that provided a mixed-integer 

programming formulation, they aimed to maximize demand fulfillment while addressing 

uncertainties in supply. Shang et al. (2022) examined the configuration of supply networks 

within the healthcare sector, emphasizing the optimization of warehouse locations, inventory 

management, and delivery routing. Their study highlighted the importance of vendor-managed 

inventory systems in responding to the complex logistics challenges posed by the pandemic. 

Ardakani et al. (2023) introduced a robust location-allocation model to enhance healthcare 

system resilience by incorporating alternative resources like backup and field hospitals, along 

with student nurses. A multi-objective optimization model minimized costs and maximized 

satisfaction for patients and medical staff, while addressing demand uncertainty. Furthermore, 

Basciftci et al. (2023) introduced a moment-based distributionally robust optimization approach 

to tackle uncertainties in disease transmission. Their work focused on identifying optimal 

locations for distribution centers, along with determining appropriate capacities, shipping 

volumes, and inventory levels. Through numerical experiments, they evaluated the distribution 

strategies for COVID-19 vaccines in the United States and testing kits in Michigan, providing 

valuable insights into effective resource management under varying scenarios. 

A systematic review of the literature, as summarized in Table 1, reveals several critical gaps 

in healthcare resource management during crises. While recent studies have made significant 

advances in certain aspects of crisis management, substantial limitations remain unaddressed. 

First, although multi-time period planning has been widely adopted (e.g., Alizadeh et al. (2024); 

Bertsimas et al. (2021); Mehrotra et al. (2020)), these models typically focus on single-resource 

allocation, overlooking the complex interdependencies between different types of resources. 

Second, studies that do consider multiple resource types (Ardakani et al., 2023; Shang et al., 

2022) tend to treat these resources as static entities, failing to capture the dynamic nature of 

healthcare operations. Third, while some recent works like Ardakani et al. (2023) and Fattahi 

et al. (2023) have begun to differentiate between patient types, they do not fully integrate this 

consideration with comprehensive resource allocation strategies. Most notably, the critical 

aspect of workforce flexibility through staff cross-training and transfer mechanisms remains 

entirely unaddressed in the existing literature. 

Current models also demonstrate limitations in their scope and integration capabilities. For 

instance, while Vahdani et al. (2023) incorporated bed differentiation and multiple resource 

types in their compartmental model, they did not address the dynamic nature of staff 

deployment. Similarly, although Ardakani et al. (2023) considered multiple patient types and 

resource categories, their model lacks the flexibility needed for real-time staff allocation 

adjustments. The absence of integrated approaches that simultaneously consider facility 

capacity, dynamic resource distribution, and adaptable staff utilization represents a significant 

gap in the literature. 

This study addresses these limitations through a comprehensive mixed-integer programming 

model that uniquely integrates staff cross-training capabilities with dynamic resource allocation 

during healthcare crises. Our approach provides a multi-dimensional solution through several 
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innovative features: (1) an integrated staff transfer system that balances workload across 

facilities while maintaining minimum staffing levels, (2) a comprehensive patient flow 

management system that considers varying levels of care requirements (mild, moderate, and 

severe cases), (3) a multi-period planning horizon that accounts for both immediate resource 

needs and longer-term capacity adjustments, and (4) a dynamic workforce flexibility 

mechanism that enables healthcare workers to support multiple roles based on their capabilities 

and facility needs. This holistic approach provides a more flexible and adaptable framework for 

managing healthcare resources during crises, addressing the identified gaps in current research. 

As demonstrated in Table 1, our model uniquely combines multiple features that have 

previously only been addressed in isolation, representing a significant advancement in 

healthcare crisis management modeling. 

 
Table 1. Summary of modeling methods and key features in healthcare supply chain network design during 

pandemics. 

References Modeling Method 
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Mehrotra et al. (2020) SP ✓ - - - - - - - 

Bertsimas et al. (2021) Deterministic ✓ - - - - - - - 

Lampariello and Sagratella (2021) Deterministic - - - - - - - - 

Manupati et al. (2021) RO ✓ - - - - - - - 

Santini (2021) Deterministic ✓ - - - - - - - 

Baloch et al. (2022) RO ✓ - - - - - - - 

Dönmez et al. (2022) Deterministic ✓ - - - - - - - 

Shang et al. (2022) RO ✓ - - ✓ - - - - 

Ardakani et al. (2023) RO ✓ ✓ ✓ ✓ ✓ ✓ - - 

Basciftci et al. (2023) RO ✓ - - - - - - - 

Fattahi et al. (2023) SP ✓ ✓ ✓ ✓ - - - - 

Li et al. (2023) SP ✓ - - ✓ - - - - 

Liu et al. (2023) SP ✓ - - - - - - - 

Vahdani et al. (2023) Compartmental model ✓ - - ✓ ✓ - - - 

Yin et al. (2023) SP ✓ - - - - - - - 

Alizadeh et al. (2024) SP ✓ - - ✓ - - - - 

Kiss and Elhedhli (2024) SP ✓ - - - - - - - 

This paper Deterministic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

Problem Statement and Model Formulation 

 

Problem Description 

The COVID-19 pandemic has strained healthcare systems, creating an urgent need for 

optimized resource allocation to meet patient demand effectively. This model is designed to 

allocate healthcare resources across multiple facilities, focusing on critical resources such as 

general beds, ICU beds, ventilators, and trained healthcare personnel. Specifically, the model 

addresses patient assignment to facilities based on demand, facility capacity, and resource 

availability, accounting for variations in patient severity (mild, moderate, severe) and 

geographic origin. 

Given the dynamic nature of patient inflow and facility constraints, the model also considers 

staff availability and cross-training strategies to enhance workforce flexibility. The model 

maintains consistent maximum patient-to-staff ratios based on established healthcare 
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regulations, such as California's mandated nurse-to-patient ratios law (AB 394), which sets 

specific staffing requirements across different units (e.g., ICU, medical-surgical units) to ensure 

patient safety (California State Legislature, 1999; National Nurses United, 2024). By 

incorporating cross-training options for healthcare staff, the model enables certain roles (e.g., 

general nurses, respiratory therapists) to be adapted as needed to support critical areas during 

peak demand. Additionally, facility-based resource expansion decisions are incorporated, 

including adding new beds and ventilators, and hiring staff as needed to meet changing patient 

demands. 

The objective of this resource allocation model is to minimize total costs, which include 

operational costs (facility opening, resource expansion, staffing adjustments) and penalties 

related to unmet patient demand. Constraints ensure that patient demands are met within facility 

capacity, resources are deployed efficiently, travel times are minimized, and staffing 

requirements are optimized. The model also factors in budget constraints to limit additional 

resource costs and penalizes patient shortages, supporting a balanced and cost-effective 

allocation of healthcare resources in response to surges in pandemic cases. Figure 1 provides 

an illustrative example of the problem, depicting a network with five demand points and three 

healthcare facilities. It highlights the connections between demand zones, healthcare facilities, 

and the allocation of critical resources and staff within the model. 

 

Problem Assumption and Notation 

▪ Resource expansion is assumed to be feasible, with the ability to scale up medical facilities, 

beds, and equipment as needed to meet demand surges. 

▪ Cross-training is allowed by the model, which assumes that sufficient training can be 

provided to staff to meet demand across roles. 

▪ A consistent maximum patient-to-staff ratio is assumed by the model. 

▪ Patient assignment to facilities is limited by the maximum allowable travel times. 

▪ Transfers can be made between facilities to address staff shortages. 
 

 
Figure 1. A network diagram illustrating the interconnections between demand points, healthcare facilities, 

resources, staff types, and patient categories in a healthcare system. Colored nodes represent different 

components, with lines indicating relationships. 
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The sets, the parameters, and the decision variables used in the model are given below. 
 

Table 2. Sets and indices used in the healthcare model. 

Notation Definition 

I Set of patient types, indexed by 𝑖 ∈ 𝐼 ≔  {1,2, … , 𝐼}. 

J Set of healthcare facilities, indexed by 𝑗 ∈ 𝐽 ∶= {1,2, … , 𝐽}. 

K Set of origin points (e.g., patient origins or locations), indexed by 𝑘 ∈ 𝐾 ∶= {1,2, … , 𝐾}. 

R Set of resources, indexed by r ∈ 𝑅 ∶= {1,2, … , 𝑅}. 

S Set of staff types, indexed by 𝑠 ∈ 𝑆 ∶=  {1,2, … , 𝑆}. 

T Set of time periods, indexed by 𝑡 ∈ 𝑇 ∶=  {1,2, … , 𝑇}. 

 
Table 3. Input parameters used in the healthcare model. 

Notation Definition 

𝑑𝑖𝑘𝑡  Demand for patient type 𝑖 from origin 𝑘 in period 𝑡. 

𝑐𝑗 Capacity of facility 𝑗. 

𝑎𝑗𝑟𝑡 Initial availability of resource 𝑟 at facility 𝑗 in period 𝑡. 

𝑢𝑖𝑟 Resource usage rate for patient type 𝑖 for resource 𝑟. 

𝑝𝑟 Cost of adding one unit of resource 𝑟. 

𝑓𝑗 Fixed cost of opening facility 𝑗. 

𝜏𝑘𝑗 Travel time from origin 𝑘 to facility 𝑗. 

𝜋𝑖 Penalty cost of refusing patient type 𝑖. 
𝐿𝑖 Average length of stay for patient type 𝑖. 
𝛼 Maximum allowed travel time for patients. 

κ Unit transportation cost per hour of travel time between two regions 

𝐵 Total budget for adding resources. 

𝑆𝑅𝑖𝑠 Staff requirement per patient of type 𝑖 for staff type 𝑠. 

𝐼𝑛𝑆𝑗𝑠𝑡 Initial availability of staff type 𝑠 at facility 𝑗 in period 𝑡. 

θ𝑠 Maximum number of patients that staff type 𝑠 can care for per day. 

φ𝑠 Minimum required number of staff type 𝑠 per day. 

𝑆𝐶𝑎𝑝𝑠𝑠′  Cross-training capability between staff types 𝑠 and 𝑠’. 
𝐶𝑜𝑠𝑡𝐻𝑠 Cost of hiring new staff of type 𝑠. 

 
Table 4. Notation and definitions of decision variables used in the healthcare model. 

Notation Definition 

𝑦𝑗 ∈ {0,1} Binary variable indicating whether facility 𝑗 is open. 

𝑥𝑖𝑗𝑘𝑡 Number of patients of type 𝑖 assigned from origin 𝑘 to facility 𝑗 in period 𝑡. 

𝑧𝑗𝑟𝑡 Number of additional resources 𝑟 added at facility 𝑗 in period 𝑡. 

𝑤𝑖𝑘𝑡 Number of patients of type 𝑖 from origin 𝑘 not admitted in period 𝑡. 

ℎ𝑖𝑗𝑘𝑡  Number of patients of type 𝑖 from origin 𝑘 currently hospitalized in facility 𝑗 in period 𝑡. 

𝑞𝑖𝑗𝑘𝑡  Number of patients of type 𝑖 discharged from facility 𝑗 in period 𝑡. 

𝐴𝑗𝑠𝑡
𝑠  Number of staff type 𝑠 assigned to facility 𝑗 in period 𝑡. 

𝐻𝑟𝑗𝑠
𝑠  Number of new staff type 𝑠 hired at facility 𝑗. 

𝑇𝑟𝑗𝑗′𝑠𝑡
𝑠  Number of staff type 𝑠 transferred from facility 𝑗 to 𝑗’ in period 𝑡. 

𝐶𝑟𝑗𝑠𝑠′𝑡
𝑠   ∈ {0,1} Binary variable indicating if staff type 𝑠 is cross-trained to type 𝑠’ at facility 𝑗 in period 𝑡. 

 

Mathematical Model 

Using the notations, we formulate the following mixed-integer linear programming model: 
 

mi n ∑ 𝑓𝑗

𝑗∈𝐽

𝑦𝑗 + ∑ ∑ ∑ 𝑃𝑟

𝑡∈𝑇𝑟∈𝑅𝑗∈𝐽

𝑧𝑗𝑟𝑡 + ∑ ∑ ∑ ∑  κ τ𝑘𝑗

𝑡∈𝑇𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

𝑥𝑖𝑗𝑘𝑡 + ∑ ∑ ∑ π𝑖

𝑡∈𝑇𝑘∈𝐾𝑖∈𝐼

𝑤𝑖𝑘𝑡

+ ∑ ∑ CostHsHrjs
s

s∈Sj∈J

 
(1) 

S.t: 

∑ 𝑥𝑖𝑗𝑘𝑡

𝑗∈𝐽:τ𝑘𝑗≤α

+ 𝑤𝑖𝑘𝑡 = 𝑑𝑖𝑘𝑡  ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 
(2) 
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∑ ∑ hijkt

k∈Ki∈I

≤ cjyj ∀j ∈ J, t ∈ T (3) 

∑ ∑ 𝑢𝑖𝑟ℎ𝑖𝑗𝑘𝑡

𝑘∈𝐾𝑖∈𝐼

≤ 𝑎𝑗𝑟𝑡 + 𝑧𝑗𝑟𝑡  ∀𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (4) 

∑ ∑ ∑ 𝑝𝑟𝑧𝑗𝑟𝑡

𝑡∈𝑇𝑟∈𝑅𝑗∈𝐽

≤ 𝐵 (5) 

𝑥𝑖𝑗𝑘𝑡 ≤ 𝑀𝑦𝑗  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (6) 

ℎ𝑖𝑗𝑘𝑡 = ℎ𝑖𝑗𝑘𝑡−1 + 𝑥𝑖𝑗𝑘𝑡 − 𝑞𝑖𝑗𝑘𝑡  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 ∖ {1} (7) 

𝑞𝑖𝑗𝑘𝑡 =
1

𝐿𝑖

∑ 𝑥𝑖𝑗𝑘𝑡′

𝑡

𝑡′=max(1,𝑡−𝐿𝑖+1)

 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (8) 

∑ ∑ SRishijkt

k∈Ki∈I

≤ θsAjst
s + ∑ SCapss′Crjs′st

s

s′∈S

θs′  ∀j ∈ J, s ∈ S, t ∈ T (9) 

Ajst
s ≥ φsyj ∀j ∈ J, s ∈ S, t ∈ T (10) 

𝐴𝑗𝑠𝑡
𝑠 = 𝐴𝑗𝑠𝑡−1

𝑠 + 𝐻𝑟𝑗𝑠
𝑠 + ∑ (𝑇𝑟𝑗′𝑗𝑠𝑡

𝑠 − 𝑇𝑟𝑗𝑗′𝑠𝑡
𝑠 )

𝑗′∈𝐽,𝑗′≠𝑗

 ∀𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 ∖ {1} (11) 

𝐶𝑟𝑗𝑠𝑠′𝑡
𝑠 ≤ 𝑆𝑐𝑎𝑝𝑠𝑠′ ,  ∀𝑗 ∈ 𝐽, 𝑠, 𝑠′ ∈ 𝑆, 𝑡 ∈ 𝑇 (12) 

∑ 𝑇𝑟𝑗𝑗′𝑠𝑡
𝑠

𝑗′∈𝐽,𝑗′≠𝑗

≤ 0.2𝐴𝑗𝑠𝑡
𝑠  ∀𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (13) 

𝑥𝑖𝑗𝑘𝑡 , 𝑧𝑗𝑟𝑡 , 𝑤𝑖𝑘𝑡 , ℎ𝑖𝑗𝑘𝑡 , 𝑞𝑖𝑗𝑘𝑡 , 𝐴𝑗𝑠𝑡
𝑠 , 𝐻𝑟𝑗𝑠

𝑠 , 𝑇𝑟𝑗𝑗′𝑠𝑡
𝑠 ∈ 𝑍0

+ 

  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 
(14) 

𝑦𝑗 , 𝐶𝑟𝑗𝑠𝑠′𝑡
𝑠   ∈ {0,1} (15) 

 

The mathematical model presented designed to optimize the allocation of healthcare 

resources, patient assignments, and staffing across multiple healthcare facilities and time 

periods, while minimizing the associated costs. The objective function (1) aims to minimize 

several cost components, including facility opening costs, resource expansion costs, 

transportation costs, penalty costs for refused patients, and staff hiring costs. Constraints (2) 

ensure demand satisfaction. Constraints (3) guarantee that the total number of patients assigned 

to facility 𝑗 during period 𝑡 does not exceed its capacity. Constraints (4) ensure that the 

resources required at each facility to accommodate patients are less than or equal to the 

available resources plus any added resources. This ensures that the facility has sufficient 

resources (e.g., beds, ventilators) to meet patient demands. Constraints (5) ensure that the total 

cost of adding resources across all facilities and resource types does not exceed a predefined 

budget B. Constraints (6) enforce that patients can only be assigned to open facilities. 

Constraints (7) model the dynamics of patient hospitalization, ensuring that the number of 

patients at a facility in a given period is the sum of those admitted and those hospitalized from 

the previous period, minus those discharged. Constraints (8) ensure that patients stay for a 

defined period (𝐿𝑖) before being discharged, modeling the length of stay for each patient at each 

facility. Constraints (9) ensure that there is sufficient staffing at each facility to meet patient 

care demands. These staffing levels can also be adjusted by transferring staff between facilities. 

Constraints (10) guarantee that a minimum number of staff of each type is assigned to open 

facilities. Constraints (11) model the staffing dynamics over time, accounting for staff hiring, 

and transfers between facilities. Constraints (12) ensure that cross-training between staff roles 

follows the predefined cross-training capability matrix. Constraints (13) limit the number of 

staff transfers between facilities to ensure that transfers do not exceed a certain proportion of 

the staff at a facility. Finally, constraints (14) and (15) determine the types of decision variables. 

 

Numerical Experiments 

 

To evaluate the performance of the proposed model, we perform numerical experiments with a 
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small-scale example. The experiments are conducted using GAMS 24.1.2 software on a 

personal computer (Lenovo, equipped with an Intel(R) Core (TM) i5-9300H 2.40 GHz CPU 

and 16.0 GB RAM) running the Microsoft Windows 10 operating system. 

 

Data  

To address resource allocation and patient demand management within healthcare facilities, 

parameters and assumptions are generated to capture a range of conditions for patient demand, 

resource availability, and logistical constraints. These data settings, provided in Table 5, are 

designed to serve as a framework for simulating the allocation of healthcare resources under 

diverse scenarios. Key parameters include patient demand and type-specific requirements, such 

as average length of stay and necessary resources (e.g., beds, ventilators, and specialized staff). 

Additional parameters account for facility capacity, operating costs, and budget limits for 

expansion, ensuring that both strategic and operational aspects are comprehensively 

represented. Staffing requirements and constraints, such as cross-training and daily workload 

capacity, are included to highlight the importance of personnel availability and flexibility in 

resource management.  

 
Table 5. Data settings for the healthcare resource allocation model. 

Parameter Value/Range Units 

𝑑𝑖𝑘𝑡  1 - 100 Patients 

𝑐𝑗 100 - 200 Patients 

𝑎𝑗𝑟𝑡 50 - 100 Units 

𝑢𝑖𝑟 
Mild: General Beds, Moderate: General Beds, Severe: General Beds, ICU 

Beds, Ventilator 

Resource types 

per patient 

𝑝𝑟 General Beds: 25-50, ICU Beds: 100, Ventilators: 500-1000  

𝑓𝑗 10,000 - 20,000  

𝜏𝑘𝑗 10 - 50 Minutes 

𝜋𝑖 Mild: 1000, Moderate: 1500, Severe: 2000  

𝐿𝑖 Mild: 3-5 days, Moderate: 5-7 days, Severe: 7-10 days Days 

𝛼 30 Minutes 

𝐵 1,000,000  

𝑆𝑅𝑖𝑠 
Mild: General Nurse, Moderate: Respiratory Therapist, General Nurse, 

Severe: Specialist Nurse, Intensivist 
Staff per patient 

𝐼𝑛𝑆𝑗𝑠𝑡 10 - 20 Staff members 

𝑆𝐶𝑎𝑝𝑠𝑠′  
General Nurse → Respiratory Therapist, Respiratory Therapist → Specialist 

Nurse, Specialist Nurse → Respiratory Therapist, Intensivists → Specialist 

Nurse 

Binary 

𝐶𝑜𝑠𝑡𝐻𝑠 5,000 - 10,000  

 

Computational Results 

 

Healthcare Facility Utilization Analysis 

The analysis of healthcare facility utilization in this model reveals critical insights into 

system dynamics and resource allocation strategies during periods of high patient demand. The 

patterns observed underscore the challenges of balancing patient distribution, managing 

resource shortages, and maintaining operational capacity across multiple facilities to serve a 

wide range of patient needs. 

A key observation, as shown in Table 6, is the need for strategic distribution of patient loads 

across facilities to prevent overburdening any single location. For example, facilities like Fac1 

and Fac7 have consistently high utilization rates, reaching 100% capacity in multiple periods. 

This balanced approach aligns with best practices in healthcare resource management, where 

dispersing patient care reduces strain on individual facilities and lowers the risk of resource 

depletion. However, despite these efforts, some facilities still face higher capacity pressures 
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than others. Fac1, for instance, experienced a decrease in moderate cases from 39 to 24 patients 

over time, while maintaining consistently high overall utilization, likely due to its proximity to 

high-demand regions or its operational efficiency. This pattern suggests a patient allocation 

strategy that considers both proximity and facility capability. Utilization rates, as reflected in 

Table 7, also vary significantly across the network, with facilities like Fac10 and Fac7 operating 

consistently above 98% capacity, indicating their critical role in managing patient volumes, 

while others maintain lower utilization—potentially reflecting their distance from high-demand 

areas or their larger resource capacity. 

The continuous operation of all facilities throughout the observed periods reflects an 

anticipated need for maximized healthcare capacity. Rather than consolidating resources in 

fewer centers, the system opts for a comprehensive mobilization, which enhances its flexibility 

to handle demand fluctuations. This choice of system-wide activation is likely driven by the 

expectation of sustained patient inflow across patient severity levels and regional demands, 

reinforcing the necessity of each facility in meeting community needs. 

 
Table 6. Operational analysis of healthcare facilities showing service area coverage and patient assignment 

patterns across severity levels and time periods, demonstrating resource utilization and capacity allocation. 

Facility 
Operational 

Status 

Coverage 

Zones 

Aggregate Patient Assignments Across Demand Points 

Mild Moderate Severe 

Time Periods 

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 

Fac1 1 {3, 5, 15} 7 50   39 39 45 54 79 45   

Fac2 1 
{1, 6, 13, 

14} 
36 85   21 18 30 87 99 20   

Fac3 1 {5, 12}  40    12 21 75  70   

Fac4 1 {10, 14, 15} 188 25   70 117 39 57 173    

Fac5 1 {2, 7, 15} 30 115   18 21 90 93 12 75   

Fac6 1 {9, 10, 13}  130     27 147     

Fac7 1 {4, 5, 14} 16 75   31 39 45 54 16 20   

Fac8 1 {1, 12, 15} 34 100   63 54 60 60 19    

Fac9 1 {1, 4, 8} 196 30   55 150 150 36 73 35   

Fac10 1 
{7, 9, 11, 

13} 
195 35   76 150 87 57 269 5   

 

Table 7. Healthcare facility utilization patterns and severity-based patient distribution across ten medical centers, 

revealing operational capacity management. 

Facility 

Utilization Rate (%) 
Total Severity-Based Inpatient Distribution 

Mild Moderate Severe 

Time Periods Time Periods 

𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 

Fac1 100 98.04 100 0 40 30 20 0 26 43 64 0 36 27 18 

Fac2 82.05 76.07 99.15 0 68 51 34 0 12 26 74 0 16 12 8 

Fac3 90.57 79.25 99.06 0 32 24 16 0 8 18 61 0 56 42 28 

Fac4 97.03 79.21 99.01 0 20 15 10 0 78 65 90 0    

Fac5 90.22 98.37 98.37 0 92 69 46 0 14 67 105 0 60 45 30 

Fac6 65.00 60.00 99.38 0 104 78 52 0  18 107 0    

Fac7 100 98.04 100 0 60 45 30 0 23 43 64 0 16 12 8 

Fac8 97.48 99.16 99.16 0 80 60 40 0 36 58 78 0    

Fac9 77.55 96.43 76.53 0 24 18 12 0 100 150 124 0 28 21 14 

Fac10 99.25 99.25 100 0 28 21 14 0 100 108 117 0 4 3 2 

 

Resource expansion within this setup indicates a proactive approach to dynamically adjust 

capacity according to evolving demand patterns. For example, general beds were added 

progressively across the facilities, with Fac5 showing the most substantial increments (81, 91, 

and 100 beds in periods t2, t3, and t4 respectively) and Fac9 also demonstrating significant 

expansion (64, 99, and 99 beds). Facilities exhibiting consistently high resource additions, such 

as Fac6 (18, 46, and 96 beds) and Fac8 (34, 51, and 63 beds), may be those encountering 
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sustained patient loads, requiring extra capacity to handle increased demand effectively. This 

adaptive response helps mitigate potential bottlenecks and underscores the importance of 

flexibility within healthcare resource allocation, particularly in high-demand periods. 

However, despite these efforts to add resources, the model output, as shown in Table 8, 

reveals varying patterns of unmet demand across different acuity levels. The most significant 

shortages appear in severe cases, with several zones showing high unmet demand, such as 

Origin 3 (50, 60, and 61 patients in periods t2-t4), Origin 6 (3, 68, and 78 patients), and Origin 

11 (62, 98, and 3 patients). For moderate cases, the unmet demands are generally lower but 

persistent, typically ranging from 1-4 patients across most origins. Mild cases show increasing 

shortages over time, with some origins experiencing significant gaps, such as Origin 3 (1, 100, 

and 58 patients across periods t2-t4). 

Moreover, the model output highlights the importance of discharge and transfer policies in 

managing patient flow. The discharge rates show distinct patterns across severity levels. For 

mild cases, facilities maintain consistent discharge rates across periods (for example, Fac1 with 

10 patients per period, Fac5 with 23 patients per period). Moderate cases show more variable 

discharge patterns, with facilities like Fac9 showing significant fluctuations (50, 100, and 62 

discharges across periods) and Fac5 showing an increasing trend (7, 37, and 64 discharges). 

Severe cases generally maintain stable but lower discharge rates, such as Fac1 (9 patients per 

period) and Fac3 (14 patients per period), reflecting the longer care requirements for higher 

acuity patients (see Table 9). 

 

Staff Allocation and Utilization Trends 

The analysis of staff allocation across different facilities and time periods reveals critical 

insights into workforce management in a healthcare setting. The data, as detailed in Table 10, 

indicates the number of various staff categories—such as general nurses, respiratory therapists, 

specialized nurses, and intensivists—assigned to each facility (Fac1 through Fac10) across four 

time periods (t1 to t4). Initially, all facilities maintain optimal staffing levels of 100% during 

the first two time periods (t1 and t2). However, as time progresses to t3 and t4, we observe 

significant fluctuations in staff allocation. For instance, facilities like Fac3 and Fac4 experience 

notable decreases in general nurse staffing, with Fac3 dropping to just 6 and Fac4 to 7 in t3. 

This reduction could be indicative of declining patient needs or an operational shift, possibly 

influenced by changes in patient inflow, staff availability, or other logistical considerations. 

  
Table 8. Regional distribution of patient refusals across fifteen demand points, categorized by case severity and 

tracked over multiple time periods. 

Demand Point 

Unmet Patient Demand 

Mild Moderate Severe 

Time Periods 

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 

1  5 56 31   2 1  4 33 20 

2  3 35 86  1 2    52 5 

3  1 100 58   1 1  50 60 61 

4  2 14 64  4 2 1  40 68 51 

5  1 67 44  1 3 1  1 53 13 

6  1 14 16  1  2  3 68 78 

7  4 24 67   1 2  1 30 20 

8  1 12 51  1 1 1  65 74 9 

9  3 27 29   1 2  44 19 70 

10  3 63 47  2  1  16 39 70 

11  2 32 5  1 2 1  62 98 3 

12  4 65 57  2 1 1  4 55 13 

13   67 76  4 4 2  12 49 80 

14  4 9 11  2  2  54 2 55 

15   4 80   2 2  98 19 17 
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Table 9. Resource allocation and patient flow metrics across ten facilities, tracking bed additions and severity-

stratified discharge rates over multiple periods. 

Facility 

Resource Additions (General 

Beds) 

Patient Discharge Volume by Care Level 

Mild Moderate Severe 

Time Periods Time Periods 

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 

Fac1  39 18 45  10 10 10  12 20 16  9 9 9 

Fac2   10 49  17 17 17  6 16 39  4 4 4 

Fac3  1 34 37  8 8 8  4 18 32  14 14 14 

Fac4  9 3 12  5 5 5  39 52 32     

Fac5  81 91 100  23 23 23  7 37 64  15 15 15 

Fac6  18 46 96  26 26 26   9 58     

Fac7  46 9 31  15 15 15  13 28 33  4 4 4 

Fac8  34 51 63  20 20 20  18 38 40     

Fac9  64 99 99  6 6 6  50 100 62  7 7 7 

Fac10  63 57 41  7 7 7  50 79 48  1 1 1 

 

The analysis highlights staff transfers among facilities, particularly for specialized nurses, 

which occurred mainly in t3 and t4. For example, Fac2 sends 13 specialized nurses to Fac6 in 

t4, while Fac8 sends 16 specialized nurses to Fac2 in t3 and 14 specialized nurses to Fac9 in t4. 

Additionally, there are transfers of other staff types, with Fac3 sending 16 intensivists to Fac5 

in t4, and Fac4 sending both respiratory therapists (t3) and specialized nurses (t4) to Fac3, 16 

staff each. This mobility is essential for maintaining optimal staffing ratios, especially during 

fluctuating periods of patient admissions or discharges (see Table 11) 

Additionally, cross-training demonstrates significant operational and patient outcome 

benefits across the healthcare network. The implementation of cross-training between 

respiratory therapists and specialist nurses across all ten facilities during periods t1-t4 yields 

three significant operational benefits. First, the cross-training initiative facilitates exceptional 

operational flexibility, enabling facilities to sustain peak utilization rates while maintaining care 

delivery standards. Statistical analysis reveals that facilities experiencing highest demand 

pressures, specifically Fac3 and Fac10, achieve respiratory therapist utilization rates of 108.9% 

and 104.5% respectively in t4, while maintaining consistent patient discharge patterns through 

80 strategic cross-training implementations. Second, the impact on patient outcomes is 

particularly evident in the management of moderate-severity cases, where cross-trained 

personnel contribute to maintaining minimal patient shortages (mean range: 1-4 patients per 

origin point in t3-t4) despite high facility utilization rates (mean: 68.84% across facilities). 

Third, this enhanced staffing flexibility is achieved with a total operational cost of 

3,677,990.853 units, requiring only 107 inter-facility staff transfers rather than additional 

workforce acquisition. The cross-training strategy proves particularly effective in facilities 

experiencing maximum capacity utilization, such as Fac7 (100% utilization in t4), where cross-

trained personnel facilitate the maintenance of care standards while optimizing resource 

allocation efficiency. 

These findings suggest that the strategic implementation of cross-training initiatives 

significantly enhances both operational capabilities and patient care metrics while maintaining 

cost-effective resource utilization across the healthcare network. 

Staff utilization rates present a concerning picture, with several instances of critical 

overutilization observed. For example, Fac3's general nurse utilization reaches 96.9% in t4, 

while Fac10's respiratory therapists hit 104.5% in t4, and Fac5's specialized nurses peak at 

112.5% in t3. This trend of increasing utilization rates from t2 to t4 indicates that many facilities 

are relying heavily on their existing staff without bringing in new. The overutilization—

exceeding 100% in some roles—points to potential staffing stress, which could lead to burnout 

and impact the quality of patient care. Conversely, some roles maintain very low utilization 
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levels, such as Fac10's intensivists with rates of 0.3% in t3 and t4, and Fac10's specialized 

nurses at 0.3-0.5% throughout the periods, suggesting inefficiencies or misalignment in 

staffing. 

 
Table 10. Healthcare workforce distribution and utilization patterns across ten facilities, measuring staff 

assignments, new hires, and operational efficiency for four medical specialties. 

Facility 
Clinical 

Role 

Cross-Trained 

For 

Staff Assigned New 

Staff 

Hired 

Utilization Rate 

Time Periods Time Periods 

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟐 𝒕𝟑 𝒕𝟒 

Fac1 

General 

Nurse 
 100 100 80 60 0 6.6% 8.0% 10.8% 

Respiratory 

Therapists 
Specialist Nurse 100 100 80 60 0 3.3% 6.7% 13.3% 

 

Specialist 

Nurse 

Respiratory 

Therapist 
100 100 100 4 0 4.5% 4.2% 56.2% 

Intensivist  100 100 100 60 0 3.0% 2.2% 2.5% 

Fac2 

General 

Nurse 
 100 100 80 60 0 9.2% 10.0% 14.8% 

Respiratory 

Therapists 
Specialist Nurse 100 100 80 60 0 1.5% 4.1% 15.4% 

Specialist 

Nurse 

Respiratory 

Therapist 
100 100 80 67 0 2.0% 1.9% 1.5% 

Intensivist  100 100 80 80 0 1.3% 1.3% 0.8% 

Fac3 

General 

Nurse 
 100 100 6 6 0 4.5% 68.7% 96.9% 

Respiratory 

Therapists 
Specialist Nurse 100 100 7 7 0 1.0% 32.1% 

108.9

% 

Specialist 

Nurse 

Respiratory 

Therapist 
100 100 100 96 0 7.0% 5.3% 3.6% 

Intensivist  100 100 100 84 0 4.7% 3.5% 2.8% 

Fac4 

General 

Nurse 
 100 100 7 7 0 7.4% 84.8% 98.2% 

Respiratory 

Therapists 
Specialist Nurse 100 100 84 64 0 9.8% 9.7% 17.6% 

Specialist 

Nurse 

Respiratory 

Therapist 
100 100 100 84 0    

Intensivist  100 100 100 60 0    

Fac5 

General 

Nurse 
 100 100 80 60 0 12.4% 16.0% 20.5% 

Respiratory 

Therapists 
Specialist Nurse 100 100 100 24 0 1.8% 8.4% 54.7% 

Specialist 

Nurse 

Respiratory 

Therapist 
100 100 5 5 0 7.5% 112.5% 75.0% 

Intensivist  100 100 100 100 0 5.0% 3.7% 2.5% 

Fac6 

General 

Nurse 
 100 100 80 60 0 13.0% 13.6% 22.0% 

Respiratory 

Therapists 
Specialist Nurse 100 100 100 80 0  2.2% 16.7% 

Specialist 

Nurse 

Respiratory 

Therapist 
100 100 80 60 0    

Intensivist  100 100 80 2 0    

Fac7 

General 

Nurse 
 100 100 9 9 0 9.1% 92.4% 86.1% 

Respiratory 

Therapists 
Specialist Nurse 100 100 7 7 0 3.3% 76.8% 

114.3

% 

Specialist 

Nurse 

Respiratory 

Therapist 
100 100 4 4 0 2.0% 37.5% 25.0% 

Intensivist  100 100 100 100 0 1.3% 1.0% 0.7% 
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Fac8 

General 

Nurse 
 100 100 80 60 0 12.2% 13.9% 16.5% 

Respiratory 

Therapists 
Specialist Nurse 100 100 80 60 0 4.5% 9.1% 16.3% 

Specialist 

Nurse 

Respiratory 

Therapist 
100 100 84 70 0    

Intensivist  100 100 100 60 0    

Fac9 

General 

Nurse 
 100 100 100 64 0 9.2% 11.6% 14.5% 

Respiratory 

Therapists 
Specialist Nurse 100 100 80 60 0 12.5% 23.4% 25.8% 

Specialist 

Nurse 

Respiratory 

Therapist 
100 100 80 60 0 3.5% 3.3% 2.9% 

Intensivist  100 100 80 80 0 2.3% 2.2% 1.5% 

Fac10 

General 

Nurse 
 100 100 60 40 0 9.8% 15.6% 22.7% 

Respiratory 

Therapists 
Specialist Nurse 100 100 14 14 0 12.5% 96.4% 

104.5

% 

Specialist 

Nurse 

Respiratory 

Therapist 
100 100 100 80 0 0.5% 0.4% 0.3% 

Intensivist  100 100 100 60 0 0.3% 0.2% 0.3% 

 
Table 11. Strategic personnel redistribution patterns across the healthcare network, depicting inter-facility staff 

movements by specialty and timing. 

Source Facility 
Destination 

Facility 
Clinical Role 

Workforce Redistribution Volume 

Time Periods 

𝒕𝟐 𝒕𝟑 𝒕𝟒 

Fac2 Fac6 Specialist Nurse   13 

Fac3 Fac5 Intensivist   16 

Fac4 
Fac3 Respiratory Therapist  16  

Fac3 Specialist Nurse   16 

Fac8 Fac2 Specialist Nurse  16  

Fac8 Fac9 Specialist Nurse   14 

Fac9 Fac2 Specialist Nurse  16  

 

Sensitivity Analysis 

 

Facility Capacities and Distribution 

The sensitivity analysis results provide valuable insights into how changes in the capacities 

of healthcare facilities impact various outcomes, such as total costs, shortages, staff utilization, 

and facility operations. Specifically, the analysis examines the effects of reducing the capacities 

of all healthcare facilities by fixed percentages—10%, 20%, and 30%—which are denoted in 

the analysis as three different scenarios. These reductions in capacity are intended to simulate 

varying levels of strain on the healthcare system, potentially due to factors like resource 

shortages, increased demand, or disruptions in supply chains. The detailed data can be found in 

Table 12. 

The total cost is an important outcome in the analysis, which reflects the overall resource 

expenditure required to meet healthcare demands under different scenarios. In the baseline 

scenario, the total cost is calculated based on full facility capacities. As the capacities of the 

facilities are reduced by 10%, 20%, and 30%, the total cost increases in each successive 

scenario. Specifically, the total cost increases by 7.44% when the capacity is reduced by 10%, 

by 14.81% when reduced by 20%, and by 24.08% when reduced by 30%. These increases in 

cost suggest that as the capacity of the facilities decreases, more resources are required to 

compensate for the reduced operational efficiency, leading to higher overall expenditures. 

In the baseline scenario, the shortage is at a certain level. As the facility capacities are 

reduced, the number of shortages increases. For example, when the capacity is reduced by 10%, 
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the shortage rises by 9.07%, and the increase becomes more pronounced as the capacity 

reduction grows—by 14.38% when reduced by 20% and 22.62% when reduced by 30%. This 

trend indicates that as the available capacity decreases, the system struggles more to meet the 

healthcare demands, resulting in a greater number of shortages. 

The number of facilities used in the model remains constant across all scenarios. Despite the 

reductions in capacity, the same number of facilities is utilized in all cases. This suggests that 

the model does not account for the expansion or reduction in the number of facilities based on 

capacity changes, focusing instead on how to allocate resources efficiently within the existing 

healthcare locations. As a result, while the capacities of individual facilities decrease, the 

number of facilities in use does not change. 

Staff utilization is another critical outcome in the analysis, as it indicates how the demand 

for healthcare workers changes as the system's capacity is reduced. The utilization rates for 

various staff roles—such as general nurses, respiratory therapists, and intensivists—fluctuate 

across different facilities and time periods. In particular, the utilization of general nurses 

increases as the capacity reduction grows, with higher demand for nurses in the 20% and 30% 

capacity reduction scenarios compared to the baseline. This pattern reflects the increasing strain 

on the healthcare system, which leads to higher staff utilization as more workers are needed to 

handle the rising demand for care. Other staff roles, such as respiratory therapists and 

intensivists, also show varying utilization rates, often increasing in response to more 

challenging scenarios, though the rates may differ depending on the specific needs at each 

facility. 

The number of staff transfers also changes in response to the capacity reductions. In the 

baseline scenario, there are a certain number of transfers, but as the capacities decrease, the 

number of transfers increases in the 10% reduction scenario. However, this number begins to 

decrease in the 20% and 30% reduction scenarios, suggesting that the system adapts by 

redistributing staff more effectively or utilizing cross-training programs. The cross-training 

count, which represents the instances of training staff to perform multiple roles, remains 

constant across all scenarios. This indicates that cross-training is a fixed strategy in the model, 

aimed at ensuring that staff are prepared to take on different roles without requiring additional 

changes in the system’s parameters. 

 
Table 12. Impact of capacity reductions on total cost, shortages, staff utilization, and operations across 

healthcare facilities. 

Metric Baseline 
10% Capacity 

Reduction 

20% Capacity 

Reduction 

30% Capacity 

Reduction 

Total Cost 3,658,137.34 
3,930,274.28 

(+7.44%) 

4,199,934.59 

(+14.81%) 

4,538,824.18 

(+24.08%) 

Shortages 3,130 3,414 (+9.07%) 3,580 (+14.38%) 3,838 (+22.62%) 

Number of Facilities 

Used 
10 10 10 10 

Staff Utilization  

General Nurse 0.125 0.157 0.210 0.169 

Respiratory 

Therapist 
0.153 0.061 0.114 0.161 

Staff Transfers 185 288 232 202 

Cross Training 

Instances 
120 120 120 120 

 

Costs and Shortages Under Penalty Scenarios 

The sensitivity analysis of the resource allocation model reveals several significant insights 

about the relationship between shortage penalties and resource allocation decisions (see Figure 

2). As the penalty multiplier increased from 1.0 to 3.0, the total cost rose from approximately 

3.68 million to 10.53 million, representing an overall increase of 186.2%. This relationship was 
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nearly linear, with each 0.5 increase in the penalty multiplier resulting in an approximately 46-

47% increase in total costs. This linear relationship suggests that the system's cost structure is 

highly sensitive to shortage penalties, with a clear and predictable impact on overall expenses. 

However, the impact on shortages was less pronounced than might be expected. The total 

shortages decreased only modestly from 3,144 in the base case to 3,059 in the higher penalty 

scenarios, representing a maximum reduction of 2.7%. Notably, the majority of this 

improvement occurred between scenarios 1 and 2 (penalty multipliers 1.5 and 2.0), with no 

additional reduction in shortages observed beyond a penalty multiplier of 2.5. This suggests a 

diminishing returns effect in using financial penalties to reduce shortages. 

Looking at the distribution of shortages across patient types, we observe a consistent pattern 

across all scenarios: approximately 1,340 mild cases, 151 moderate cases, and 1,568 severe 

cases remained unserved. The stability of these numbers across different penalty levels suggests 

that these shortages may be driven by structural constraints in the system (such as facility 

locations or staff availability) rather than cost considerations. 

 

 
Figure 2. Impact of penalty levels on pandemic resource allocation. 

 

These findings have important practical implications for healthcare policy makers and 

administrators. The analysis demonstrates that while financial penalties can drive increased 

resource allocation, they may not be the most efficient tool for improving healthcare system 

performance. The persistent high number of unserved severe cases (1,568) suggests a critical 

need to prioritize capacity expansion for higher acuity care, while the minimal impact on mild 

case shortages (steady at 1,340) indicates that alternative care delivery models or outpatient 

services might be needed for lower acuity patients. The results strongly suggest that policy 

makers should consider a more comprehensive approach that combines strategic facility 

planning, workforce development, and innovative care delivery models to address persistent 

shortages effectively. Simply increasing penalties or allocating more resources may not be cost-

effective beyond certain thresholds; instead, structural reforms, such as facility redesign or staff 

redistribution, may be more effective in reducing shortages and improving overall system 

performance. 

 

Resource Cost Variations on Allocation and Service Levels 

The sensitivity analysis examining resource cost variations reveals nuanced relationships 

between cost structures, resource allocation decisions, and service delivery efficiency (see 

Figure 3). In the base scenario, the model allocated 1,346 resources at a total cost of 

approximately 3.68 million units. The system's response to cost variations demonstrated both 
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expected patterns and surprising resilience, with important implications for healthcare resource 

planning. 

The most significant finding emerged when resource costs were reduced by 50% (S1). Under 

these conditions, the model increased resource allocation substantially to 1,450 units, 

representing a 7.7% increase from the base case. This increased resource deployment translated 

into tangible improvements in service delivery: the number of patients served increased to 4,727 

(from 4,693 in the base case), while unmet demand decreased to 3,110 (from 3,144). This 

asymmetric response suggests that the system has latent capacity for service improvement that 

becomes accessible when resource costs are sufficiently reduced. 

However, the model exhibited remarkable stability when resource costs increased above the 

base level. As costs escalated up to double the base value (S5), resource allocation remained 

relatively steady, fluctuating only minimally between 1,361 and 1,367 units. This inelastic 

response to price increases indicates that the model prioritizes maintaining essential service 

levels even under cost pressures. The total system cost showed a surprisingly modest increase, 

rising only 0.87% to 3.71 million units in S5, despite the doubling of resource costs. This cost 

stability suggests effective optimization mechanisms within the model that help mitigate the 

impact of cost increases. 

 

 
Figure 3. Impact of resource expansion costs on healthcare system performance. 

 

A particularly striking finding is the consistent deployment of exactly 10 facilities across all 

scenarios. This invariance in facility numbers, combined with the relatively small variations in 

resource allocation patterns above base costs, demonstrates the model's structural stability. The 

results suggest that the underlying network configuration is robust and that the core resource 

allocation strategy can adapt to significant cost variations without requiring fundamental 

restructuring of the service delivery network. 

These findings have profound implications for healthcare system design and management. 

The asymmetric response to cost reductions versus increases suggests that targeted subsidies or 

cost-reduction strategies might be more effective in improving system performance than 

dealing with cost increases. Furthermore, the system's resilience to cost increases, while 

maintaining relatively stable service levels, indicates that the model has successfully identified 

a core resource allocation strategy that balances efficiency with service reliability. This stability 

in facility operations and resource allocation patterns provides healthcare administrators with a 

degree of confidence in the robustness of their planning decisions, even in environments with 

volatile resource costs. 
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Staff Hiring Costs and Shortages in Healthcare Workforce Allocation 

The sensitivity analysis of staff hiring costs reveals complex dynamics in healthcare 

workforce allocation, with several counterintuitive findings that merit careful examination (see 

Figure 4). The model demonstrated remarkable stability in its performance metrics across 

varying cost scenarios, suggesting robust optimization mechanisms in workforce deployment. 

The base scenario, with standard hiring costs, resulted in the highest total cost at 3.68 million 

units, while scenarios with both increased and decreased hiring costs achieved slightly lower 

total costs, ranging around 3.66 million units. This unexpected pattern indicates that the model 

successfully identified alternative optimal solutions that could adapt to different cost structures 

while maintaining or even improving system performance. 

The relationship between hiring costs and service delivery efficiency revealed intriguing 

patterns. Most scenarios (S1-S3 and S5) maintained consistent service levels at 4,704 patients 

served with 3,133 unmet demands. However, scenario S4 emerged as particularly efficient, 

achieving the highest service level with 4,710 patients served and reducing unmet demand to 

3,127 cases. This marginal but meaningful improvement suggests the existence of specific cost-

structure conditions that enable more efficient resource allocation. The fact that this improved 

performance did not occur in a linear relationship with hiring costs (either increasing or 

decreasing) points to complex interactions between staffing costs and other system constraints. 

The stability in service levels across scenarios, despite significant variations in hiring costs 

(ranging from 50% to 200% of base costs), reveals important insights about system constraints. 

This inelasticity to cost variations suggests that the primary limitations on service capacity lie 

not in staffing costs but in other structural constraints such as facility capacity, geographic 

distribution, or resource availability. The consistent performance across such wide cost 

variations indicates that the model has identified a fundamental staffing configuration that 

remains optimal or near-optimal regardless of cost fluctuations. 

These findings have significant implications for healthcare workforce planning and policy 

making. First, the ability to maintain similar performance levels despite cost variations suggests 

that healthcare systems might have more flexibility in staff compensation strategies than 

previously thought, without necessarily compromising service quality. Second, the 

identification of specific scenarios (like S4) that achieve better performance indicates potential 

opportunities for optimizing cost structures to improve system efficiency. Third, the persistence 

of substantial unmet demand (around 3,130 patients) across all scenarios strongly suggests that 

addressing workforce challenges alone may be insufficient to significantly improve service 

capacity - a more comprehensive approach addressing multiple system constraints 

simultaneously may be required. 
 

 
Figure 4. Effect of staff hiring cost adjustments on healthcare system efficiency. 



Advances in Industrial Engineering, June 2025, 59(1): 111-131 

 129 

 

The analysis also highlights the model's sophistication in finding alternative optimal 

solutions under different cost scenarios. The ability to maintain or even reduce total costs while 

preserving service levels demonstrates the existence of multiple viable staffing configurations, 

providing healthcare administrators with flexibility in workforce planning decisions. This 

resilience to cost variations could be particularly valuable in healthcare systems facing 

uncertain economic conditions or varying regional cost structures. 

These insights suggest that healthcare administrators should focus not only on managing 

hiring costs but also on identifying and addressing the structural constraints that limit service 

capacity. The findings support a more nuanced approach to healthcare workforce planning, 

where staffing decisions are integrated with broader system optimization strategies rather than 

being treated as an isolated cost management challenge. 

 

Conclusion  

 

This study presented a resource allocation model during pandemics, considered various critical 

factors such as capacity, staffing, and resource availability. By employing a Mixed-Integer 

Programming model, the research optimized healthcare resource management while balancing 

patient demand, facility capacity, and staffing constraints across different time periods. The 

introduction of cross-training capabilities for staff roles, such as general nurses becoming 

respiratory therapists or specialized nurses, provided a dynamic solution to address fluctuating 

patient needs and staff shortages. 

The results showed that the model efficiently managed the allocation of healthcare resources, 

minimizing the total costs associated with resource addition, travel, and staffing, while meeting 

patient demand. Staff utilization rates were closely monitored to ensure that staffing levels were 

sufficient to meet the demand for each patient type. The facility utilization rates, along with the 

cross-training count and staff transfer details, demonstrated how the system adapted to meet 

rising challenges such as increased patient volume or staff availability issues. In particular, the 

cross-training strategy helped mitigate potential staff shortages, and the ability to transfer staff 

between facilities ensured that no location was under-resourced, especially during peak demand 

periods. 

Sensitivity analysis revealed that reducing healthcare facility capacities by 10%, 20%, and 

30% increased the total cost and patient shortages significantly. This was primarily because the 

system compensated for reduced capacity by adding more resources and reallocating staff to 

other roles, thereby increasing overall staff utilization, particularly for general nurses. While 

the number of facilities used did not change, the model showed how resource allocation and 

staff management strategies could adapt to capacity constraints. These findings emphasized the 

critical role of strategic resource management and staff cross-training in mitigating the effects 

of capacity reductions on both operational performance and costs.  

Several promising directions for future research emerge from this study. First, the integration 

of real-time data from public health surveillance systems, hospital admissions, and 

epidemiological tracking could enhance the model by allowing it to dynamically adjust resource 

allocation based on the pandemic's progression patterns and emerging hotspots. This could 

involve developing decision support systems that link epidemiological data with resource 

planning to better anticipate and respond to shifts in patient demand across different regions. 

Second, incorporating machine learning algorithms could improve the prediction of staff 

availability and patient surge patterns, enabling more proactive resource allocation decisions. 

Third, future research should address the ethical dimensions of resource allocation during 

healthcare crises, particularly examining how to balance cost optimization with equitable access 

to healthcare services across different socioeconomic groups and geographic regions. This 

could include developing multi-objective optimization models that explicitly consider fairness 
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metrics and social vulnerability indices.  
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