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Abstract  

Portfolio selection is of great importance among financiers, who seek to invest in a 

financial market by selecting a portfolio to minimize the risk of investment and 

maximize their profit. Since there is a covariant among portfolios, there are 

situations in which all portfolios go high or down simultaneously, known as 

systemic risks. In this study, we proposed three improved meta-heuristic algorithms 

namely, genetic, dragonfly, and imperialist competitive algorithms to study the 

portfolio selection problem in the presence of systemic risks. Results reveal that our 

Imperialist Competitive Algorithm are superior to Genetic algorithm method. After 

that, we implement our method on the Iran Stock Exchange market and show that 

considering systemic risks leads to more robust portfolio selection. 
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Introduction 
 

The set of stocks bought by the investor is called portfolio selection. In fact, portfolio refers to 

the fact that the investor must divide his capital between several different financial assets to 

reduce his investment risk. But more important than the concept of portfolio selection are the 

points that a successful investor should be aware of securities. The first and most important 

point that makes the term securities very important is a concept called risk. Risk can be defined 

as risk. 

Portfolio selection involves the allocation of capital among a large number of securities so 

that the investor seeks the most profitable return, while carrying the least risk. Investors in the 

stock market always make their decisions to choose a portfolio for the future, precisely because 

of the uncertainty of future markets, it is not easy to predict the realized value of each stock. 

Therefore, investors usually have no choice but to trust the data gained from the past and 

through experience. Most of the literature assumes that the stock rate of return is a random 

variable and the distribution parameters can be estimated from past data. Based on this 

assumption, a large number of portfolio selection models are based on probability theory. 

Markowitz [27] published his pioneering work, which served as the basis for the 

development of modern portfolio theory over the past few decades. The Markowitz model used 

variance to describe risk by the degree of bias between the effective rate of return and the 

expected rate of return. However, the variance calculated by the total deviation from the 

expected return describes both downside and downside risk. In fact, investors do not like 
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downside risk, but they actually want to take upward risk. Therefore, the use of variance may 

also limit the potential benefit. He introduced the first safety work on the sample, which only 

minimized the risk of falling. Another standard measure of risk across the company is Value at 

Risk (VaR). For a given time horizon and β level of confidence, VaR is a portfolio loss of 

portfolio market value over a time horizon that exceeds the probability of 1 −β. However, there 

are many factors including social, economic, political and investor psychology in addition to 

the potential factor. More and more researchers have found that the theory of fuzzy sets 

proposed by Zadeh [39]. It is a good tool for controlling ambiguity or ambiguity in stock 

markets. 

Dubois and Pradd [9] introduced the possibility space, which was similar to the model space 

proposed by Nahmias[31], and first defined a fuzzy variable as mapping a possible space into 

a real number. Dubois and Prad [9] then did research on the theory of possibility and provided 

definitions for two basic criteria of a fuzzy variable: possibility and necessity. For a fuzzy event, 

different decision makers may have different perceptions of the probability of occurrence. If 

the decision maker is more aggressive, it is more valuable when measuring probability. If Carter 

is a conservative decision maker, he will have less value when measuring. Since the probability 

of a fuzzy event occurring is always greater than its necessity, so possibility can be considered 

a criterion with an aggressive attitude and necessity can be considered as a criterion with a 

conservative attitude. In addition, Liu and Liu [22;23] defined the dual measurement criterion 

that can be used to quantify probability under a neutral attitude. 

In this study, the problem of portfolio selection under systemic risk is described. Systemic 

risk in portfolio selection was introduced by Biglova et al. [5]. Systemic risk is the risk that 

affects not just specific market participants, but an entire financial market or system due to the 

interlinkages and interdependences of financial institutions throughout the world. To solve a 

portfolio selection under systemic risk, we, for the first time, proposed meta-heuristic 

algorithms. Three meta-heuristic algorithms including genetic, dragonfly, and imperialist 

competitive algorithms to study the portfolio selection problem in the presence of systemic 

risks. To improve the meta-heuristics, a learning operator and a new mutation operator are 

added to these meta-heuristics. 

This paper is structured as follows. In Section 2, the literature of portfolio selection is 

reviewed. In Section 3, our proposed portfolio selection problem is explained. In Section 4, 

meta-heuristic algorithms are developed to solve the problem. In Section 5, results of Iran Stock 

Exchange market are discussed. Finally, in Section 7, this study is concluded. 

 

Literature review 
 

In this section literature of portfolio selection is reviewed. There are a number of studies on the 

use of fuzzy set theory to solve the portfolio selection problem. Xu et al. [38] developed 

optimistic and pessimistic portfolio selection models in a fuzzy random environment. Kocada 

and Keskin [16] introduced a new fuzzy portfolio selection model that tailored risk preferences 

to market trends as well as risk-return risk, allowing decision makers to prioritize among their 

goals. 

Abdelaziz et al. [1] set a multi-objective stochastic plan for portfolio selection in which the 

decision maker considered conflicting goals such as rate of return, liquidity and risk. They also 

used techniques to meet ideals and priorities. Objective programming and agreement 

programming have been used, of course, assuming the parameters are random and based on 

programming models with possible limitations. The case study has been the selection of a 

portfolio from the Tunisian stock market. Abdelaziz et al.[2], they proposed a randomized ideal 

planning approach to create a satisfactory portfolio for the UAE stock market, assuming that 

the shareholding range was abnormal, along with a number of scenarios. They considered total 
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returns, current income and risk and compared the results with the traditional Markowitz model, 

and finally proved the superiority of random ideal programming over other methods in 

optimizing portfolio selection. Bermuders et al. proposed a new method for portfolio selection 

in which it extends the genetic algorithm from its traditional realm of optimization to a fuzzy 

rating strategy for selecting an efficient cardinality portfolio. Has been from the Spanish stock 

market. 

Ghahtarani and Najafi [13] used a strong ideal planning approach to the portfolio selection 

problem, in which they examined the parameters that had uncertainties with a strong 

optimization approach, which was analyzed using the analysis method. Data coverage has been 

used. The model proposed by them is widely used in the real world because the uncertainty and 

the decision-maker's idea in selecting the portfolio are considered simultaneously. 

Recently, many researchers have argued that the selection of a beta portfolio should be 

considered as an indeterminate parameter. Abdelaziz et al. [3] have created a random variable 

and presented a multi-objective random portfolio selection model with random beta. To solve 

it, they have used the ideal planning model, which has already proven the superiority of this 

method in optimal portfolio selection. Li et al. [20] examined a fuzzy portfolio selection model 

with a background risk based on the definitions of return and potential risk, which follows the 

LR type probability distribution for asset returns. So they obtained the ground and compared it 

to the efficient frontier of a portfolio without background risk, and finally concluded that 

background risk could better reflect the investment risk of the economic environment, which 

makes investors a portfolio. Choose more suitable for them. 

Najafi et al. [30] developed an efficient innovative approach to dynamic stock portfolio 

selection by considering transaction costs and uncertainty conditions from a single-period 

model to a multi-period model. Considering uncertainty conditions and costs has made the 

problem more realistic and complex by using an innovative (metaheuristic) method to solve it. 

The results have proven the superiority of this method. Zhao at al. [41]  introduced a tool for 

the convenience of investors that allows them to express their priority in choosing a portfolio 

at two levels: 1) by comparing the criteria of a similar nature 2) by comparing the two criteria 

of the top level (objectives) Financial and strategic) who have used the fuzzy method to solve 

the problem due to conflicting goals with modeling. 

Jean and King also proposed a model for selecting a portfolio with value-at-risk constraints 

in which the asset price process is modeled by non-extensive statistical mechanisms instead of 

the classical Wiener process. Reduces the risk of investing in high-risk assets and, at the same 

time, at the same level of confidence, reduces the ratio of capital invested in high-risk assets 

under the proposed model faster than the model based on the Wiener process. It can be a good 

reference for investors to decide on portfolio selection. Arshadi et al., to deal with the inherent 

complexity and uncertainty of project portfolio construction, have developed a robust 

optimization algorithm to maximize the combined options of project portfolio selection, which 

is very effective for uncertainty conditions. It should be noted that the results of this study have 

been very useful as a managerial point of view. 

Zhou et al. [42] examined the issue of stock portfolio selection under various protective, 

neutral, and aggressive approaches in a fuzzy environment, reviewing 10 data from the Chinese 

stock market using Pareto optimization solutions. Maximizing returns and minimizing risk, and 

considering the transaction cost and value constraints at risk, have examined the effectiveness 

of the proposed model. Also, Lansman at al. [17] have introduced a new class of functions for 

selecting the optimal stock portfolio, in which the class uses important metrics such as mean, 

variance, Sharp ratio and standard deviation, and more. 

Masoudi and Abdul Aziz [24] have provided a comprehensive overview of definite and 

indefinite multi-objective planning models in stock portfolio selection. Expression of pricing 

models and risk selection criteria for stocks. Finally, they show how to use these models to 
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select a portfolio. Portfolio selection has always had two violations: 1) Projects that have 

already been started have always been ignored. 2) Select parameters have always been accurate. 

Li et al. [19] have examined a case in which two scenarios are examined. As a result, they 

realized that the larger the scale of existing projects, the better the company's revenue. 

When several goals are considered in the portfolio selection process, the issue becomes 

somewhat complicated, as Garcia et al. [11] have used genetic algorithms to solve the model. 

But when prices in a portfolio are interrelated, portfolio selection and bilateral trading become 

complicated, with Pascal et al. conducting a numerical experiment in 2019 in which they have 

proven a competitive ratio and optimal conditions. 

Evaluating the quality of solutions is very important in selecting a portfolio in the project. 

This feature examined portfolio options. Including a stability function to show the strength of 

portfolios against changes in any initial data whose optimality threshold is obtained. The result 

indicates the ability of the stability function to evaluate the quality of portfolio selection. 

Sandra at al. presented a new way to choose a portfolio based on minimizing regret. The 

finding is described by considering a robust strategy in which the minimum expected profit of 

the investor is maximized in the worst case, which uses a genetic algorithm to solve this 

problem. In his book, Markin devotes a chapter to how portfolio selection is managed, which 

has greatly helped the investor in product decision-making and development. Frej [10] in 

Germany introduced a new model for selecting portfolios of projects based on cost-benefit 

ratios with incomplete information provided by them. This ranking of criteria is done on a fixed 

scale. A case study conducted by a Brazilian power company. Investment priority is important 

in estimating the risk of portfolio selection issues because it affects investment strategies. Theo 

and Yang have considered a mini-max criterion that specifically aims to simply limit the 

standard deviation for each of the existing stocks, the related optimization problem has been 

formulated as a linear program, so it can be easily implemented in the real world. 

 

Problem description 
 

In this section, the problem of portfolio selection under systemic risk is described. To formulate 

this problem, the proposed performance measure by Biglova et al. [5] is used. Selecting a 

portfolio is generally based on Markowitz  model by which we aim to minimize the risk and 

maximize the expected profit. A general form of portfolio selection problem is as follows. 

 

𝑀𝑎𝑥𝑥  
𝑣(𝑥′𝑟 − 𝑟𝑓)

𝜌(𝑥′𝑟 − 𝑟𝑓)
 

s.t. 

∑ xi

n

i=1

= 1 

xi ≥ 0   ,   ∀i 

(1) 

 

where 𝑣 is the expected profit indicator, 𝜌 is the risk parameter and 𝑟 is the index of n-stock 

market log-return set of vectors, denoted by [𝑟1, 𝑟2, . . . , 𝑟𝑛]′. Furthermore, 𝑟𝑓 is the benchmark 

return that is risk-free. 

Sharp proposed reward-to-variability ratio as the objective function (
E(x′r−rf)

var(x′r−rf)
) to be used 

in this problem. Rachev proposed a value at risk based ratio for performance measuring of a 

portfolio, which is defined as 𝑅𝑅(𝛼, 𝛽) =
𝐸𝑇𝐿𝛼(rf−𝑥′𝑟)

𝐸𝑇𝐿𝛽(x′r−rf)
. R-Ratio is a measure of the risk-return 

of a portfolio. rf is a benchmark return and ETL or conditional value-at-risk (CVaR) is defined 

in Eq. 2. 
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𝐸𝑇𝐿𝛼(𝑋) =
1

𝛼
∫ 𝑉𝑎𝑅𝑞(𝑋)

𝛼

0

𝑑𝑞 (2) 

 

which 𝑉𝑎𝑅𝑞(𝑋) = −𝐹𝑋
−1(𝑞) = −𝑖𝑛𝑓{𝑥|𝑃(𝑋 ≤ 𝑥) > 𝑞} is the 𝑉𝑎𝑅 of random return X and 

1 − 𝛼 is the confidence level of X losses. If X is considered as a continuous parameter, then 

𝐴𝑉𝑎𝑅𝛼(𝑋) = −𝐸(𝑋|𝑋 ⩽ −𝑉𝑎𝑅𝛼(𝑋)) and 𝐴𝑉𝑎𝑅𝛼 is the average loss by α percent. 

However, this two measures do not account systemic risks. Therefore, Biglova et al. [5] 

proposed another measure based on the Rachev measure that considers systemic risks. This 

measure is a co-measure named Co-ETL to select a portfolio. 

 
𝐶𝑜𝐸𝑇𝐿𝛼(𝑥′𝑟) = −𝐸(𝑥′𝑟|𝑟1 ≤ −𝑉𝑎𝑅𝛼(𝑟1), . . . , 𝑟𝑛 ≤ −𝑉𝑎𝑅𝛼(𝑟𝑛)) (3-1) 

 

Given that Co-ETL evaluates the losses for all stocks during periods of financial system 

instability, it can assess the systemic risk of the portfolio. Also, the average portfolio returns 

can be evaluated using the Co-Reward measure when all stocks rise in price, due to the 

simultaneous rise in prices in financial markets. They called it Co-Expected Tail Profit. 

 

𝐶𝑜𝐸𝑇𝑃𝛽(𝑥′𝑟) = −𝐸 (𝑥′𝑟|𝑟1 ≥ −𝑉𝑎𝑅1−𝛽(𝑟1), . . . , 𝑟𝑛 ≥ −𝑉𝑎𝑅1−𝛽(𝑟𝑛)) (3-2) 

 

Biglova et al. [5] lastly proposed a measure to create a correlation and pay-off between profit 

and loss. The measure is named Co-Rachev and it’s a development of R-Ration. 

 

𝐶𝑜𝑅𝑅(𝑥′𝑟;  𝛼, 𝛽) =
CoETP𝛽(x′r − rf)

CoETL𝛼(x′r − rf)
 (4) 

 

In this study, we aim to use the Co-Rachev measure to analyze Iran Stock Exchange market. 
 

Mathematical model 

 

To develop the mathematical model of the problem, we need some preliminaries. The main 

constraint of the problem based on Eqs. 3 and 4 is as follows: 

 

1 ( ) ( )i i iVaR r r VaR r    
 

(5) 

 

There are three different states for 𝑟𝑖, expressed in Eqs. 6 to 8. 

 

1 ( )i ir VaR r 
 

(6) 

1 ( ) ( )i i iVaR r r VaR r    
 

(7) 

( )i iVaR r r 
 

(8) 

 

Similar to Eqs. 7 to 11 of Rabbani et al.[32], these equations can be linked using thee binary 

auxiliary variables. The binary auxiliary variables are as follows. 

 

1,iy
 1, if 1 ( )i ir VaR r 

; 0, otherwise 

2,iy
 1, if 1 ( ) ( )i i iVaR r r VaR r    

; 0, otherwise 



126  Dehghan Dehnavi et al. 

3,iy
 1, if 

( )i iVaR r r 
; 0, otherwise 

 

New constraints are: 

 

1 1,( ) (1 )i i ir VaR r M y   
 

(9) 

1 2, 2,( ) (1 ) ( ) (1 )i i i i iVaR r M y r VaR r M y        
 

(10) 

3,( ) (1 )i i iVaR r r M y   
 

(11) 

1, 2, 3, 1i i iy y y  
 

(12) 

 

where 𝑀 is a very big number. 

We also need another binary auxiliary variable to linked all 𝑛 conditions. 

z  1, if all 𝑛 conditions are met; 0, otherwise 

Therefore, the mathematical model is: 

 

( '. . )
max

( '. . )

b

b

x r z r

x r z r








 

(13) 

s.t.  

1

1
n

i

i

x



 

(14) 

1 1,( ) (1 )i i ir VaR r M y   
 

(15) 

1 2,( ) (1 )i i iVaR r M y r   
 

(16) 

2,( ) (1 )i i ir VaR r M y   
 

(17) 

3,( ) (1 )i i iVaR r r M y   
 

(18) 

1, 2, 3, 1i i iy y y  
 

(19) 

2,

1

n

i

i

z y



 

(20) 

1, 2, 3,, , {0,1}i i iy y y 
 

(21) 

{0,1}z
 

(22) 

0ix 
 

(23) 

 

Eq. 6 expresses the objective function, which maximizes a function of expected rewards over 

a function of risk. Eq. 7 expresses that summation of 𝑥𝑖s must be equal to one. Eqs. 8 and 9 

check if 1 ( )i ir VaR r 
. Eq. 10 checks if 1 ( ) ( )i i iVaR r r VaR r    

. Eq. 11 checks if 

( )i iVaR r r 
. Please be noted that we look for 1 ( ) ( )i i iVaR r r VaR r    

. Eq. 12 expresses 

that only one of the three states for 𝑟𝑖 can come true. Eq. 13 expresses that if all 𝑛 conditions 

come true, then 𝑧 can be 1. Eqs. 14 to 16 define the variables. 

 

Solution methods 
 

The presented problem in Section 3 is a non-linear mathematical problem, which is Np-hard. 

To solve this problem, three meta-heuristic algorithms including genetic algorithm (GA), 

dragonfly algorithm (DA), and imperialist competitive algorithm (ICA) are developed. 

 



Advances in Industrial Engineering, Spring 2020, 54(2): 121-140 

 127 

Imperialist competitive algorithm 

 

The imperialist competitive algorithm (ICA) is inspired not by a natural phenomenon but a 

social-human one.  In particular, ICA views the imperial process as a stage of socio-political 

evolution of human being, and it develops a mathematical model for this historical phenomenon 

in order to use it as a powerful tool for optimization purposes. ICA was first introduced by 

Atashpaz-Gargari and Lucas [4]. 

This algorithm starts by several ‘countries’ in their initial position. Countries are, in fact, 

possible answers to the problem [at hand] and are equivalent to chromosomes in genetic 

algorithms and particles in particle swarm optimization. All countries are divided into two 

categories: imperialist and colony.  Depending on their power, the colonizers absorb these 

colonies through a specific process, which is described below.  The total power of any empire 

depends on both its constituent parts, i.e., the imperial state (as the central core) and its colonies.  

This dependence is mathematically modeled by defining imperial power as the sum of the 

power of the imperial state in addition to a percentage of the average power of its colonies. 

Imperial competition begins following the formation of the early empires. Any empire that 

fails in this competition and cannot increase its power (or at least prevent it from diminishing) 

will be removed from the scene. Therefore, the survival of an empire is predicated on its power 

to absorb and dominate the colonies of rival empires. Thus, in the course of imperial 

competitions, the power of larger empires will gradually expand and that of weaker ones will 

shrink.  To increase their power, empires will have to develop their own colonies. Over time, 

the colonies will approximate the empires in terms of power and a convergence will take place.   

The end of colonial rivalry is when there remains a single empire in the world along with 

colonies that are very close in position [and authority] to the imperial state. In what follows, the 

different parts of ICA are fully examined. 

To start the algorithm, we create a number of countries (equal to the number of initial 

countries in the algorithm). Thus, a matrix of all countries is randomly created as the initial 

solution. 

 
 

 

 

 

(24) 

 

 

The cost of a country is determined through evaluating the function fitness in the as: 

 

var1 2 3( ) ( , , ,..., )i i Ncost f country f p p p p 
 

(25) 

To start the algorithm, we create countryN
 countries.  Next, impN

 best members of this 

population (countries with the lowest cost function) are selected as imperialists. The remaining 

colN
 countries form the colonies, each belonging to an empire. To divide the initial colonies 

among the imperial states, we assign each state a number of colonies (this number corresponds 

to the power of each imperialist). To this end, the cost of all imperialists is calculated and their 

normalized costs are determined as follows: 

1 1 11

2 2 22

3 3 33

. . ..

. . ..

. . ..

country country countrycountry
N N NN

KP KI KDcountry

KP KI KDcountry

KP KI KDcountry

COUNTRY

KP KI KDcountry

   
   
   
   
   

    
   
   
   
   
    
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max{ }n i n
i

C c c 
 

(26) 

 

where the cost of the n-th imperialist is the highest cost among its rivals, and nC
 is the 

normalized cost of this imperialist. An imperialist with a higher cost (i.e., a weaker imperialist) 

will have a lower normalized cost.  Considering the normalized cost, we can obtain the relative 

normalized power of each imperialist (as given below); accordingly, the colonies are divided 

among the imperial states. 

 

1

imp

n
n N

i

i

C
p

C





 

 

(27) 

 

From another point of view, the normalized power of an imperialist is in proportion to the 

colonies over which it rules.  Therefore, the initial number of colonies of an imperialist is equal 

to: 

 

. . { .( )}n n colN C round p N
 

(28) 

 

where 
. .nN C

 is the initial number of colonies of an empire, and colN
 expresses the total number 

of colonies in the population of the initial countries; also, round  is a function that obtains the 

integer closest to a decimal number.  Considering 
. nN C

 for each empire, this number of primary 

colony countries is randomly selected and assigned to the nth imperialist. Having determined 

the initial state of all empires, we can start the ICA. The evolutionary process is in a loop that 

continues until a stop condition is met. 

 

Modeling the absorption policy: the movement of colonies toward the imperial state 

The policy of assimilation (absorption) was adopted with the aim of integrating the culture 

and social structure of the colonies into the culture of the central state. Given the particular 

performance of a country in solving an optimization problem, the imperial state adopted an 

absorption policy to bring the colonized country closer in terms of various socio-political 

dimensions. This part of the colonial process in the optimization algorithm is modeled as the 

movement of colonies toward the imperial state. Fig. 1 shows an overview of this movement. 
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Fig. 1. An overview of colonies’ movement toward the imperial state 

 

Accordingly, the imperial state absorbs a colony in the direction of the axes of culture and 

language. As shown, the colony moves x units in the direction of the line connecting it to the 

imperialist and is pushed to a new position.  In this figure, d represents the distance between 

the imperialist and the colony, and x denotes a random number with a uniform distribution (or 

any other suitable distribution). In other words, for x we have: 

 

𝑥~𝑈(0, 𝛽 × 𝑑) (29) 

 

where , 𝛽 is a number greater than 1 and close to 2; thus  , 𝛽 = 2 can be a good choice.  The 

coefficient , 𝛽 > 1 causes the colony to approach the imperial state from different directions. 

 

 
Fig. 2. The real movement of colonies towards the imperialist 

 

Also, in order to increase diversity, instead of simply moving up to x, we make a θ deviation 

in the path and continue to move toward the imperial state and in the direction of the colony-

imperialist vector. We randomly consider θ with a uniform distribution (but any other desired, 

appropriate distribution can also be used). Therefore: 

 

θ~𝑈(−𝛾, 𝛾) (30) 

 

In this relation, 𝛾 is an arbitrary parameter whose increase leads to a rise in the search space 

around the imperialist, and its decrease causes the colonies to move as close as possible to the 

colony-imperialist vector. Considering the radian for θ, a number close to 𝜋/4 has proved a 

good choice in most implementations. 
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Transfer of information between colonies 

In order to transfer information between colonies, we used the crossover operator in the 

genetic algorithm. The so-called tournament selection method was employed to choose the 

colonies. 

 

Revolution 

This process is similar to the mutation method in the genetic algorithm and is performed to 

escape local searches. 

 

Updated colonies 

In each period, the initial population of the colonies, the simulated population, the population 

resulting from the transfer of information between the colonies, and the population obtained 

from the revolution are merged for each empire; then, the best colonies, which are equal to the 

population of the considered colonies, are selected for each imperialist. 

 

Displacement of colonial and imperialist position 

As the colonies move toward the imperialist, some of them may reach a better position than 

the imperialist. In this case, the colony and the imperialist swap their positions, and the 

algorithm continues with the imperial state in a new position; this time it is the new imperialist 

that begins to implement the policy of assimilation to its colonies. 

 

The total power of an empire 

The power of an empire is equal to the power of the imperial state in addition to a percentage 

of the total power of its colonies. Thus, to calculate the total cost of an empire, we use the 

following relation:  

 

. . ( ) { ( )}n n nT C Cost imperialist mean Cost coloniesof empire 
 

(31) 

 

where 
. .nT C

 is the total cost of the nth empire and   is a positive number, usually between 

zero and one and close to zero. Considering a small  causes the total cost of an empire to be 

approximately equal to the cost of its central state (the imperial country), and increasing   

amplifies the effect of the cost of an empire’s colonies in determining its total cost. Typically, 
0.02   has led to favorable answers in most cases. 

 

Colonial competition 

As mentioned earlier, any empire that fails to expand its power and loses its competitive 

power will be removed from imperial rivalries.  This elimination occurs gradually, meaning 

that over time, weak empires lose their colonies and stronger empires take over these colonies 

and increase their power.  

To model this fact, we assume the empire that is in the process of being eliminated is the 

weakest empire available. In this way, by repeating the algorithm, we select one or more of the 

weakest colonies of the weakest empire and create a rivalry between all the empires to seize 

these colonies. These colonies will not necessarily be conquered by the strongest empire, yet 

stronger empires are more likely to seize them.  To this end, we first calculate the normalized 

total cost of the empire from its total cost. 
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(32) 

 

where 
. .nT C

is the total cost of the nth empire, and 
. . .nN T C

is the normalized total cost of that 

empire. Any empire with a lower 
. .nT C

will have a higher 
. . .nN T C

.  Indeed, 
. .nT C

corresponds 

to the total cost of an empire and 
. . .nN T C

 represents its total power.  The empire with the 

lowest cost will possess the highest power. Using the normalized total cost, we may calculate 

the probability (power) of an empire to seize the colony of another empire as follows: 

 

1

. . .

. . .
n imp

n
p N

i

i
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N T C





 

 

 

(33) 

 

After obtaining this probability for each empire, we need a mechanism, such as the Roulette 

Wheel, in order to allocate a colony over which there is a competition to an empire that 

possesses an appropriate probability. 

 

Fall of weak empires 

As stated, during imperial rivalries weak empires—perforce—gradually collapse and their 

colonies fall into the hands of stronger empires. Different conditions might be considered for 

the dissolution of an empire. In the proposed algorithm, an empire is eliminated when it has lost 

its colonies. 

 

Convergence 

The algorithm continues until a convergence condition is met or the total number of 

iterations terminates.  After a while, all the empires will collapse and we will have only one 

empire (with the rest of the countries being under the authority of this single empire) and the 

algorithm will end. 

 

Genetic algorithm 

 

The onset innovation of genetic algorithm (GA) goes back to 1970, where Holland [15], by 

inspiring the nature and imitation of the natural selection process in breeding organisms, 

introduced this method. Later, the GA has been developed by Goldberg [14] to solve various 

combinatorial problems. 

 

Initial Population 

For utilization of GA method, at the first step it should be generated an initial population of 

solutions (called chromosome). Since the quantity of this method is affected by the population 

size, it should be taken into account as one of the crucial parameters in the applications of this 

method. If this population is too small, this method unable to generate qualified solutions, and 

if this population has a large size, the GA method takes a long time, and consequently, this 

method would be time-consuming. As a result, to determine the effective population size, two 

main parameters, including the crossover rate and mutation rate, should be set appropriately. 

For this purpose, the Taguchi method is employed in this study in Section 5 to tune genetic 



132  Dehghan Dehnavi et al. 

algorithm parameters. The more suitable initial population led to the use of the GA method 

more efficiently. 

 

Selection 

To select parents in the GA method, two different approaches are proposed. A percent of 

parents is selected through the tournament approach, and the rest of them are chosen from the 

best feasible solutions of the current generations. The latter approach guarantees the properties 

of a qualified solutions that transfer to the next generation. Also, this approach provides more 

accuracy and prevents the GA method converged quickly. 

 

Genetic Operators 

The child production process is carried out in the genetic algorithm using the crossover and 

mutation operators on the selected parents. These operators are illustrated in the following. 

Crossover operator: the crossover operators combine two parents' properties. Several types 

of these operators were presented for different problems (e.g., see Gen and Cheng [12]). In this 

study, uniform crossover operator is utilized with the identical probability in the proposed GA 

method. 

Mutation operator: in the GA, the mutation operator prevents the GA solution becomes 

converged quickly. To implement mutation in the proposed GA, the two cells are selected 

randomly, then, their values are swapped with each other. 

 

Numerical results 
 

In this section, numerical experiments are conducted to compare the performance of the 

proposed algorithms. First, we analyzed 15 stock indexes from Iran Stock Exchange market. 

Table 1 summaries the statistical information of these 15 stock indexes. Full detail of these 

stock indexes are available from the author upon request. 

 
Table 1. Statistical summary of the 15 stock indexes implemented in this study 

No. Index name 
Mean 

(%) 

Standard 

deviation 

(%) 

Skewness Kurtosis Alpha* Beta* 
Sigma 

(%)* 

Delta 

(%)* 

1 
petroleum 

products 
2.12 4.1 0.81 5.62 1.18 0.31 6.38 -0.95 

2 basic metals -1.48 2.81 0.01 10.22 1.05 -0.23 4.26 0.32 

3 
metal ores 

extraction 
-2.08 3.07 -0.27 10.84 1.24 -0.3 5.64 -0.06 

4 automobile -0.44 60.9 37.22 1769.37 0.85 -0.1 4.6 0.36 

5 
industrial 

multidisciplinary 
-1.54 6.01 -0.33 4.18 1.96 -0.89 13.68 -0.87 

6 computer -1.95 1.71 -0.81 7.64 0.96 -0.32 2.53 0.08 

7 pharmacological -1.51 2.99 -1.63 24.62 0.9 -0.17 3.02 0.39 

8 chemical -1.79 2.88 -1.07 13.37 1.08 -0.21 4.36 -0.19 

9 
transportation 

and warehousing 
-1.76 2.24 -0.51 5.38 1.62 -0.39 6.92 -0.43 

10 food -1.53 2 -0.68 5.02 1.2 -0.36 4.63 0.78 

11 investment -2.01 2.44 -0.33 7.08 1.13 -0.28 4.38 -0.23 

12 radio -1.79 2.79 -1.37 19.61 1.35 -0.26 6.15 -0.3 

13 cement -1.81 8.98 17.3 627.48 1.27 -0.23 7.43 -0.36 

14 bank -1.9 3.17 -0.28 5.3 1.39 -0.34 6.93 0.05 

15 engineering -1.35 7.46 -0.08 9.09 0.61 0 4.06 0.07 

* these are the maximum likelihood estimates of the parameters of the stable Paretian 
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As we mentioned before, there was no study to solve a portfolio selection problem under 

systemic risks. Thus, the performance of the proposed algorithms is compared to each other. 

To evaluate proposed method (Co-Rachev ration) under systemic risk, a great number of 

observations should be in hand, where all assets are jointly in tail.  The procedure proposed by 

Biglova et al. [5] is implemented to generate 30000 return scenario for each of the 10 data sets 

in accordance with data of 15 Iran Stock Exchange market indexes. Table 2 summarized the 

data sets. To generate data sets, we considered different combinations of these indexes. 

 
Table 2. Indexes considered to each generated data set 

Data 

set 

No. 

Indexes 
Included indexes 

1 5 
petroleum products, basic metals, metal ores extraction, automobile, industrial 

multidisciplinary 

2 5 computer, pharmacological, chemical, transportation and warehousing, food 

3 5 investment, radio, cement, bank, engineering 

4 8 
basic metals, metal ores extraction, automobile, transportation and warehousing, food, 

cement, bank, engineering 

5 8 
investment, radio, cement, computer, pharmacological, petroleum products, basic 

metals, metal ores extraction 

6 8 
automobile, industrial multidisciplinary, chemical, transportation and warehousing, 

radio, cement, bank, engineering 

7 12 

computer, pharmacological, chemical, transportation and warehousing, radio, cement, 

bank, engineering, basic metals, metal ores extraction, automobile, industrial 

multidisciplinary 

8 12 
petroleum products, automobile, industrial multidisciplinary, investment, radio, cement, 

bank, engineering, pharmacological, chemical, transportation and warehousing, food 

9 12 
investment, radio, cement, bank, engineering, petroleum products, basic metals, metal 

ores extraction, automobile, industrial multidisciplinary, pharmacological, chemical 

10 15 

petroleum products, basic metals, metal ores extraction, automobile, industrial 

multidisciplinary, computer, pharmacological, chemical, transportation and 

warehousing, food, investment, radio, cement, bank, engineering 

 

In the following, first, the parameters of proposed metaheuristics are tuned. Then, their 

performances are compared to elicit the best one. 

 

Parameter Tuning 

 

The efficiency of meta-heuristic algorithms is directly related to the adjustment of their 

parameters, so the incorrect selection of a meta-heuristic algorithm parameters causes its 

inefficiency. These parameters should be tuned through experimental tests. A variety of 

statistical methods have been proposed for designing experiments. A naive way is a full-factor 

experiment which is not always effective because increasing the number of factors studied 

makes calculations complex and extremely time-consuming. Taguchi introduced a series of 

fractional factor experiments that significantly reduce the number of experiments required 

while maintaining the information required for display (Taguchi, [37]). Besides a full-factor 

experiment, a better way to adjust the parameters of a meta-heuristic algorithm is to use Taguchi 

method, which is implemented here. This method is widely used in the literature of meta-

heuristics (Rabbani et al., [32]; Mokhtarzadeh et al., [26]). 

Taguchi stated that factors (agents) are divided into two categories: controllable factors and 

uncontrollable ones. The purpose of the method is to find the optimal levels of controllable 

important factors and minimize the effect of uncontrollable factors. In this method, the 

qualitative characteristics of the values measured from the experiments are converted from 

signal to noise ratio (S / N). This rate indicates the amount of deviations displayed in the 

response variable. Here, the objective value is considered as the response variable. 
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GA has 4 parameters, maximum number of iteration (ni), the number of population (np), 

percent of crossover children (pc), and percent of mutation children (mc), that should be tuned. 

DA has 2 parameters, ni and np. ICA has 6 parameters, ni, np, the number of countries (nc), the 

assimilation coefficient (ac), revolution probability (rp), and colonies mean cost coefficient 

(cmcc). A three level Taguchi design is considered. Therefore 3 different values for each 

parameter in considered based on the literature and our expertise, which are shown in Table 3. 

 
Table 3. Parameters levels for Taguchi design 

Algorithm 
Parameters levels 

ni np nc pc mc ac rp cmcc 

GA 
50, 75, 

100 

20, 30, 

40 
- 

0.7, 0.8, 

0.9 

0.1, 0.2, 

0.3 
- - - 

ICA 
50, 75, 

100 

20, 30, 

40 

40, 60, 

80 
- - 

1, 2, 

3 

0.1, 0.2, 

0.3 

0.1, 0.2, 

0.3 

 

The Taguchi tests for each algorithm is determined using MiniTab software and the 

experiments are conducted. Each experiment is run 5 times to remove the effect of randomness. 

Therefore, the average of objective value of the 5 run of each experiment is considered as its 

response level value. Then, MiniTab is used to analyzed the test. The results of analyzing are 

in Figs. 3 and 4. The Best value for each parameter of each algorithm is in Table 4. Also, it is 

worth mentioning that the adaptive form of these algorithm has no new parameter; therefore, 

the obtained best value for parameters of each algorithm is also used for its adaptive form. 

 

 
Fig. 3. Analysis diagrams of GA parameters tuning based on Taguchi method 
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Fig. 4. Analysis diagrams of ICA parameters tuning based on Taguchi method 

 

Table 4. Tuned value of each parameter of meta-heuristics 

Algorithm 
Tuned value 

ni np nc pc mc ac rp cmcc 

GA 100 40 - 0.9 0.2 - - - 

ICA 100 40 40 - - 1 0.3 0.1 

 

Performance Evaluation 

 

In this section, we compare the performance of three proposed algorithms, GA, and ICA. For 

this purpose, the relative increase percentage (RPI) measures the performance.  

  

𝑅𝑃𝐼𝑠 =
𝑓𝑠 − 𝑓𝑏

𝑓𝑏

∗ 100,     ∀𝑠 ∈ {𝐺𝐴, 𝐷𝐴, 𝐼𝐶𝐴, 𝐴𝐺𝐴, 𝐴𝐷𝐴, 𝐴𝐼𝐶𝐴} (34) 

 

where 𝑓𝑠 is the objective function value obtained by meta-heuristics 𝑠. 𝑠 is either GA, DA, ICA, 

or their adaptive forms (AGA, ADA, AICA). 𝑓𝑏 is the best objective value obtained from all 

algorithms. 

To make our result more confident, each test instance is solved 10 times using each meta-

heuristics. The RPI from the best results among 10 runs of each algorithm is reported in Table 

5. Also, the RPI from the average results of 10 runs for each algorithm is in Table 6.  

 
Table 5. RPI from the best results among 10 runs 

Data set GA ICA 

1 0.77 8.88 

2 8.28 3.18 

3 4.94 6.49 

4 0 5.75 

5 6.68 9.39 

6 7.91 0.48 

7 5.01 9 

8 5.06 0.85 

9 3.34 4.72 

10 7.41 8.85 

Average 4.94 5.759 

 

Table 6. RPI from the average results among 10 runs 

Data set GA ICA 
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1 2.17 1.97 

2 0.95 6.28 

3 1.2 3.15 

4 0 8.05 

5 0 4.31 

6 5.61 0.65 

7 4.03 8.09 

8 3.17 0 

9 5.11 9.38 

10 4.95 6.09 

Average 2.719 4.797 

 

Table 6 summarizes average results of test instances. Similar to the pervious explanation, it 

can be see that adaptive form of proposed algorithms are superior to the simple form of the 

algorithms. Therefore, it can be concluded that it is better to use proposed adaptive form of 

these algorithms instead of their simple form to obtain high-quality solutions. Also, among 

adaptive form of these algorithms, it can be seen that the three algorithms work equally. 

Therefore, there is no differences between average results of them.   

 

Sensitivity Analysis 
 

In this section, the 15 market indexes are executed using ICA and the results are discussed. In 

this part, an experimental analysis is provided to put the products of maximizing the diverse 

portfolio indices, the ex-post portfolio wealth, into an analogy. Specifically, for all trading days 

within the period of 2010/03/27 and 2020/06/10, a moving window of 5062 daily historical 

return is used for assessing the parameters of the model and, in the afterwards, creating 30000 

different return scenarios for any of the portfolio elements. 

The compendium of ex-post experimental comparison is explained in this section. In all of 

the 1250 trading days the future scenarios are generated from the vector of returns. The efficacy 

of substitutive performance indicators put into a comparison. 

Fig. 5 depict the results of this analysis. The ex-post ultimate wealth and total return acquired 

by maximizing the Sharpe, Rachev, and Co-Rachev ratios. As it can be observed, only the Co-

Rachev ratio can apparently be accountable for the system risk and by selecting a strategy on 

the ground of this measure, the greatest ultimate wealth and total return can be acquired. 
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Fig. 5. Ex-post comparison of the final wealth processes (green: Rachev, black: Sharp, Red: Co-Rachev) 

 

For assessing the variegation and the turnover of diverse policies, both the average of the 

optimal portfolio weights sized within the back testing period and the ex-post wealth are 

reported in Table 7. It can be fairly concluded from Table 7 that the policy of using the Co-

Rachev performance index has more diversification than both Rachev and Sharpe ratios. As a 

result, it can be concluded that the Co-Rachev racial generates a greater deal of portfolio 

variegation among less correlated returns. 

 
Table 7. Comparison of Sharpe, Rachev and Co-Rachev average optimal weights 

Index Sharpe Rachev Co-Rachev 

1 1.98 5.13 7.37 

2 9.46 12.64 8.76 

3 0.95 0.95 11.52 

4 4.65 0.01 2.76 

5 12.55 15.32 4.15 

6 5.33 5.68 10.6 

7 8.19 9.62 3.69 

8 11.55 14.95 3.23 

9 4.26 6.52 7.83 

10 9.58 12.64 5.99 

11 1.64 0.37 4.15 

12 3.52 1.12 3.23 

13 5.2 6.61 7.37 

14 4.03 0.35 11.52 

15 6.06 8.09 7.83 

 

Conclusion  
 

In this paper, the importance of systemic risks is discussed and a reward-risk performance 

measure is borrowed from Biglova et al. [5], in which the co-movement of returns for financial 

indexes is considered to represent the systemic risks in the portfolio. Then three self-adaptive 

meta-heuristics namely GA and ICA are proposed to optimize the portfolio selection problem 

in order to maximize benefits and minimize risks. 

Ten simulated sets of data using the method developed by Biglova et al. [5] and in 

accordance with the Iran Stock Exchange last 10 years’ data are generated to access the 

performance of the proposed algorithms. To assess the performance of the algorithms, the 

average of the objective function (the reward-risk performance measure) values of a one-year 

day-by-day moving time window are considered. 

Results indicated that the ICA algorithm is superior to the GA method. Thus, this algorithm 

is proposed to solve real-world portfolio selection problems. After determining the outstanding 

algorithm, the algorithm is applied to the data of 15 indexes of the Iran Stock Exchange to 

determine the daily portfolio for a 2-year time window and the performance of the proposed 

performance measure is evaluated against the Sharp ratio and the Rachev ratio. As with Biglova 

et al. [5], the results showed that the proposed measure can lead to a better decision for daily 

portfolio selection in the presence of systemic risks. Therefore, this measure is proposed to 

select portfolios during periods of financial instability.  

Future directions for this study can be as follows. For some portfolio selection problems, 

there are constraints such as budget and return constraints, cardinality constraints, floor and 
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ceiling constraints (Di Tollo and Roli, [8]) that can be integrated with the proposed model. Also, 

other meta-heuristics can be tested to find out if any other meta-heuristic algorithm can 

outperform our ICA. 
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