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Abstract  

In this paper, zero-inflated Poisson (ZIP) regression was assumed as an underlying 

model to generate network data. This model can be an appropriate model if the 

network data is sparse and produced with two processes, one generates only zeros 

and the other generates count data that follow the Poisson model, the two 

parameters of the model are functions of variables here referred to as similarity 

variables. The performance of the Likelihood Ratio Test (LRT), a Combined 

Residual-Square Residual (R-SR), and Hotelling's T2 control charts was 

investigated in networks based on the ZIP regression model in Phase I. 

Traditionally in Phase I, the parameters of the model are unknown and need to be 

estimated. One needs to be sure the process is stable and the changes are detected 

and removed. The performance of our proposed methods is compared using 

simulation when parameters slope and intercept are under step changes. Signal 

probability was recorded as a comparison measure. The simulation results show 

that the LRT outperforms two other methods significantly in terms of signal 

probability. The efficiency of methods was also examined using the real Enron data 

set. 
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Introduction  
 

Social network analysis (SNA) includes theories, models, and methods based on relational data, 

we can analyze the people and their relationships using the powerful tools introduced in SNA. 

Detecting normal patterns of network data is interesting for researchers due to its applications 

in real-world, various statistical models such as latent variable models [1,2], Stochastic Block 

Models [3], Exponential random graphs [4] are introduced to model the normal pattern of 

interaction between pair of individuals. These models try to capture properties and 

characteristics of networks such as reciprocation, homophily [5], transitivity, small world, 

power low distribution, etc. [6]. On the other hand, finding out when the normal behavior has 

changed is also important. Spammers, frauds, and vandal groups are expected not to follow 

normal patterns, although changes are not limited to those that have adverse effects, for 

example, the announcement of performing a famous artist after years can also cause the normal 

patterns changed in social networks. 

The performance of various control charts has been investigated to detect such changes while 

considering different models to represent networks data since Woodall et al. [7] mentioned in 
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their article that tools and methods in statistical control can benefit this area of research and 

recommended the use of these tools. 

In general, statistical control charts have been applied in two Phases. In retrospective Phase 

I [8], one aim is to remove the special causes to estimate the parameters of the model precisely 

so the estimated parameters can be used to set control limits in a prospective study (Phase II).  

In literature, there are studies that investigated various methods such as likelihood ratio test, 

Hotelling's T2 to monitor weighted social networks under the assumption that the underlying 

model is Poisson regression. Fotuhi et al. [9] developed extended Hotelling's T2, F, and 

standardized likelihood ratio test methods to monitor networks in phase I. Farahani et al. [10] 

developed Hotelling's T2 and Likelihood ratio test statistics to monitor the network based on 

Poisson regression in Phase I.  

However, the social networks are sparse and this assumption may lead to underestimating 

the parameters of the model and have detrimental effects on the performance of methods. 

While the sparsity of unweighted networks has been considered in models such as logistic 

regression, in weighted networks we need to consider parameters to model the extra zeros. 

Mainly, two approaches have been introduced to handle the sparsity of data, hurdle models and 

zero-inflated models, in zero-inflated Poisson models, zeroes are produced by the two 

processes, in the hurdle Poisson model zeroes are produced by only one process, and truncated 

Poisson distribution produce the count data. Ebrahimi et al. [11] considered the sparsity of 

attributed networks in time with a hurdle state model. Motalebi et al. [12] adopted the ZIP 

regression model to represent network data. They introduce a latent variable named similarity 

variable which is a function of nodes attribute and considers the relationship between nodes a 

function of these variables. They investigated the performance of several methods in a Phase II 

study.  

Motivated by these works, we investigate the power of the Likelihood ratio test and 

combined residual-square residual chart and Hotelling's T2 in Phase I, when the underlying 

mechanism to generate the weighted adjacency matrix is zero-inflated Poisson regression. To 

our knowledge, no study evaluates the performance of mentioned methods in a Phase I study 

considering the ZIP regression model. With the ZIP regression model, we can take into account 

the characteristics such as sparsity as well as a nodal covariate. 

The remainder of this article is organized as follows. The next section briefly introduces the 

model followed by Section 3 which explains the likelihood ratio test and combined residual-

square residual and Hotelling's T^2 control charts in detail. Section 4 compares the performance 

of proposed methods using simulation. Section 5 presents a case study. Section 6 discusses the 

managerial implication of the methods. Finally, Section 7 provides conclusions and suggestions 

for future research. 

 

Model 
 

Social networks are sparse, this means that the number of zeros in the adjacency matrix of 

weighted networks is more than what we expect from processes such as Poisson distribution. 

The missing data, the interactions with weight equal to zero, and no interactions between nodes 

are replaced by zero in the adjacency matrix. On the other hand, in the ZIP model, it is assumed 

that the data is produced with two processes, one process generates zero and the other process 

generates data with the Poisson distribution, for data with extra zeros the model could be more 

suitable. To consider the sparsity of networks as well as nodal covariates we assume the ZIP 

regression model as an underlying model to generate network data. In the following, we explain 

social networks based on ZIP regression. Assume some undirected weighted networks are 

available, in each network there are n nodes, the interaction between pairs ( , ), , 1,...,i j i j n  
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denoted by 
( )ijy t

 which is a function of the similarities vector indicated by ijS
. 
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ZIP regression model. It means that: 
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The similarity variable is defined as a function of nodal covariates e.g., gender, position, and 

religion, the parameters of the model are ( )t , ( )t  and satisfy: 

 

,

log( ( )) ( )

( )
logit( ( )) log( ) ( )

(1 ( ))

ij p pij

p

ij

ij r rij

rij

t t s

t
t t s

t

 


 





 





                                                                                                        (2) 

 

To understand the social networks based on ZIP regression we example a hypothetical 

company with n employees. In this company, every two employees ( , )i j  do not interact with 

probability ij
; i.e., the value of corresponding row i and  column j in its adjacency matrix is 

zero, or with probability 
1 ij  they interact with the rate which follows Poisson distribution; 

in other words, the value of corresponding row i and column j in its adjacency matrix can be 

zero with probability 
( )

(1 ( )) ij t

ij
t e







and positive value c with probability 

(1 ( )) ( )
c

ij ij
t t

c

 

. In 

this example, at the time t, the probability to interact or not to interact can be influenced as 

0 1log ( ( )) ( ) ( )ij ijit t t t s   
, the similarity variable ijs

can be defined as any function e.g., 

ij

0 if the twoemployeesare not in sameproject
s

1 if the twoemployeesare in sameproject,


 
   

the rate of communication of two employees ( , )i j can also be dependent to any function of 

employments attributes such as work experience differences. Note that there is no information 

on these zeros i.e., we don't know if they don't interact or interact with weight zero. To find 

more details on the ZIP regression model in social netwok see Motalebi et al. [12].  

The parameters of the model can be estimated by maximizing the likelihood (ML) function 

or expectation-maximization (EM) algorithm. Here, we assume the ij
 and ij  are functions of 

different latent variables which are constant in times. 

The mean and variance of ZIP regression are calculated as follows: 
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Where θ and   follow Eq. 2. 
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Methods 
 

Control chart based on Likelihood Ratio Test 

 

In this section, we explain the LRT method [13] to detect changes in parameters of the ZIP 

regression model in Phase I [14]. There are m networks as described in the previous section, a 

change at the time   has happened and vectors of model parameters changes form 
In Out   

and 
In Out  , we are interested to detect changes in parameters of the model at a particular ,  

this is equal to test Hypothesis below: 
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Under the H0 assumption, the logarithm of likelihood function is written as: 
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Under the H1 assumption, logarithms of likelihood function before and after the changes are 

written as: 
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The likelihood ratio statistic for  is calculated as follows: 

 

0
ˆ ˆ( ) 2( ),aLRT l l   

                                                                                                                                    (7) 
so that: 

a 1 2 = +l l l
.  

 

If we know the value of  , we can estimate the parameters of the model under null and 

alternative hypotheses and calculate the statistic of LRT according to Eq. 8, but the value of 

is also unknown and we should estimate this point too. Because there is no closed-form solution 

for estimating parameters of the model and  simultaneously, a grid search on all possible 

values 1 1m    is applied. Then, the value of ̂  which in the maximum of LRT is achieved 

and its corresponding LRT is considered as an estimated statistic.  

In the simulation, we repeat this procedure a number of times when there are no changes in 

parameters and set the Upper Control Limit (UCL) for desired false passive rate.  
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Control chart based on Residual-Square Residuals 

 

For each pair (i,j) in network at time t, the Pearson Residual (PR) is calculated as follows: 
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where 
( )ijy t

 is the number of communications between node i and j at time t, 
ˆ
ij  and 

ˆ
ij

 are 

estimated when networks are in-control. 

The average of residuals over network is calculated. 
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where n is the number of nodes, we normalize the statistics by subtracting its expected value 

and dividing its standard deviation, a Shewhart control chart is developed to monitor the 

statistics below: 
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Simultaneously, the square of residual is monitored to detect shifts in the process variance, 

in case the magnitudes of the residuals are large but very small values for the average of the 

residuals is achieved because of the signs of the residuals.  
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The combined Residual-Square Residual control chart signals when either PR(t) or SPR2(t) 

falls outside the Shewhart control limits. 

 

The Hotelling's T2 Control Chart 

 

The Hotelling's T2 is one of the primary statistics of multivariate literature in Phase I. The 

statistics is as follows: 

 
2 1
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0  and   are estimated when the process is in control, 
ˆ
t  is a vector of parameters which 

estimated from the data in time t. Ye et al. [15] introduced five methods to estimate parameters 

0  and 0
. Here, we investigate Hotelling's T2 based on a sample average and moving ranges 

in the context of social network, we assume there are m networks. Let 
ˆ ˆ ˆ( , )t t t   be the MLE 

estimator of parameters of network 1 t m  .  

The statistics of Hoteling 
2T is calculated as: 



62  Motalebi et al. 
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Performance comparisons  
 

To evaluate and compare the performance of the methods we simulate the environment of a 

company with 100n   employees, we model the communication between employees with a 

weighted undirected network so that the communications follow ZIP regression model 

explained in Section 2. Mathematically, we show a set of networks as ( ) ( , ( )), 1,...,G t V Y t t m   

so that in each network ijy
 is an edge and it’s weight is equal to the number of interactions 

between members i and j. There are 
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 
. We assume there are two departments 

labeled RD and QC and employees are distributed through these two departments, so the 

relative similarity variable is categorical with three levels and is defined as follows: 
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These three levels of similarity variable require two separate variables and here defined as 

RDRD and QCQC; one level is excluded to avoid a linear dependency.  

We choose ij
 to be a function of work experience differences and a random similarity 

variable of uniform [1,12] distribution (i.e., 2 ~ [1,12]ijs U
).  

The parameters of model are set to (0.1,0.4,0.5)   and ( 0.1,0.2)   , so ij  and ij
 follow 
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We assume 10m   networks are available, to compare the LRT control chart with combined 

R-SR and Hotelling's T2 control charts, first we set the control charts to have the same false 

alarm probability equal to 0.05, then measuring their signal probability, the probability of an 

out-of-control signal, for various out-of-control conditions. All simulations are developed in R 

software and are available upon request.  

Algorithm 1 indicates the process of setting control limit for the LRT method, with 2500 

simulations, the control chart for the LRT method is set to 15.92 ( 15.92)LRTUCL   corresponding 

to false (signal) probability 0.05. 
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Algorithm 1: Calculating the value of UCL using LRT method 

Input: Values ,In In   

Output: UCL 

LRT   

For i in 1:1000  

Generate a set of m  Networks with ZIP regression Model and ,In In  as true values 

For  in 1:m-1  

Estimate the parameters of model under null and alternative hypotheses (Eqs. 5 and 6) 

Calculate Likelihood ratio test (LRT) according to Eq. 7. 

END FOR 

max ( )iL LR RL TRT T


   

END FOR 

Set UCL so that  
| |

1000

UCLLRT
is equal to a desired false positive rate 

 

To achieve the false alarm probability of 0.05 for the R-SR control chart, we use 2500 

simulation and follow Algorithm 2 so that each control chart is set to have a false alarm 

probability of about 1 1 0.05 0.025   . We set 4.59ResidualCL   , and 12819SquarResidualUCL  . 

 
Algorithm 2: Calculating the value of CL using Residual-Square Residual (R-SR) method 

Input: Values ,In In   

Output: CLs 

,MPR SPR   

For i in 1:1000  

Generate a set of m  Networks with ZIP regression Model and ,In In  as true values 

For  in 1:m  

Estimate the mean and Standard deviation with the parameters ˆ In  and ˆ In ,  Eq. 3 

Calculate Pearson Residual (PR), Eq. 8 

Calculate the mean of Pearson Residual ( MPR ), then normalize it using Eq. 9 and 10 

Calculate the sum of the square of Pearson Residuals ( SPR ), Eq. 11 

END FOR 

max ( )

max ( )

i

i

i

i

MPR MPR PR

SPR SPR SPR





 

 
 

END FOR 

Set CLs so that  
1000

Residual Residual
LCL MPR UCL 

 + 
Re

1000

Squar sidual
SPR UCL

is equal to a desired false 

positive rate 

 

Using the same number of simulations, the 
2 8.97

Hotelling sT
UCL    corresponds to the same 

value for false probability is achieved. Algorithm 3 shows the steps for setting Upper control 

limit for Hotelling's T2. 
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Algorithm 3: Calculating the value of UCL using Hotelling’s 
2T method 

Input: Values ,In In   

Output: UCL 

T   

For i in 1:1000  

Generate a set of m  Networks with ZIP regression Model and ,In In  as true values 

For  in 1:m  

Estimate the ˆ ˆ( , )In In    using MLE or EM method, and RS , Eq. 14 

Calculate T Hotelling’s 
2T  statistics, Eq. 13 

END FOR 

max
i

T T T   

END FOR 

Set UCLs so that  
1000

T UCL
 +is equal to a desired false positive rate 

 

Figs. 1, 2, 3, and 4 show the signal probabilities for the step shifts in the parameters of the 

model, occurring after the 5th and 2nd networks of 10. Signal probabilities from 2500 

simulations were determined when a parameters of model changes from In  to ˆOut In

     

and In  to Out In

    . The standard deviation for parameters is estimated as 
0

0.11  , 

0.13
RDRD  ,

0
0.11   and 

1
0.011   with 1000 simulations. 

From Figs. 1, 2, 3, and 4 we can see, the control chart based on residual-square residual (R-

SR) performs better compared to Hotelling's T2 to detect changes in 0 and 0 . Hotelling's T2 

are unable to detect small changes in 0 .  

Interestingly, for changes in RDRD  the Hotelling's T2 method performs better than R-SR 

control chart. While, The Hotelling's T2 method performs very poorly, almost unable to detect 

changes with various magnitude in 1 . The LRT performs better compared to other methods to 

detect changes in all   and  parameters. 
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Fig. 1. The signal probabilities for a step shift in   occurring in the second half of the samples 

 

 
Fig. 2. The signal probabilities for a step shift in   occurring in the second half of the samples 
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Fig.3. The signal probabilities for a step shift in 


 occurring after the 2nd of 10 networks 

 

 

 

 
Fig. 4. The signal probabilities for a step shift in   occurring after the 2nd of 10 networks 
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The results are shown in Table 1 in details. We find that the LRT chart performs better when 

the changes happened at the 5  . In contrast, the R-SR and Hotelling’s T2 perform slightly 

better at 2  . 

 

Table 1. The signal probabilities occurring after the   of 10 networks 

Parameter

s 
  R SR  Hotelling's T2 LRT 

   =5  =2  =5  =2  =5  =2 

 0 0.0484 0.0488 0.0496 

 1 0.1868 0.2388 0.0488 0.0368 0.7924 0.4380 

 2 0.7212 0.7872 0.0540 0.0508 1 0.9124 

 3 0.9768 0.9896 0.1072 0.1196 1 1 

 4 1 1 0.2436 0.2596 1 1 

0  5 1 1 0.4532 0.5032 1 1 

 6 1 1 0.6996 0.7352 1 1 

 7 1 1 0.8684 0.8868 1 1 

 8 1 1 0.9536 0.9648 1 1 

 9 1 1 1 0.990 1 1 

 10 1 1 1 0.998 1 1 

 1 0.0344 0.0412 0.0716 0.0876 0.1984 0.0872 

 2 0.0772 0.0984 0.1464 0.19 0.9746 0.3676 

 3 0.1864 0.2356 0.2980 0.3916 1 0.8980 

 4 0.3864 0.4464 0.5501 0.6408 1 0.9972 

RDRD  5 0.6184 0.7152 0.7908 0.83 1 1 

 6 0.8448 0.89 0.9176 0.9464 1 1 

 7 0.9548 0.9768 0.9776 0.9856 1 1 

 8 0.9952 0.9984 0.9956 0.9972 1 1 

 9 1 1 1 1 1 1 

 10 1 1 1 1 1 1 

 1 0.0564 0.0692 0.0564 0.668 0.2812 0.11 

 2 0.2332 0.2888 0.1148 0.1512 0.956 0.712 

 3 0.5632 0.6324 0.2324 0.2860 1 0.9824 

 4 0.8172 0.8600 0.4596 0.5384 1 1 

0  5 0.944 0.9592 0.6772 0.7360 1 1 

 6 0.9848 0.9900 0.8504 0.8948 1 1 

 7 0.9976 0.9984 0.9480 0.9616 1 1 

 8 0.9992 1 0.9872 0.9908 1 1 

 9 1 1 0.9980 0.9996 1 1 

 10 1 1 1 1 1 1 

 1 0.0568 0.0664 0.0564 0.0556 0.2316 0.094 

 2 0.2296 0.2692 0.0576 0.0628 0.9870 0.622 

 3 0.5064 0.5600 0.0704 0.0708 1 0.8584 

 4 0.7372 0.7932 0.0752 0.0916 1 1 

1  5 0.888 0.9108 0.0892 0.1124 1 1 

 6 0.9584 0.9592 0.0984 0.1200 1 1 

 7 0.9796 0.9844 0.1100 0.1356 1 1 

 8 0.9924 0.9940 0.1248 0.1604 1 1 

 9 0.9972 0.9984 0.1328 0.1696 1 1 

 10 0.9992 1 0.1568 0.1912 1 1 

 

Case Study: ENRON’S EMAIL Network 
 

In this section, we investigate the application of proposed methods in infamous Enron data [16] 

in Phase I. The data set consists of email communications between Enron employees which 

were released after the scandals in the company have been revealed. The time of the important 
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event that resulted in the bankruptcy is known which makes it an appropriate data set for 

investigating the efficiency of various methods [17,18]. We have derived networks of 77 

employees of this company for 81 weeks from July 2000 till February 2002, we fit the model 

in Eq. 17 to show the behavior of the data. The applicability of the model is investigated 

thoroughly in the extracted data set in Motalebi et al. [12]. yij is the number of communications 

between the CEOs and Presidents labeled as CP and directors and managers labeled as DM, 

which can be zero or positive with the probability below: 
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                                                                                                           (17) 
 

The similarity variable is categorical and has three levels. To avoid linear dependency we 

introduce two variables CPDM  and DMDM so that the parameters of model follow: 

 

0

1

0

( ) exp( ( ) ( )*( ) ( )*( ))

( ) logit ( ( )).

ij CPDM DMDM

ij

t t t CPDM t DMDM

t t

   

 

  


                                                             (18) 

 

To apply the proposed methods in Phase I we need to set control limits, to do that, the first 

step is to estimate the parameters of model for each week. Fig. 5 shows the estimated parameters 

of model in times. The averages of estimated parameters are 0
ˆ 2.38 

, 
ˆ 0.78CPDM 

, 
ˆ 0.9DMDM 

 and 0
ˆ 3.36 

. We simulate 80 networks with these values and calculate the 

statistics of each method. With 1000 simulations the control limits for each method are set so 

that the Type I error is equal to 0.05. The control limits for LRT, R-SR, and Hotelling's T2  are 

UCLLRT = 18.03, 
5483.83SRU 

, 
1.25RCL  

 and 
2 153.34

HotellingT
UCL 

, respectively. We can 

see the results in Figs. 6-8.   
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Fig. 5. The estimation values for 0 , CPDM
, DMDM

 and 0   in interval time from July 2000 till Feb 2002 

 

 
Fig. 6. The LRT method in Enron data from July 2000 till Feb 2002 

 

 
Fig. 7. The T2 method in Enron data from July 2000 till Feb 2002 
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a. The mean of residuals b. The sum square of residuals 

 

Fig. 8. The R-SR method in Enron data from July 2000 till Feb 2002 

 

Managerial insight  
 

Although social networks data are not only formed through the Internet, the advancement of 

technology and the popularity of using various platforms such as Facebook, Telegram, etc. have 

expanded social networks, causing this form of data has become increasingly common. 

According to statistics, in November 2020 close to 50 percent (42.6%) of the population of Iran 

are users of various social media [19]. The increasing trend of cyberspace usage emphasizes 

the need to provide methods for monitoring events in this environment. Monitoring social data 

has many applications, as an example, a study conducted in Iran by Shariatpanahy et al. [20] in 

connection with cyberbullying in high school students indicates that about 82.29% of the 

participants in this study have been harassed online, 90.90% of people harass others, and 

62.40% of participants have a friend who is harassed. Obviously, rapid identification and 

intervention can reduce the destructive effects of these behaviors on victims. In another 

example, at the time of the Queensland floods, messages on social networks about the situation 

helps first-aid officers to make the right response on time, reducing the disastrous effects [21]. 

Furthermore, the use of network concepts is evident in finding the terrorist activities and 

helping to uncover the role and capability of members in hidden networks; finding Saddam 

Hussein or those responsible for the March 11, 2004, Madrid train bombing are examples of 

using network tools [22]. 

While the effectiveness of quality tools especially those proposed in this article have been 

investigated in various areas of research such as manufacturing and health care, examining these 

tools to detect changes in such social networks is also recommended [7]. 

Overall, the two concepts integrated into this article, social network and quality tools have 

been proven to be effective in several managerial applications; due to the generality of the 

methods and model presented in this article, the results of this research can be useful in 

identifying different types of anomalies in different organizations and applications. 

 

Conclusion 
 

In this article, the power of three control charts based on the likelihood ratio test, residual-

square residual and Hotelling's T2 have been compared in Phase I. To do that, we simulated an 

environment of a company with the assumption that the interaction between employees follows 

a ZIP regression model.  

The results show the LRT method outperforms the two methods significantly for changes in 

all parameters. Except the parameter of 
RDRD , the control chart based on residual-square residual 

performs better than T2. We also investigated the efficiency of proposed methods over the 
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infamous Enron data; The LRT and R-SR methods seem to perform better at detecting changes 

in the data set. 

For future research, investigating the performance of methods with different values of m is 

suggested. Considering the dependency in times would also be interesting. 

Adding other nodal statistics in the model, although making inference would be more complex 

also seems promising for future research. 
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