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Abstract  

In recent years, supply chains have become an attractive topic for managers and 

industrialists, and the life and death of organizations and businesses somehow 

depend on the activity of intertwined chains. In this study, transferring petroleum 

products from supply points to consumption areas is examined through a supply 

chain. Also, in today's competitive environment, the high speed of change and 

evolution has raised the uncertainty and ambiguity of decisions, that makes it 

difficult to predict future conditions in supply chains. Hence, a mathematical model 

is used with two objectives including the reduction of shipping costs and the 

reduction of the number of loads. Then, by means of some sensitivity analysis, 

sensitive parameters of the model are recognized. For coping with the uncertainty, 

reliable planning should be done in uncertain and ambiguous conditions for better 

and more accurate planning. One of the new and reliable techniques is the robust 

optimization approach. Therefore, due to the high volume of calculations and the 

problem data as well as the lack of ability to use exact solution methods, especially 

on a large scale, PSO and MOGA-II meta-heuristic algorithms are applied to 

resolve the proposed model. The outcomes show that the model has the required 

efficiency in large dimensions and the proposed solution methods provide 

appropriate answers. To be precise, the new bi-objective model had several 

advantages and the most important one is related to the objectives of reducing the 

shipping costs and the number of loads. 
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Introduction  
 

In our competitive world, supply chain management is a fundamental issue that affects the 

activities of organizations and businesses to generate products and provide services needed by 

customers [7]. Hence, considering the chances and threats in the field of business and evaluating 

the capability of organizations to cope with uncertainty in this area is of undeniable importance. 

In this regard, the amount of production, kind of transfer, and the rate and scope of the supply 

process are very crucial. The main factor for survival in today's environment is the decline in 

shipping, maintenance, and costs in this cycle. Also, the optimal rate of receipt from suppliers 

can exponentially decrease purchasing costs and enhance competitiveness [43]. A supply chain 

entails all the activities regarding the flow and conversion of merchandise from the step of raw 

material extraction to the step of delivery to the final consumer. This also involves the 

corresponding data flow. 

In addition, uncertainty is a critical issue in a supply chain. According to Galbraith’s theory 

[15], uncertainty refers to the variance between the quantity of the data needed to achieve a task 
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and the quantity of the data actually available. In the decision-making process of a supply chain, 

uncertainty is a factor affecting the effectiveness of the chain configuration and coordination 

[2]. Many experts have cited uncertainty as an open topic in designing supply chains. Suler [38] 

states that most of the techniques used to design supply chains deal with such issues as demand, 

costs, waiting time, and other input parameters. In contrast, supply chain scenarios in the real 

world are probably characterized by random data affected by demand variations, absent data, 

and so on. Such problems need sophisticated optimization techniques that consider random data 

to look more realistically at real-world production and distribution network issues and, thus, to 

make more effective decisions. 

Previously, many have claimed that the oil and gas industry may have experienced an era of 

very rare resources. Yet, the resources are not the reason for supply constraints, given the huge 

potential still accessible including, additional potential findings, and the new border of massive 

oil sands and oil shale reserves that are in the money at today's charges [50]. Fundamentally, 

regarding the good popularity of the industry's research, we have enough resources left to 

sustain present generation levels for at least the next 50 years. Then, the foremost challenge 

fronting the oil and gas industry is not the accessibility of oil and gas resources, but putting 

these reserves into generation and delivering the final goods to clients at the minimum cost. 

Therefore, a solid supply-chain management program will improve this purpose.  

It has been a long debate whether the oil supply chain is divided into two or three sections, 

being the allocation of refinery operations at the center of the conversation. As defined by 

Sahebishahemabadi [54], the oil supply chain can be classified into three different classification 

structures. The first considers the oil supply chain divided between upstream and downstream 

parts. However, the second divides the network into upstream, midstream and downstream 

segments. Lastly, the third also reflects the oil supply chain divided into three parts, but the 

midstream part refers to crude oil transportation to terminal and storage facilities. For the 

objectives of this literature review, the second classification scheme is more acceptable [55]. 

At that time, the upstream segment comprises all functions from petroleum exploration, 

production, and transportation to the refineries. The midstream concerns about the conversion 

of petroleum into refined products at refineries and petrochemicals. Finally, the downstream 

part includes storage, primary and secondary distributions, and marketing of refined products. 

In each segment, there are petroleum companies that depend on physical infrastructures across 

the network to progress these functions [56].  

In this research, a new model is designed for a supply chain of petroleum products and the 

corresponding transportation and distribution problem is investigated. The problem is defined 

by the main petroleum products including gasoline, kerosene, gas-oil, and fuel oil. It also 

considers their production and consumption cycle including supply points, intermediate 

warehouses, and consumption areas. The consumption areas are the final layer of the chain and 

the centers for delivering the products to the customers. Considering four different 

transportation modes is another feature of the suggested model. These modes are road 

transportation by refueling tankers, rail transportation, pipeline transportation, and 

transportation by refueling ships, each with its own costs and capacities. Fig. 1 depicts the 

general stages of producing and transporting petroleum products. 
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Fig. 1. The process of oil production 

 

The first objective of the model is minimizing the transportation cost of petroleum products. 

Another one is to enable the direct distribution of products with the least number of loads so as 

to have more safety in them by maintaining the defined health and environmental principles. 

Considering the robustness of the structure, the proposed model seeks to resolve a problem with 

enormous dimensions, which, of course, exact methods such as branch and bound are unable to 

solve [3]. Therefore, PSO and MOGA-II, as two meta-heuristic algorithms, are utilized to solve 

the model. Thus, the problem of transporting petroleum products is solved given the variability 

of demand and the possibility of incorrect estimation concerning the available data. 

Because of the high costs of refining and distributing petroleum goods and the increasing 

requirement to decrease the macro costs of governments and maximize the usage of resources, 

a comprehensive plan is undeniably required for the refueling procedure, considering all the 

variables that may be of significance in the future. Also, owing to the robustness of the 

suggested model, if one of the refineries in use fails to function for some time, petroleum 

products distribution companies can plan to carry the products and meet the fuel needs with the 

least possible loss. Accordingly, all the elements and components involved in a product sales 

cycle, or the components of a supply chain, must be dealt with in practical ways and appropriate 

mechanisms must be applied to reduce costs and increase transportation speed by considering 

safety issues. The aim of this paper is to achieve an inclusive model for the process of fueling 

with the objectives of reducing the costs and creating the flexibility to withstand any external 

stimuli under uncertain data. 

Based on the above discussion, the chief contribution of this study is to determine how much 

of every product is relocated from each supply source to each warehouse by each transportation 

mode. The contribution is also to determine how much of every product is moved from each 

warehouse to another warehouse and from each warehouse to every consumption area by any 

transportation mode. To the best of our knowledge, no study has examined the oil industry 

completely so far; therefore, in this paper, we try to consider the oil industry utilizing the supply 

chain context comprehensively. 

With regard to the uncertain conditions and the robustness of the model and to minimize the 

bio-objective mathematical model, the objectives of this article are generally as follows: 

 Designing a comprehensive model for the oil industry to minimize the transportation 

cost of products along the chain and use fuel tankers to create greater safety; 

 Involving uncertainty in the proposed model and providing a proper method to engage 

with it; 

 Solving the suggested model on a very large scale with appropriate methods and by 

considering the robustness of the structure. 

Moreover, the research questions that will be answered at the end are as follows: 

 How does uncertainty affect the supply chain outcomes? How should it be dealt with? 

 Can the proposed model be implemented on a large scale? What is a suitable solution 

for it? 
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 Is the proposed model appropriate for an oil supply chain, and can it cover the existing 

problems? 

 What are the benefits of the proposed model for the oil industry? 

The rest of this study is prepared in several segments. The second section is dedicated to the 

review of the literature on oil supply chains. In the third section, the suggested mathematical 

model is shown and defined. The fourth section is given to the mathematical modeling of the 

problem in deterministic and uncertain modes. Model linearization and sensitivity analysis are 

also accessible in this section. The fifth section presents the methods and algorithms proposed 

for the mathematical model. After the computational results are provided in the sixth section, 

the model is resolved by the GAMS and MATLAB software programs and the PSO and 

MOGA-II algorithms in both single-objective and multi-objective modes. Section seven is 

devoted to managerial insights. The paper is closed up in the eighth section with the conclusion 

and recommendations for future study. 

 

Literature review  
 

In this part, some of the most critical research works in the field are reviewed. For convenience, 

the review is divided into four subsections. 

 

Supply Chain and Oil Supply Chain Design 

 

To provide insight into supply chain network designs, Fleischmann et al. [14] carried out a 

complete evaluation of modeling in backward logistics management. Their study is viewed as 

one of the main works in backward supply chain network design. Barros et al. [8] suggested a 

mixed linear integer modeling model for a sand recycling network. Jayaraman et al., [20] 

established a mixed-integer linear programming model (MILP) to design a backward logistics 

network under a traction-based system for customer demand and product improvement. Krikke 

et al. [22] also developed a model for a two-stage reverse supply chain network for a copier 

manufacturer. Min et al. [27] recommended a mixed-integer nonlinear programming (MINLP) 

model and a genetic algorithm for the multi-level reverse supply chain network problem that 

measured the temporal and spatial composition of the return products. Abdolazimi and 

Abraham [9] presented a single-layer location model for a certain period and a network design 

model in the form of two main problems. Ambrosino and Scutella [6] also presented a dynamic 

model for a multi-layer network taking into account the product flow. The proposed model 

included factories, central and local distribution centers, and customers or demand points. 

Govindan et al. [17] comprehensively studied the articles on reverse and closed-loop supply 

chains. A paper by Stanworth et al. [39] reported a probable optimization model for a multi-

period and multi-objective stable blood supply chain. The data were uncertain due to uncertain 

conditions during and after a disaster. Larimi et al. [24] introduced a robust, multi-objective, 

stochastic linear programming model for an integrated platelet supply chain with unidirectional 

lateral transshipment between hospitals and clinics. 

The oil industry is one of the main industries covering a wide variety of actions across the 

globe. All the actions and procedures included in the oil industry are known as oil supply chain 

activities [19]. In the oil and gas supply chain, as in other industries, minor suppliers incline to 

have inadequate effects on their supply chains. Wisner [57] opposes that, in greatest cases, SCM 

is not feasible in conditions such as "when the focal organization is not in a location of power 

or structural dominance". It is vital hence for the chief operators in the industry to cause the 

growth of SCM. This is progressively being recognized, as main oil corporations, for instance, 

feel that an agile supply chain instead of interior operations will become the core basis of 

performance development. Indeed, SCM practices are now seen as contribution occasions to 
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upscale performance when the latitude for cutting interior costs and re-engineering business 

procedures has been beaten or does not exist [58]. This follows the tendency previously set in 

other areas [59]. Despite the necessity for more SCM practices in the oil and gas industry, 

evidence proposes that a noteworthy quantity of oil corporations have worries about the 

efficiency of their supply chains and less than half think they have the necessary tools and skills 

to optimize their supply chains [59]. As oil corporations move from the practices of retaining 

all required capacity in-house to a higher level of outsourcing, more combination and SCM 

competence have become deeply imperative [60]. In some interviews by Yusuf et al. [61], some 

industry managers have recommended that up to 40% of oil and gas actions will be outsourced 

from the supply chain over the next five years. This underscores the requirement for a better 

understanding of the connections across oil and gas supply chains, the nascent complexity, 

operations management challenges, and the request for larger agility. 

Polycyclic aromatic hydrocarbons (PAHs) are the standard components of crude oil that 

form a collection of persistent organic contaminants. Hidalgo et al. (ibid) dealt with PAH 

biodegradation at various steps of the oil supply chain, which affects varied environments (e.g., 

groundwater, seawater, oil reservoir), concentrating on genes and trails as well as the key actors 

entailed in this progression. An in-depth understanding of the biodegradation procedure 

provides the knowledge to optimize and monitor bioremediation in an oil spill and/or damage 

to reservoirs and prevent the deterioration of crude oil quality. In the research by Zhou et al. 

[45], a multi-objective MILP model was recommended to simultaneously minimize the total 

economic costs and the CO2 emissions in an oil supply chain. Actual processes and various 

technical constraints such as pipeline construction, pump station design, and the hydraulic 

configuration of the pipeline and pumps were also considered in the model. In the research by 

Piya et al. [34], the essential factors that drive agile supply chain management were identified, 

mainly in the oil and gas industry. For this purpose, an extensive literature review and research 

work through questionnaires were conducted in the oil and gas industry supply chain (OGSC) 

to recognize critical factors. In addition, some brainstorming sessions were held with specialists 

of the OGSC to be aware of the contextual relationships among the identified factors. Sakib et 

al. [36] presented a Bayesian network (BN) model for disaster forecasting and assessment in 

the OGSC according to seven foremost factors including technical, economic, social, political, 

safety, environmental, and legal factors. Bayesian belief network (BBN) is a graphical model 

of probability mainly applied in risk examination to evaluate the possible relationships among 

different variables. The results showed that the technical factors had the greatest impact on 

OGSC disasters, but legal and political aspects had the least impact. Abdel-Basset et al. [1] 

assessed a set of measures to finance a sustainable supply chain in the gas industry under 

uncertainty. Expert evaluations showed that financial characteristics and product (service) 

management are the most important criteria for improving a company's performance and 

achieving sustainable finance in the supply chain. In addition, obtaining price and cost 

information, considering the product level, technology management and demand management 

emerged to be significant for the sustainable supply chain management. 

The study by Aslam et al. [51] recognized the supply-chain practices of the oil industry in 

Pakistan. It depicted that the supply chain management (SCM) practices positively influence 

operational performance. On the other hand, with the aid of literature, the study known diverse 

Blockchain features and their impact on various supply chain practices. The paper of 

ALNAQBI et al. [52] defines a mathematical programming method to discourse possible 

synergistic gains after horizontal mergers in the upstream Crude Oil Supply Chain (COSC). A 

supply chain optimization model has been employed to assess the extent to which economies 

of scope and economies of scale positively affect possible mergers. The problem determined 

the investment level and effective execution of operational plans at communal services, as well 

as the production and processing of oil and gas. Finally, another study by Ara et al. [53] aimed 
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to recommend a new blockchain system design to progress engineering, procurement, and 

construction (EPC) companies’ supply chain for making oil and gas infrastructure, by 

modifying cost and time inadequacies. 

 

Uncertainty and Approaches to Deal with It 

 

Due to their importance and attraction, supply chains have established substantial attention from 

investigators in recent years. The flow of information in a supply chain is of great significance, 

and the lack of information can lead to uncertainties. Uncertainty, as emphasized in the 

literature, can make chain planning difficult. To overwhelm this problem, robust programming 

or the concept of a robust supply chain can essentially be of use. Although uncertainty cannot 

be completely eliminated, it is largely controllable. The first step in this regard is to identify the 

sources of uncertainty or, in other words, the uncertainty and risk parameters of the problem. 

Zhang et al. [42] used a robust programming approach based on Monte Carlo simulation as a 

new pattern in demand chain planning. In that study, they strongly emphasized the importance 

of uncertainty in the supply chain and its management. They stated that the models and methods 

presented in definite conditions for supply chain planning no longer meet the prevailing 

uncertainty. So, chain planning must be done with uncertainty taken into account. They also 

made comprehensive references to sources of uncertainty. Reiner and Trcka [35] presented a 

model to upgrade a supply chain. They showed an ideal robust supply chain environment based 

on the demand situation (smooth or unstable). According to them, while reducing uncertainty 

is possible by helping to share information and reduce the supply time, it is impossible to 

completely avoid uncertainty. In this regard, they referred to Van Landeghem and Vanmaele 

[42] and stated that robust programming is essential to manage supply chain uncertainty. They 

also held that, in the recent theoretical literature, the necessity for robust supply chain 

programming at the tactical level is emphasized to cope with uncertain customer demands. 

Tang [40], in a review study, examined different quantitative models for supply chain risk 

management (SCRM). Based on the theoretical literature, he also reported the applications of 

various SCRM strategies. In this regard, he comprehensively discussed different uncertainties 

(e.g., uncertain demand, uncertain supply time, uncertain supply capacity, uncertain supply 

cost) and robust strategies (e.g., the characteristics of robust strategies, robust supply 

management strategies, robust demand management strategies, robust production management 

strategies, robust information management strategies). Leung et al. [25] dealt with the robust 

optimization of planning for production in a supply chain. They conducted this investigation 

for a multi-national company in Hong Kong. A robust optimization model was established to 

unravel the problem of multi-location generation planning with uncertain data. In this model, 

the fine parameters were tuned and the production management could determine a medium-

term production strategy which included the production load program and the level of the labor 

force based on different economic growth scenarios. Klibi et al. [21] discussed a supply chain 

network (SCN) design under uncertainty. They provide an inclusive and serious overview of 

the optimization models presented in the theoretical literature. In this research, some of the 

flaws and weaknesses in the literature were addressed, and an incentive to develop a 

comprehensive SCN design methodology was discussed. In addition, the sources of uncertainty 

and risk in the supply chain were analyzed. The study also introduced the bases of uncertainty 

in the SCN in three main categories including internal (endogenous) assets, supply chain 

partners, and exogenous geographical factors. Abdolazimi et al. [2] considered a supply chain 

for the tire industry under deterministic and uncertain conditions. They used the two approaches 

of Soyster and Mulvey (scenario-based) to deal with uncertainty and then compared them. In 

the research of Fathollahi-Fard et al. [13], an integrated water supply and wastewater collection 

system (WSWCS) was proposed under uncertainty. Peng et al. [33] reviewed the study on the 
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uncertainties intrinsic in closed-loop supply chains and offered helpful prospects for future 

research. For these goals, they took 302 articles done in the main web of science database from 

2004 to 2018. Then they analyzed the reasons of uncertainties and identified suitable 

approaches for quantifying the effects of uncertainties on production processes. Finally, an 

article by Mondal and Roy [29] considered a two-stage, multi-stage, multi-objective, closed-

loop multi-product supply chain to preserve supplies between production centers and hospitals 

during the COVID-19 pandemic. With uncertain random parameters in the suggested model, 

they applied a mixed uncertain environment to show the ambiguity in real-life data. Then, a 

robust optimization approach was developed for the uncertain random parameters to deal with 

uncertainty in various scenarios. Salehi et al. [48] proposed an optimization model for designing 

blood supply chain network in case of an earthquake disaster. The recommended two-stage 

stochastic model is programmed regarding scenarios for earthquakes in an occupied mega-city. 

In the suggested two-stage stochastic optimization model, decisions of locating permanent 

collection facilities and the amount of every blood type pre-inventory are created in the first 

step and operation decisions that have reliant on probable scenarios are created in the second 

step. 

 

Solution Methods  

 

Various solution approaches are utilized to solve supply chain network problems. In recent 

years, researchers have benefited from many methods of enhancing CSC performance 

efficiency. For example, the Lean concept to improve CSC collaboration was adopted by 

Eriksson [10]. In their research, Kumar et al. [23] used the NSGA-II algorithm to unravel the 

problem of multi-objective supply chain network design by considering the social relations, 

carbon emissions, and supply chain dangers. Fahimnia et al. [11] presented a mixed nonlinear 

integer model for the tactical planning of a green supply chain. To solve the model, they 

compared the performance of three algorithms, genetic algorithm (GA), simulated annealing 

(SA), and Cross-Entropy, according to which the SA algorithm could generate better outcomes 

in a limited time. In a study, Tsao et al. [41] offered a multi-objective planning model for 

designing a sustainable supply chain network. They did possible fuzzy multi-objective 

programming to resolve the model. Ghahremani-Nahr et al. [16] introduced a robust fuzzy 

mathematical programming model to design a closed-loop supply chain network. They 

proposed a new algorithm based on the whale optimization algorithm (WOA) to unravel the 

model. In their research, Hamdan and Diabat [18] stated the problem of two-stage planning in 

their supply chain network. To unravel the problem using the ε-constraint method, they turned 

the three-objective problem into a single-objective mixed integer programming (MIP) problem. 

Obreque et al. [31] devised a solution algorithm for a hierarchical network design problem to 

reduce the cost in a multi-level space. To solve the model, a three-step solution algorithm was 

proposed in accordance with the branch and cut algorithm. Zheng et al. [44] examined 

production planning for a sustainable supply chain, taking into account such factors as CO2 

emission constraints, random demand, service level, and inventory capacity. Therefore, a MIP 

model was advanced, and a heuristic Lagrange algorithm was suggested to cost-effectively 

unravel the problem of large-scale production planning. In their paper, Shoja et al. [37] provided 

a MILP model for a multi-product four-stage flexible supply chain network problem in a solid 

transportation environment. Because the problem was NP-hard, meta-heuristic algorithms had 

to be employed to resolve it. For this purpose, ten classical and adaptive meta-heuristic 

algorithms were established. Abdolazimi et al. [2] proposed a supply chain in which the 

inventory was controlled based on an ABC analysis. They used exact LP-metric and ε-

constraint approaches for their small-size model and two meta-heuristic algorithms, MOPSO 

and NSGA-II, for their large-size model. The results exposed the effectiveness of the 
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recommended methods and algorithms. In another study, Abdolazimi et al. [3] developed a two-

objective MILP model and evaluated exact, heuristic, and meta-heuristic approaches to solve 

the proposed model in small and large sizes. In small dimensions, there were TH and ε-

constraint to use as comprehensive benchmark methods. In large dimensions, the Lagrange 

relaxation method, MOPSO, NSGA-II, SPEA-II, and MOEA/D were used. In still another 

work, Abdolazimi et al. [5] introduced a multi-objective closed-loop supply chain network 

consisting of several levels, several periods, and several products and uncertainties in some 

parameters of the proposed model. Because of the multi-objective feature of the problem, four 

exact approaches including LP-metric, sequential linear goal programming (SLGP), TH 

approach, and simple additive weighting (SAW), were applied to unravel the objective 

functions. Arabi and Gholamian [47] presented a three-objective multi-period multi-product 

mixed-integer quadratic programming problem to optimize a sustainable stone supply chain 

network design. An -constraint method was employed to unravel the multi-objective model 

and achieved the non-dominated solutions. Eventually, in the paper by Seifbarghy et al. [49] a 

three-layer multi-product supply chain entailing manufacturers, distribution centers (DCs), and 

customers was taken into account. A two-objective model was established to detect the 

positions of DCs and the flows of merchandise in the entire supply chain considering a pre-

determined quantity of DCs. Because the accessible problem was NP-hard in nature, three 

metaheuristic algorithms of NSGA-II, NRGA, and MOPSO were established to discover the 

Pareto-optimal solutions and were compared using some standard indexes for multi-objective 

algorithms. 

 

Research Gaps 

 

Conceptual competition is well known in today's complex world. Reducing the cost, increasing 

the level of customer service, and quickly meeting the customers’ needs are necessary for every 

product and service to stay in the competition. Therefore, when there is a competition to reduce 

the final cost of the most strategic consumer goods in a country, the issue becomes especially 

important and economically justified to pay attention to. Owing to the high costs of refining 

and distributing petroleum goods, the need to continue this process as one of the primary 

necessities for the development of a country, the emphasis of state officials to achieve self-

sufficiency in this strategic industry, as well as the growing need to reduce government 

expenditures and maximize the use of resources, a comprehensive plan with all the 

corresponding variables for future is essential in the process of refueling a country.  At times, 

there might be a period when one of the refineries fails to function or one or more warehouses 

cannot be used. In such cases, the robustness of the proposed model makes it possible for the 

petroleum products distribution company to meet the fuel needs of the country by delivering 

the products with the least possible loss. 

Accordingly, it is essential that all the elements and components involved in a product sales 

cycle or a supply chain be seen in effective ways, and appropriate mechanisms be used to reduce 

costs and speed up transmission, taking safety issues into account. Given the issues ever 

discussed in the literature, no research has considered these cases so far. So, the goal of the 

present research is to achieve a comprehensive model for refueling processes, reduce costs and 

gain flexibility to withstand any external stimuli under data uncertainty. 

 

Model description 
 

Fig. 2 illustrates the source of product supply on the left. This R source comprises crude oil 

refineries and import terminals. Warehouse W is taken into account in the center of the chain, 

which consists of strategic and non-strategic warehouses. The product first enters one of the 
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warehouses from a production base, and then it is moved to another warehouse or goes straight 

to a consumption zone. Areas A applied for fuel are also shown on the right of Fig. 2. Despite 

the uncertainty, each area has a particular demand for the product. Transfers between centers 

are done in various modes; every product can use only one transportation mode in each stage 

of transfer. 

 

 
Fig. 2. The proposed oil supply chain network 

 

The aim is to formulate the problem and delineate the optimal quantity of every product moved 

from any production source to any warehouse and from any other warehouse or the shipping 

zone. In addition, the optimal mode of transportation at every phase of transfer along the chain 

must be stated. The quantity of every product kept in every warehouse in every period to be 

employed in later periods has to be specified too.  

 

Mathematical model 
 

Based on the earlier part, a mathematical model of the MINLP type is showed. It is as follows: 

 
Sets 
P Products types 

R Product supply bases (refineries and import terminals) 

W, W’ Warehouses 

A Consumption zones 

K Transportation modes 

 
Parameters 

pad
 

The demand of area a for product p 

prf
 

Maximum production capacity of product supply base r for product p 
1

rwp
 

Maximum capacity of the pipeline in transporting products from product supply base r to 

warehouse w 
2

'wwp
 

Maximum capacity of the pipeline in transporting products from warehouse w to warehouse 

w' 



24  Alimohammadi Ardakani 

3

wap
 

Maximum capacity of the pipeline in transporting products from warehouse w to 

consumption area a 

pwca
 

Maximum storage capacity w for storage product p 

wh
 Holding cost of warehouse w for each unit of the kept product in a period 

1

krwco
 

Transportation cost of every bunch of products by transportation mode k for each unit route 

from product supply base r to warehouse w 
2

'kwwco
 

Transportation cost of every bunch of products by transportation mode k for each unit of 

route from warehouse w to warehouse w' 
3

kwaco
 

Transportation cost of every bunch of products by transportation mode k for each unit of 

route from warehouse w to consumption area a 
1

krwdi
 Distance between product supply base r to warehouse w by transportation mode k 

2

'kwwdi
 Distance between warehouse w to warehouse w' by transportation mode k 

3

kwadi
 Distance between warehouse w to consumption area a by transportation mode k 

pkb
 

Minimal rate of carrying product p per transfer time by transportation mode k 

BN Big positive number 

 
Decision Variables 

1

krwX
 

1, if the product transfer from product supply base r to warehouse w by transportation mode 

k; otherwise, 0. 

2

'kwwX
 

1, if the product transfer from warehouse w to warehouse w' by transportation mode k; 

otherwise, 0. 

3

kwaX
 

1, if the product transfer from warehouse w to consumption area a by transportation mode 

k; otherwise, 0. 

1

pkrwM
 

1, if product p is carried from product supply base r to warehouse w by transportation mode 

k; otherwise, 0. 

2

'pkwwM
 

1, if product p is carried from warehouse w to warehouse w' by transportation mode k; 

otherwise, 0. 

3

pkwaM
 

1, if product p is carried from warehouse w consumption area a by transportation mode k; 

otherwise, 0. 

1

pkrwY
 

The volume of product p that is moved from product supply base r to warehouse w by 

transportation mode k 

2

'pkwwY
 

The volume of product p that is transferred from warehouse w to warehouse w' by 

transportation mode k 

3

pkwaY
 

The volume of product p that is transferred from warehouse w to consumption area a by 

transportation mode k 
0

pwIN
 

Inventory of warehouse w for product p at the beginning of the period 

1

pwIN
 

Inventory of warehouse w for product p at the end of the period 

 
Objective Functions 

1 1 2 2

' '1 1 2 2

1 ' '

'

3 3

3 3

Min (( ) ) (( ) )

(( ) ) ( )

pkrw pkrw pkww pkww

krw krw kww kww

p k r w p k w wpk pk

pkwa pkwa

kwa kwa w pw

p k w a p wpk

Y X Y X
Z di co di co

b b

Y X
di co h IN

b

 

 

 

 
 

(1) 

  
1 2 3

2 '

'

Min pkrw pkww pkwa

p k r w w a

Z M M M  
 

(2) 

 

Objective function (1) pursues to minimize the product transfer costs along the supply chain. 

It regards four distinct costs including the transfer cost from production centers to warehouses, 
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the transfer cost from one warehouse to another, the transfer cost from one warehouse to the 

customer zone, and the holding cost of products in warehouses at the end period. It is worth 

noting that bpk is only measured for the mode of transportation by fuel trucks to estimate the 

transportation cost of every truck nevertheless of the quantity of the product put in it. For the 

other transportation modes, this parameter is set to be 1. 

The second objective function (Eq. 2) minimizes the entire quantity of the transfers by a 

specific transportation mode. For example, if fuel trucks are assumed as the second 

transportation mode (k = 2), the objective function, which consists of a set of three Mp2rw binary 

variables, minimizes the number of truck refueling in the three layers of the supply chain. The 

second objective function is to diminish road transport as much as possible to rise safety in the 

transport of products and decrease the dangers created by fuel tankers each time they are loaded 

and unloaded. According to the prices of different transportation modes, it may conflict with 

the first objective function. 

 
Constraints 

1 1 2 2 2 2

' ' ' '

' '

3 3

0

pw pkrw pkrw pkww pkww pkww pkww

k r k w k w

1

pkwa pkwa pw

k a

IN Y X Y X Y X

Y X IN

  

 

  


 

,p w
 

(3) 

3 3

pkwa pkwa pa

k w

Y X d
 

,p a
 

(4) 

1 1 max

pkrw pkrw pr

k w

Y X f
 

,p r
 

(5) 

'
1 1 2 2

' '

'

K R K W

pkrw pkrw pkww pkww pw

k =2 r k =2 w

Y X Y X ca  
 

,p w
 

(6) 

1 1 1

pkrw pkrw rw

p

Y X p
 

,r w  (7) 

2 2 2

' ' 'pkww pkww ww

p

Y X p
 

, 'w w  (8) 

3 3 3

pkwa pkwa wa

p

Y X p
 

,w a  (9) 

1 1 1

pkrw pkrw pkrwY X M
 

, , ,p k r w
 

(10) 

1 1 1

pkrw pkrw pkrwY X BN M 
 

, , ,p k r w
 

(11) 

2 2 2

' ' 'pkww pkww pkwwY X M
 

 , , , 'p k w w
 

(12) 

2 2 2

' ' 'pkww pkww pkwwY X BN M 
 

 , , , 'p k w w
 

(13) 

3 3 3

pkwa pkwa pkwaY X M
 

, , ,p k w a
 

(14) 

3 3 3

pkwa pkwa pkwaY X BN M 
 

, , ,p k w a
 

(15) 

1 1 1

1 2 3krw krw krw

k k k

M M M   
 

,r w  (16) 

2 2 2

1 ' 2 ' 3 'kww kww kww

k k k

M M M   
 

, 'w w  (17) 

3 3 3

1 2 3kwa kwa kwa

k k k

M M M   
 

,w a  (18) 

1

4 0krw

k

Y 
 

,r w  (19) 

2

4 ' 0kww

k

Y 
 

, 'w w  (20) 

3

4 0kwa

k

Y 
 

,w a  (21) 

 1 2 3 1 2 3

' ', , , , , 0,1pkrw pkww pkwa pkrw pkww pkwaX X X M  M  M 
 

, , , , ',p k r w w a
 

(22) 
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1 2 3 0 1

', , , , 0pkrw pkww pkwa pw pwY Y Y  IN  IN 
 

, , , , ',p k r w w a
 

(23) 

 

Constraint (3) logically indicates that, for every product in every warehouse, the quantity of 

the inventory at the beginning of the period plus the quantity of the product transferred to it 

from the supply bases and the quantity of the product transferred to it from the other warehouses 

should be equal to the quantity of the product transferred from the mentioned warehouse to the 

buyer zones, plus the quantity of the product moved to other warehouses, plus the inventory at 

the end of the period. Constraint (4) states that the minimum number of every product that must 

reach every buyer is equal to that customer's demand. Constraint (5) means that the maximum 

quantity of every product generated at each supply base is equal to the capacity of that center. 

Constraint (6) suggests that, for every warehouse and every product type, the sum of the values 

that enter that warehouse from the supply bases and the other warehouses should not surpass 

the capacity of the mentioned warehouse for the mentioned product. It should be noted that the 

pipelines that connect the warehouses only branch to each warehouse and pass through it. To 

calculate the warehouse, the capacity is not calculated by the pipeline. In addition, the pipeline 

is assumed as the first transportation mode. Constraints (7), (8), and (9) are connected to the 

capacity of pipelines. The entirety of all the amounts of the product types moved through the 

first transportation mode (by pipeline) should not surpass the maximum transport capacity by 

that pipeline in that way. Constraints (10) and (11) pertain to the value of the variable 
1

pkrwM
. 

According to these two constraints, when 
1 1

pkrw pkrwY X
takes a non-zero value, it assigns 1 to 

1

pkrwM
, which is a binary variable. However, when 

1 1

pkrw pkrwY X
takes a zero value, it assigns 0 to 

1

pkrwM
. Constraints (12) and (13) are to obtain the value of the variable 

2

'pkwwM
. Similarly, 

Constraints (14) and (15) suggest how to obtain the value of the variable 
3

pkwaM
. 

Constraints (16), (17), and (18) pose technical limitations to pipeline mode of transportation. 

As these constraints postulate, in a period with the first transportation mode (pipeline), if 

products p1 (e.g., gasoline) and p2 (e.g., kerosene) are transferred from one base to a 

destination, product p3 (gas-oil) must be placed between the first two and transported by 

pipeline in that route.  These constraints are designed for the pipeline transportation mode where 

the mixing of products is limited due to technical limitations. For example, fuel oil is not able 

to be loaded on the line quickly after gasoline product; a minimum volume of another product 

including gas-oil, needs to be loaded on the line followed by kerosene. Constraints (19), (20), 

and (21) show that, in the first transportation mode (i.e., pipeline mode), the fourth product 

(furnace oil) cannot be transported. Finally, Constraints (22) and (23) apply to the decision 

variables of the suggested model. 

 

Model Linearization 

Instead of multiplying the binary variable of X and the positive variable of Y that make the 

model non-linear, Constraints (24), (25), and (26) are used as follows: 

 
1 1 1 1( )pkrw pkrw pkrw pkrwY X BN X 1 Y  

 
, , ,p k r w

 
(24) 

2 2 2 2

' ' ' '( 1)pkww pkww pkww pkwwY X BN X Y  
 

 , , , 'p k w w
 

(25) 

3 3 3 3( 1)pkwa pkwa pkwa pkwaY X BN X Y  
 

, , ,p k w a
 

(26) 

 

Where BN represents a significant positive number and converts Y to YX without multiplication. 

Similarly, Constraints (27), (28) and (29) are used instead of Constraints (14), (15) and (16). 
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1 1 1

1 2 3( 1)krw krw krw

k k k

M M M    
 

,r w  (27) 

2 2 2

1 ' 2 ' 3 '( 1)kww kww kww

k k k

M M M    
 

, 'w w  (28) 

3 3 3

1 2 3( 1)kwa kwa kwa

k k k

M M M    
 

,w a  (29) 

   

Sensitivity Analysis 

To assess the effect of making changes in the main parameters of the model on the results of 

objective functions and determine the appropriate parameters for uncertainty, sensitivity 

analysis has been used in this section. Sensitivity analysis was executed on the mathematical 

model using the modified weighted Chebyshev method (defined in the next section). The 

outcomes of this sensitivity analysis are depicted in Fig. 3. 

 

 

 
Fig. 3. The consequence of sensitive parameters on the OBJs 
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By means of doing sensitivity analysis, the effect of transmute in objective functions by 

making alterations in all model parameters, i.e., pad
, prf

, 
1

rwp , 
2

'wwp , 
3

wap , pwca
, wh , 

1

krwco , 
2

'kwwco , 
3

kwaco , 
1

krwdi , 
2

'kwwdi , 
3

kwadi , and pkb
are examined. Based on Fig. 3, the growth in the 

amount of the stated parameters causes variations in the objective functions, but the parameter 

pad
 has the most important influence on all objective functions. Thus, in this study, this 

parameter is taken into consideration uncertainly. The following part defines the variations 

produced by the uncertainty in the recommended model. 

 

Robust Model 

The first objective function of the problem is stabilized at this stage. Presumptuous that the 

demand for a fuel product is not reliable and is taken into account as an oscillating parameter, 

the outcome of the objective function is based on the alterations in this parameter. Accordingly, 

various scenarios are taken into account for the demand, and then the robust model proposed 

by Mulvey et al. [30] is used. First, it is essential to add a new set to the category of indices. 

 
New Set 

S Number of scenarios 

 

Also, several new parameters and decision variables are added to the model.   

 
New Parameters 

sp
 Probability of occurrence of any scenario 

pasd
 

The demand of area a for product p under scenario s 

  The balanced weight between mathematical hope and variance in the robustness of the answer 
  The balanced weight and exchange between response stability and model stability 

 
New Decision Variables 

pas
 

The unsatisfied demand of product p for consumption area a under scenario s 

s  The linearization parameter of the objective function under scenario s 

 

The first objective function is measured as Eq. 30, and the second objective function remains 

unchanged.  

 
1 1 2 2

' '1 1 2 2

1 ' '

'

3 3

3 3

(( ) ) (( ) )

(( ) ) ( )

pkrws pkrws pkww s pkww s

s krw krw kww kww

p k r w s p k w w spk pk

pkwas pkwas

kwa kwa w pws

p k w a s p w spk

Y X Y X
Z di co di co

b b

Y X
di co h IN

b

 

 

 

 
 

1 1 1 1Min ( ) 2s s s s s s s s pas

s s s p a s

Z p Z p Z p Z p   
 

     
 

   
 

(30) 

 

Linearization Eq. 31 must also be added to the set of the model constraints: 
 

1 1 0s s s s

s

Z p Z   
 

s  (31) 

 

The constraints of the model also change as Eqs. 32-52: 
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1 1 2 2 2 2

' ' ' '
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  

 

  
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, ,p w s
 

(32) 

3 3

pkwas pkwas pas pas

k w

Y X d 
 

, ,p a s
 

(33) 

1 1 max

pkrws pkrws pr

k w

Y X f
 

, ,p r s
 

(34) 

'
1 1 2 2

' '

'

K R K W

pkrws pkrws pkww s pkww s pw

k =2 r k =2 w

Y X Y X ca  
 

, ,p w s
 

(35) 

1 1 1

pkrws pkrws rw

p

Y X p
 

, ,r w s  (36) 

2 2 2

' ' 'pkww s pkww s ww

p

Y X p
 

, ',w w s  (37) 

3 3 3

pkwas pkwas wa

p

Y X p
 

, ,w a s  (38) 

1 1 1

pkrws pkrws pkrwY X M
 

, , , ,p k r w s
 

(39) 

1 1 1

pkrws pkrws pkrwY X BN M 
 

, , , ,p k r w s
 

(40) 

2 2 2

' ' 'pkww s pkww s pkwwY X M
 

 , , , ',p k w w s
 

(41) 

2 2 2

' ' 'pkww s pkww s pkwwY X BN M 
 

 , , , ',p k w w s
 

(42) 

3 3 3

pkwas pkwas pkwaY X M
 

, , , ,p k w a s
 

(43) 

3 3 3

pkwas pkwas pkwaY X BN M 
 

, , , ,p k w a s
 

(44) 

1 1 1

1 2 3krw krw krw

k k k
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,r w  (45) 
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4 ' 0kww s
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, ',w w s  (49) 
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, ,w a s  (50) 

 1 2 3 1 2 3

' ', , , , , 0,1pkrws pkww s pkwas pkrw pkww pkwaX X X M  M  M 
 

, , , , ', ,p k r w w a s
 

(51) 

1 2 3 0 1

', , , , , , 0pkrws pkww s pkwas pws pws pas sY Y Y  IN  IN   
 

, , , , ', ,p k r w w a s
 

(52) 

 

Solution method 
 

Because of the computational complication of the problem and the high number of variables 

and parameters in the suggested model, particularly in the robust state, an absolute optimal 

solution cannot be found through a linear optimization software program and exact solution 

approaches [4]. In this research, the PSO and MOGA-II meta-heuristic algorithms are used to 

resolve the model and cope with the problem. The PSO algorithm is utilized to resolve the 

model with a single target, and the MOGA-II algorithm serves that purpose in a multi-objective 

mood. 
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Particle Swarm Optimization (PSO) Algorithm 

 

A PSO system begins with the random initialization of a population (swarm) of particles in the 

search area. It works on the social behavior in the swarm [26]. The position and the velocity of 

the ith particle in the d-dimensional search area can be signified as ,1 ,2 ,( , ,..., )i i i i dX x x x
and 

,1 ,2 ,( , ,..., )i i i i dV v v v
, each. Every particle has its own best position (pbest) ,1 ,2 ,( , ,..., )i i i i dP p p p

 

corresponding to the personal best objective value gained so far at time t. The global best 

particle (gbest) is represented by Pg, representing the best particle found at time t in the whole 

swarm. The new velocity of every particle is calculated as follows: 

 

, , , , , ,1 ( ) ( )i j i j 1 1 i j i j 2 2 g j i jv (t ) wv (t) c r (p x t ) c r (p x t )     
 

1,2,...,j d
 

(53) 

 

Where c1 and c2 are the acceleration constants, w is the inertia factor, and r1 and r2 are two 

independent random numbers uniformly spread in the range of [0, 1]. Hence, the position of 

every particle is updated in every generation in accordance with the Eq. 54: 

 

, , ,1  1i j i j i jx (t ) x (t) v (t )   
 

1,2,...,j d
 

(54) 

 

Normally, the value of every module in Vi can be clamped to the range  max max,v v
to control 

the excessive roaming of the particles outside the search area. Next, the particles fly toward a 

new position regarding Eq. 54. This procedure is recurrent until a user-defined stopping 

touchstone is got. The pseudocode of standard PSO is abridged as Fig. 4. 

 

Multi-Objective Genetic Algorithm-II (MOGA-II) 

 

MOGA-II is a multi-objective genetic algorithm employed to search for optimizations. It is an 

effective algorithm that applies smart multi-search elitism [28]. This new elitism operator can 

maintain some outstanding solutions without creating premature convergence at local-optimal 

frontiers. The elitism is applied in MOGA-II according to the following steps: 

Step 1. MOGA-II begins with an initial population P of size N and the elite set E  . 

Step 2. 'P P E   is calculated for each generation. 

Step 3. If the cardinality of P' is greater than P, P is randomly subtracted from the exceeding 

points. 

Step 4. The evolution from P to P' is calculated using all the MOGA operators. 

Step 5. The fitness is calculated for population P'. 

Step 6. All the P' non-dominated designs are copied to E. 

Step 7. E is updated by the removal of replicated or dominated designs. 

Step 8. If the size of elite set E is larger than the size of the N generation, it will change due to 

the accidental removal of the excess points. 

Step 9. Eventually, there is a return to step 2, and P' is considered a new P. 
For simplicity, MOGA-II needs only a small number of user-defined parameters. Some other 

parameters are internally established to create the power and competence of the optimizer. This 

algorithm performs all the evaluations, which are as many as the points in the DOE (the design 

of experiments) table (initial population) multiplied by the number of generations more details 

are provided in Optimization (2014) [32]. Fig. 5 reveals the pseudocode of the MOGA-II 

algorithm. 
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Fig. 4. The PSO pseudocode 
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Fig. 5. The MOGA-II pseudocode [12] 

 

Computational results 
 

This part aims to authorize the suggested solution methods to resolve the proposed model. As 

mentioned before, this article presents a mathematical model for the oil and gas industry. Two 

meta-heuristic algorithms, counting PSO and MOGA-II, are proposed. These algorithms are 

applied to resolve the model. To validate these two proposed approaches and compare them in 

the productive solutions, the mathematical model has been implemented for each method in 

several numerical examples and different dimensions. It should be noted that this study is a 

development-applied type, and research data have been produced experimentally. As for the 

values of the sets, as shown in Tables 4 and 5, their values are presented in different dimensions. 

Besides, the parameter values utilized in the numerical examples are illustrated in Table 1, all 

of which are according to a uniform distribution. 

 
Table 1. The values of the parameters employed in the numerical examples 

Parameter Value Parameter Value 

pad
 

~U (50000,70000) 
1

krwco
 

~U (10000,15000) 

prf
 

~U (1000000,4000000) 
2

'kwwco
 

~U (20000,25000) 

1

rwp
 

~U (200000,500000) 
3

kwaco
 

~U (10000,15000) 

2

'wwp
 

~U (200000,500000) 
1

krwdi
 

~U (1000,1500) 

3

wap
 

~U (200000,500000) 
2

'kwwdi
 

~U (2000,3000) 

pwca
 

~U (300000,450000) 
3

kwadi
 

~U (1200,2400) 

wh
 

~U (15000,20000) pkb
 

~U (0.50,0.65) 
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Initially, the PSO algorithm is applied to solve the problem in a single-objective mood for 

deterministic and robust states. The results are then matched on a small size with exact solution 

approaches by the GAMS software. Afterward, the model is resolved in a multi-objective mode 

by the MOGA-II algorithm, and an optimal Pareto frontier is attained. In this section, after the 

parameters of the recommended algorithms are introduced, their performance is discussed with 

an example presented in a small size. Then, the proposed model will be solved in larger 

dimensions. Finally, the solutions of the original model are compared in deterministic and 

robust states and on small and large scales. A computer with a Core i7 7700 HQ processor and 

12GB of RAM has been employed to run the sample issues. The GAMS software serves to 

measure the nearness of the gained solutions to reality. For a maximum solving time, a time 

limit of three hours is taken into account. If an optimal solution is not gained for the favorite 

sample at the end of this period, exact solution methods recognize the model as infeasible. 

Because both algorithms (i.e., single-objective and multi-objective ones) are random, every 

sample problem is implemented 10 times by the MATLAB R2017b software. The values of the 

parameters used for this algorithm are given in Table 2. Also, the corresponding values for the 

robust mode can be depicted in Table 3. 

 
Table 2. The parameters of the suggested algorithms 

PSO parameters Value MOGA-II parameters Value 

Max iteration 100 Max iteration 100 

Population Size 150 Population Size 150 

Inertia weight 0.50 Crossover percentage 0.50 

Damping rate 0.75 Inertia weight 0.50 

Personal learning coefficient 2 Mutation percentage 0.20 

Global learning coefficient 2 Mutation Rate 0.20 

 
Table 3. The parameters for the robust mood 

Parameters Value 

S 3 

p1 0.20 

p2 0.50 

p3 0.30 

pasd
 

1000000 

  1 

  225 

 

In the following, the numerical values calculated for the suggested model are specified in a 

single-objective mode for the first objective function in deterministic and robust states. 

 

The outcomes of the algorithm implementation in a deterministic single-objective mode 

 

Size: It shows the quantity of products (p), the number of transportation modes (k), the quantity 

of supply bases (r), the quantity of warehouses (w), and the number of customer zones (a). 
deterministic

optimalZ
: It is the value of the first optimal objective function of the linear problem in the 

deterministic mode calculated by the GAMS software. 
deterministic

bestZ : It represents the best value of the first objective function in the deterministic mode, 

which is obtained by 10 times implementing the algorithm. 
deterministic

optimal bestGap  : It indicates the percentage difference between the value of the optimal objective 

function and the best value of the objective function obtained in the deterministic mode by each 

of the algorithms. According to Eq. 55, it is equal to: 
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deterministic deterministic

deterministic

deterministic

( )
100

best optimal

optimal - Best

optimal

Z Z
Gap

Z


 

 

(55) 

  
deterministicNFE : It is the quantity of times the objective function is named best in the deterministic 

mode. 
deterministic

optimalt
: It is the solving time in seconds in the deterministic mode by the GAMS software. 

Regarding the above, the outcomes are indicated in Table 4.  

 
Table 4. Numerical values obtained for the deterministic mode 

 
Small size (P×K×R×W×A) Large-size model 

3×1×2×3×4 3×4×5×6×8 4×5×6×8×11 5×5×12×87×228 
deterministic

optimalZ
 

635744 8575550 68543897 38102906330 

deterministic

bestZ
 

664772 8603667 70757599 41336806221 

deterministic

averageZ
 

662431 8811121 73232567 42468767927 

deterministic

optimal bestGap   
2.3245 1.3756 3.3756 3.1758 

deterministicNFE  1034 4238 32548 16254389 
deterministic

optimalt
 

1.43 3.24 25.30 12873 

 

The outcomes of the algorithm implementation in the robust single-objective mode 

 

Size: It shows the quantity of products (p), the quantity of transportation modes (k), the quantity 

of supply bases (r), the quantity of warehouses (w), and the number of customer zones (a). 
robust

optimalZ
: It is the value of the first optimal objective function of the linear problem in the robust 

mode utilizing the GAMS software. 
robust

bestZ : It represents the best value of the first objective function in the robust mode, which is 

obtained in 10 implementations of the algorithm. 
robust

optimal bestGap  : It indicates the percentage difference between the value of the optimal objective 

function and the best value of that function obtained in the robust mode by each of the 

algorithms. According to Eq. 56, it is equal to: 

 
robust robust

robust

robust

( )
100

best optimal

optimal - Best

optimal

Z Z
Gap

Z


 

 

(56) 

  
robustNFE : It is the quantity of times the objective function is named best in the robust mode. 

robust

optimalt
: It is the solving time in seconds in the robust mode by the GAMS software. 

According to the above, the outcomes are depicted in Table 5. 

 

Solve the model in the multi-objective mode 

 

In this part, the recommended model is solved in the multi-objective mode by the suggested 

algorithm.  

To assess the effectiveness of the algorithm by combining diverse parameters, the following 

two competence scales have been applied: 
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Table 5. Numerical values gained for the robust mode 

 
Small size (P×K×R×W×A) Large-size model 

3×1×2×3×4 3×4×5×6×8 4×5×6×8×11 5×5×12×87×228 
robust

optimalZ
 

845457 12009346 90112340 - 

robust

bestZ
 

856926 12488171 93154082 50765234347 

robust

averageZ
 

89768 13543009 964576651 55385098322 

robust

optimal bestGap   
1.35 3.98 3.37 - 

deterministicNFE  3625 15828 88243 45654904 
robust

optimalt
 

5.30 12.50 110.30 35987 

 

Number of Pareto Solutions (NPS) 

This index calculates the quantity of the non-dominated solutions gained every time by 

utilizing the algorithm. The algorithm does well enough when NPS is higher.  

 

Mean Ideal Distance (MID) 

The value of this index equals the distance of the Pareto points from the ideal point and can 

be calculated according to Eq. 57, where n is the quantity of Pareto points and 
best best

1 2( , )f f  is the 

coordinates of the ideal point. In Addition, 
max

,i totalf
and 

min

,i totalf
 are the highest and the lowest 

objective function values compared to the other objective functions. A lower value of MID 

shows a better performance of the algorithm. 

 

2 21 1 2 2

max min max min

1, 1, 2, 2,

1
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i

i
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Fig. 6. The outcomes of the MOGA-II 
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After the model is solved for each of the objective functions in a single-objective mode by 

the PSO algorithm, it is solved in a two-objective mode with the MOGA-II algorithm and the 

same parameters. In this case, there are 59non-repetitive non-dominated solutions (NPS) 

obtained. In each of these solutions, the value of each of the two objective functions is specified. 

The maximum Zitzler distance scale [46] is found to be 0.8645. As depicted in Fig. 6, the value 

of the first robust-mode objective function attained by the PSO algorithm is a portion of the set 

of Pareto frontier solutions, which illustrates the reliability of the Pareto frontier. Some costs of 

the network are depicted in Table 6.  

 
Table 6. Costs for the highlighted point regarding different transportation modes 

Mode of Transportation Cost (MU) 

The entire moving cost by rail in the robust mode for the emphasized point from the Pareto 

level 
101458789 

The entire moving cost by ship in the robust mode for the emphasized point from the Pareto 

level 
2154586458 

The entire moving cost through pipelines in the robust mode for the emphasized point from 

the Pareto level 
16526145365 

 

Managerial Insights 
 

In this section, proper insights are exploited from the analyses to help managers and decision-

makers act preparedly in the face of real-world challenges.   

First, the suggested model sufficiently covers all the operational limitations, entailing 

holding costs. It could be very helpful for the related managers. Second, despite the facts that 

planning is inherently a process to occur over time and numerous expenses are ignored in 

planning for distinct periods, the recommended model is accomplished with multi-period 

programming. The third benefit, as the most important one, is the robustness of the model to 

deal with which a scenario-based method has been employed. Given the very high costs of 

refueling processes, the output data of the model based on which decisions are made gain 

significance. Without a model designed in the form of a supply chain, a slight error when 

entering information into the model or an incorrect or somewhat unrealistic approximation of 

the demand of various regions for diverse types of petroleum products would make the total 

calculations go wrong. In addition, there will be no other decision if the estimates are made 

properly but, for technical reasons, a refinery or a warehouse fails to do its tasks. In the 

suggested model, however, with the cost initially paid as a fixed cost, which is much less than 

the stated significance, the gained program is insured over time. Managers can confidently use 

the proposed model and trust the results because applying uncertainty in the model reduces the 

amount of error in the calculations. The fourth advantage is related to the objectives of reducing 

the shipping costs and the number of loads. As everybody acknowledges, human lives are 

superior to any additional asset. In this model, therefore, it is not enough to reduce costs; the 

use of fuel tankers, which pose a high risk to people on the road, has been reduced as much as 

probable. This risk decrease is very valuable, although it rises costs somewhat. The solution 

algorithms used in this model make it advantageous too. The PSO algorithm is applied to 

resolve the model in a single target, and the MOGA-II algorithm is utilized to solve it in a multi-

objective mode. With these algorithms, the calculations are easy to deal with, no matter how 

high the amount of information is or how many calculations are involved. It is, thus, possible 

to alternatively make plans for different periods. The high computational volume of the robust 

mode is also simply managed, and near-optimal solutions can be achieved within a reasonable 

time. All in all, considering the management insights provided, relevant managers can not only 
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increase the safety and lives of people involved in the supply chain but also monitor all aspects 

of the oil industry in the type of a supply chain.  

 

Conclusion and future outlooks 
 

Owing to the high costs of refining and distributing petroleum products as well as the increasing 

requirments to decrease the macro-costs of governments and maximize the usage of resources, 

there is an undeniable and urgent need to comprehensively plan refueling processes with all the 

variables for future periods taken into account. In this paper, product transfer operations from 

supply points to consumption areas are considered a bi-objective supply chain. Considering 

different transportation modes is another feature of the proposed model. There are four different 

transportation modes, including road transportation by refueling tankers, transportation by rail, 

transportation through pipelines, and transportation by refueling ships. The mentioned methods 

can be applied with various capacities and costs. The ultimate objective of the proposed model 

is to minimize the cost of transporting petroleum products. Another goal is to enable the direct 

distribution of products with the least number of loads in order to have more security in these 

loads and maintain the principles defined in health, safety, and environmental systems. In 

addition, one of the most serious issues in the supply chain is uncertainty. To do this, using 

sensitivity analysis, the sensitive parameters of the model were identified (demand parameter) 

to allow uncertainty in the suggested model. Then, using the scenario-based robust 

programming technique, uncertainty is dealt with. Considering the robustness of the structure, 

the proposed model tries to solve a problem with large dimensions, which certainly fails to 

solve exact methods. To cope with this problem, meta-heuristic algorithms have been used to 

resolve the model. First, the proposed model was solved as a single-objective (considering the 

first objective function) and using the PSO algorithm in large and small dimensions in two 

modes of deterministic and uncertainty, and the results were examined. Next, the proposed 

multi-objective model (with the addition of the second objective function) was solved using the 

MOGA-II algorithm in the uncertainty mode, and the results were compared to the single-

objective mode. In this case, the number of NPS was 59, and in each of these solutions, the 

values of every target function were specified. For the maximum Zitzler distance scale, 0.8645 

was obtained, the value calculated for the first robust mode objective function gained by the 

PSO algorithm, which was also part of the Pareto solution. Thus, it indicated the reliability of 

the Pareto frontier was obtained. Finally, considering one of the Pareto frontier solutions, the 

entire cost of moving in the robust mode for the specified point was calculated based on four 

transportation modes. 

Based on the issues discussed in this research, there are several recommendations to make 

for future studies as follows: a) pipeline planning can be completed on a daily basis to control 

variations because of operational reasons; b) planning can be done periodically; c) the suggested 

model can be provided as software within the internal network; d) if the algorithm is optimized, 

it will take less time to reach a solution; e) some insight may be provided by the comparison of 

bi-objective algorithms and similar algorithms in terms of performance; f) the production of 

refineries and the size of products in tanks may be measured with uncertainty.; and, g) the 

economic possibility of adding pipelines in certain places makes a good subject for research. 

 

References 
 
[1]  Abdel-Basset, M., Mohamed, R., Sallam, K., & Elhoseny, M. (2020). A novel decision-

making model for sustainable supply chain finance under uncertainty environment. Journal 

of Cleaner Production, 269, 122324. 



38  Alimohammadi Ardakani 

[2]  Abdolazimi, O., Esfandarani, M. S., Salehi, M., & Shishebori, D. (2020a). Robust design of 

a multi-objective closed-loop supply chain by integrating on-time delivery, cost, and 

environmental aspects, case study of a Tire Factory. Journal of Cleaner Production, 264, 

121566. 

[3]  Abdolazimi, O., Salehi Esfandarani, M., Salehi, M., & Shishebori, D. (2020b). A Comparison 

of Solution Methods for the Multi-Objective Closed Loop Supply Chains. Advances in 

Industrial Engineering, 54(1), 75-98. 

[4]  Abdolazimi, O., Esfandarani, M. S., & Shishebori, D. (2021a). Design of a supply chain 

network for determining the optimal number of items at the inventory groups based on ABC 

analysis: a comparison of exact and meta-heuristic methods. Neural Computing and 

Applications, 33(12), 6641-6656. 

[5]  Abdolazimi, O., Bahrami, F., Shishebori, D., & Ardakani, M. A. (2021b). A multi-objective 

closed-loop supply chain network design problem under parameter uncertainty: comparison 

of exact methods. Environment, Development and Sustainability, 1-35. 

[6]  Ambrosino, D., & Scutella, M. G. (2005). Distribution network design: New problems and 

related models. European journal of operational research, 165(3), 610-624. 

[7]  Asamoah, D., Agyei-Owusu, B., Andoh-Baidoo, F. K., & Ayaburi, E. (2021). Inter-

organizational systems use and supply chain performance: Mediating role of supply chain 

management capabilities. International journal of information management, 58, 102195. 

[8]  Barros, A. I., Dekker, R., & Scholten, V. (1998). A two-level network for recycling sand: a 

case study. European journal of operational research, 110(2), 199-214. 

[9]  Abdolazimi, O., & Abraham, A. (2020c, December). Meta-heuristic Based Multi Objective 

Supply Chain Model for the Oil Industry in Conditions of Uncertainty. In International 

Conference on Innovations in Bio-Inspired Computing and Applications (pp. 141-153). 

Springer, Cham. 

[10]  Eriksson, P. E. (2010). Improving construction supply chain collaboration and performance: 

a lean construction pilot project. Supply Chain Management: An International Journal. 

[11]  Fahimnia, B., Davarzani, H., & Eshragh, A. (2018). Planning of complex supply chains: A 

performance comparison of three meta-heuristic algorithms. Computers & Operations 

Research, 89, 241-252. 

[12]  Farnsworth, M., Benkhelifa, E., Tiwari, A., Zhu, M., & Moniri, M. (2011). An efficient 

evolutionary multi-objective framework for MEMS design optimisation: validation, 

comparison and analysis. Memetic Computing, 3(3), 175-197. 

[13]  Fathollahi-Fard, A. M., Ahmadi, A., & Al-e-Hashem, S. M. (2020). Sustainable closed-loop 

supply chain network for an integrated water supply and wastewater collection system under 

uncertainty. Journal of Environmental Management, 275, 111277. 

[14]  Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., Van der Laan, E., Van Nunen, J. 

A., & Van Wassenhove, L. N. (1997). Quantitative models for reverse logistics: A 

review. European journal of operational research, 103(1), 1-17. 

[15]  Galbraith, J. (1973). Designing complex organizations. Reading, Mass. 

[16]  Ghahremani-Nahr, J., Kian, R., & Sabet, E. (2019). A robust fuzzy mathematical 

programming model for the closed-loop supply chain network design and a whale 

optimization solution algorithm. Expert systems with applications, 116, 454-471. 

[17]  Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply 

chain: A comprehensive review to explore the future. European journal of operational 

research, 240(3), 603-626. 

[18]  Hamdan, B., & Diabat, A. (2019). A two-stage multi-echelon stochastic blood supply chain 

problem. Computers & Operations Research, 101, 130-143. 

[19]  Hidalgo, K. J., Sierra-Garcia, I. N., Dellagnezze, B. M., & de Oliveira, V. M. (2020). 

Metagenomic insights into the mechanisms for biodegradation of polycyclic aromatic 

hydrocarbons in the oil supply chain. Frontiers in Microbiology, 11.  

[20]  Jayaraman, V., Guide Jr, V. D. R., & Srivastava, R. (1999). A closed-loop logistics model for 

remanufacturing. Journal of the operational research society, 50(5), 497-508. 



Advances in Industrial Engineering, Winter 2022, 56(1): 15-41 

 39 

[21]  Klibi, W., Martel, A., & Guitouni, A. (2010). The design of robust value-creating supply 

chain networks: a critical review. European Journal of Operational Research, 203(2), 283-

293. 

[22]  Krikke, H. R., van Harten, A., & Schuur, P. C. (1999). Business case Oce: reverse logistic 

network re-design for copiers. Or-Spektrum, 21(3), 381-409. 

[23]  Kumar, R. S., Choudhary, A., Babu, S. A. I., Kumar, S. K., Goswami, A., & Tiwari, M. K. 

(2017). Designing multi-period supply chain network considering risk and emission: A multi-

objective approach. Annals of Operations Research, 250(2), 427-461. 

[24]  Larimi, N. G., Yaghoubi, S., & Hosseini-Motlagh, S. M. (2019). Itemized platelet supply 

chain with lateral transshipment under uncertainty evaluating inappropriate output in 

laboratories. Socio-Economic Planning Sciences, 68, 100697. 

[25]  Leung, S. C., Tsang, S. O., Ng, W. L., & Wu, Y. (2007). A robust optimization model for 

multi-site production planning problem in an uncertain environment. European journal of 

operational research, 181(1), 224-238. 

[26]  Liu, B., Wang, L., & Jin, Y. H. (2007). An effective PSO-based memetic algorithm for flow 

shop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, Part B 

(Cybernetics), 37(1), 18-27. 

[27]  Min, H., Ko, C. S., & Ko, H. J. (2006). The spatial and temporal consolidation of returned 

products in a closed-loop supply chain network. Computers & Industrial Engineering, 51(2), 

309-320. 

[28]  Mohammed, M. K., Umer, U., & Al-Ahmari, A. (2017). Optimization of laser micro milling 

of alumina ceramic using radial basis functions and MOGA-II. The International Journal of 

Advanced Manufacturing Technology, 91(5). 

[29]  Mondal, A., & Roy, S. K. (2021). Multi-objective sustainable opened-and closed-loop supply 

chain under mixed uncertainty during COVID-19 pandemic situation. Computers & 

Industrial Engineering, 159, 107453. 

[30]  Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale 

systems. Operations research, 43(2), 264-281. 

[31]  Obreque, C., Donoso, M., Gutiérrez, G., & Marianov, V. (2010). A branch and cut algorithm 

for the hierarchical network design problem. European Journal of Operational 

Research, 200(1), 28-35. 

[32]  Optimization, M. I. (2014). Mode Frontier Version 4.0. User Manual, Esteco, SPA. 

[33]  Peng, H., Shen, N., Liao, H., Xue, H., & Wang, Q. (2020). Uncertainty factors, methods, and 

solutions of closed-loop supply chain—A review for current situation and future 

prospects. Journal of Cleaner Production, 254, 120032. 

[34]  Piya, S., Shamsuzzoha, A., Khadem, M., & Al-Hinai, N. (2020). Identification of critical 

factors and their interrelationships to design agile supply chain: special focus to oil and gas 

industries. Global Journal of Flexible Systems Management, 21(3), 263-281. 

[35]  Reiner, G., & Trcka, M. (2004). Customized supply chain design: Problems and alternatives 

for a production company in the food industry. A simulation based analysis. International 

Journal of Production Economics, 89(2), 217-229. 

[36]  Sakib, N., Hossain, N. U. I., Nur, F., Talluri, S., Jaradat, R., & Lawrence, J. M. (2021). An 

assessment of probabilistic disaster in the oil and gas supply chain leveraging Bayesian belief 

network. International Journal of Production Economics, 108107. 

[37]  Shoja, A., Molla-Alizadeh-Zavardehi, S., & Niroomand, S. (2019). Adaptive meta-heuristic 

algorithms for flexible supply chain network design problem with different delivery 

modes. Computers & Industrial Engineering, 138, 106107. 

[38]  Suler, J. (2009). The psychotherapeutics of online photosharing. International Journal of 

Applied Psychoanalytic Studies, 6(4), 339-344. 

[39]  Stanworth, S. J., New, H. V., Apelseth, T. O., Brunskill, S., Cardigan, R., Doree, C., ... & 

Thachil, J. (2020). Effects of the COVID-19 pandemic on supply and use of blood for 

transfusion. The Lancet Haematology. 

[40]  Tang, C. S. (2006). Perspectives in supply chain risk management. International journal of 

production economics, 103(2), 451-488. 



40  Alimohammadi Ardakani 

[41]  Tsao, Y. C., Thanh, V. V., Lu, J. C., & Yu, V. (2018). Designing sustainable supply chain 

networks under uncertain environments: Fuzzy multi-objective programming. Journal of 

Cleaner Production, 174, 1550-1565. 

[42]  Zhang, S., Lei, Q., Wu, L., Wang, Y., Zheng, L., & Chen, X. (2021). Supply chain design 

and integration for the Co-Processing of bio-oil and vacuum gas oil in a refinery. Energy, 

122912. 

[43]  Zhang, J., Yalcin, M. G., & Hales, D. N. (2021). Elements of paradoxes in supply chain 

management literature: a systematic literature review. International Journal of Production 

Economics, 232, 107928. 

[44]  Zheng, M., Li, W., Liu, Y., & Liu, X. (2020). A Lagrangian heuristic algorithm for sustainable 

supply chain network considering CO2 emission. Journal of Cleaner Production, 270, 

122409. 

[45]  Zhou, X., Zhang, H., Xin, S., Yan, Y., Long, Y., Yuan, M., & Liang, Y. (2020). Future 

scenario of China’s downstream oil supply chain: Low carbon-oriented optimization for the 

design of planned multi-product pipelines. Journal of Cleaner Production, 244, 118866. 

[46]  Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto 

evolutionary algorithm. TIK-report, 103. 

[47]  Arabi, M., & Gholamian, M. R. (2021). Sustainable Supply Chain Network Design with 

Price-Based Demand Considering Sound and Dust Pollutions: A Case Study. Advances in 

Industrial Engineering, 55(3), 285-306. 

[48]  Salehi, F., Allahyari Emamzadeh, Y., Mirzapour, A. E., Hashem, S. M. J., & Shafiei Aghdam, 

R. (2021). An L-Shaped Method to Solve a Stochastic Blood Supply Chain Network Design 

Problem in a Natural Disaster. Advances in Industrial Engineering, 55(1), 47-68. 

[49]  Seifbarghy, M. S., Soleimani, M., & Jabbari, M. (2020). Comparing Multi-Objective Meta-

Heuristics for Multi-Commodity Supply Chain Design Problem with Partial 

Coverage. Advances in Industrial Engineering, 54(4), 365-379. 

[50]  Chima, C. M. (2007). Supply-chain management issues in the oil and gas industry. Journal 

of Business & Economics Research (JBER), 5(6). 

[51]  Aslam, J., Saleem, A., Khan, N. T., & Kim, Y. B. (2021). Factors influencing blockchain 

adoption in supply chain management practices: A study based on the oil industry. Journal 

of Innovation & Knowledge, 6(2), 124-134. 

[52]  ALNAQBI, A., DWEIRI, F., & CHAABANE, A. (2022). Impact of Horizontal Mergers on 

Supply Chain Performance: The Case of the Upstream Oil and Gas Industry. Computers & 

Chemical Engineering, 107659. 

[53]  Ara, R. A., Paardenkooper, K., & van Duin, R. (2021). A new blockchain system design to 

improve the supply chain of engineering, procurement and construction (EPC) companies–a 

case study in the oil and gas sector. Journal of Engineering, Design and Technology. 

[54]  Sahebishahemabadi, H. (2013). Strategic and Tactical Crude Oil Supply Chain: Mathematical 

Programming Models. 

[55]  Lima, C., Relvas, S., & Barbosa-Póvoa, A. P. F. (2016). Downstream oil supply chain 

management: A critical review and future directions. Computers & Chemical 

Engineering, 92, 78-92. 
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