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Abstract  

Scheduling for flexible flowshop environments is generally limited by resources 

such as manpower and machines. However, the majority of efforts tackle machines 

as the only constrained resource. This paper aims to investigate the problem of 

scheduling in flexible flowshop environments considering different skills as human 

resource constraints to minimize the total completion time. In this way, a 

mathematical model of complex integer linear programming is presented for 

solving small-sized problems in a reasonable computational time. In addition, due 

to the NP-hard nature of the problem, a whale hybrid optimization algorithm is 

tuned to solve the problem in large-sized dimensions. In order to evaluate the 

performance of the proposed optimization algorithm, the results are compared with 

five known optimization algorithms in the research background. All evaluations 

and results show the good performance of the whale hybrid algorithm. Especially, 

the final solution of the proposed algorithm shows a 0.75% deviation of the best 

solution in solving different instances on large-scale sizes. However, the genetic 

algorithm, memetic global and local search algorithm, and hybrid salp swarm 

algorithm are in the next ranks with 3.31, 3.52, and 4.02 percent respectively. In 

addition, proper discussions and managerial insights are provided for the relevant 

managers. 
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Introduction 

 

Job scheduling is one of the most important activities in production systems. Finding the best 

schedule can be very easy or very difficult depending on the production environment, 

performance indicators, and process constraints (Ramezanian and Hallaji, 2021). One of the 

most famous scheduling problems is the flexible flowshop scheduling problem (Ruiz and 

Vazquez-Rodriguez, 2010), which has many applications in real-world industries, such as label 

companies (Lin and Liao, 2003), Semiconductor industry (Quad and Cohen, 2005), tile 

production (Ruiz and Maruto, 2006), steel manufacturing process (Nakhaeinejad, 2019), etc. 
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In most scheduling problems, machines are supposed as the only constrained source. 

However, other resources such as manpower are limited in the real world of production, and 

consequently, it is illogical to consider sufficient manpower for the job process (Hasani and 

Hosseini, 2020). In the world of practical production, many manufacturing firms face rising 

wage costs and better use of manpower is essential (Lee and Goo, 2014). In many resources, 

the actual workforce in the flexible flowshop environment is multi-skill, that is, each workforce 

specializes in one or more skills and can be sent to different production stages. To achieve a 

feasible schedule with optimal performance conditions and efficiency, the manpower must be 

trained in different skills and sent to the source of different machines in accordance with their 

skills (Lee, Huang, and Niu, 2016). Therefore, it is necessary to examine the limited dual 

resources of manpower and machinery by job scheduling in the flexible flowshop environment, 

in which the manpower source has different functional skills and efficiencies and according to 

their skills to different production stages. Most studies have been conducted to minimize the 

maximum completion time, which includes 60% of the articles published in the combined 

flowshop literature (Hasani and Hosseini, 2022). In this paper, we study the job schedule in the 

flexible flowshop environment to minimize the total completion time considering limitations 

for machines and human resources so that workers have different skills and mobility between 

stations.  

In the proposed problem, we present a mathematical model for job scheduling taking into 

account manpower skills as well as moving manpower between stations. Are considered. The 

proposed mathematical model in Gomez software solves the small size of the problem with the 

Cplex server. 

Given that Gupta (1988) has proven that the problem of flexible flowshop scheduling is an 

NP-hard problem. Therefore, the more complex issue of scheduling jobs in the production 

environment with flexible flowshop technology, given the innovation in human resource skills, 

remains NP-hard. When faced with optimization of such complex problems, it is very difficult 

to use precise methods to optimize at computational time. Many optimization algorithms have 

been studied in the problem of scheduling jobs in the production environment with flexible 

flowshop technology. Khaloli et al., (2010) used the ACO optimization algorithm to solve the 

problem of flexible flowshop with acceleration of weighted delay. Lea Oe et al., (2012), have 

developed a PSO optimization algorithm regarding the maximum completion time in the 

flexible flowshop problem. Marichelmam et al. (2013) investigated a BA optimization 

algorithm for the flexible flowshop problem with the aim of minimizing the maximum 

completion time. Wang (2013) proposed an EDA optimization algorithm for the flexible 

flowshop problem with the aim of minimizing the maximum completion time. An SFLA 

optimization algorithm was proposed by Zhou et al. (2013) to minimize the maximum 

completion time in the scheduling problem in a flexible flowshop generation environment. 

Chong and Liu (2013) proposed an IAIS optimization algorithm for the flexible flowshop 

problem to minimize the maximum completion time. Pan and Dong (2014) propose an MBO 

optimization algorithm for the hybrid flowshop problem with the aim of minimizing time. Lee 

et al. (2014) proposed the HVNS optimization algorithm for the flexible flowshop problem with 

the aim of minimizing the maximum completion time. Marie Chelwam et al. (2014) used the 

CS optimization Collaborators (2014) provided flexibility to solve the flowshop problem with 

the aim of minimizing the maximum completion time. Zang et al. (2017) proposed an EMBO 

optimization algorithm to solve the flexible flowshop problem with the aim of minimizing the 

total time. Pan et al. (2017) proposed an IFFO optimization algorithm to minimize the 

maximum completion time for a flexible flowshop problem with a workflow-dependent startup 

time. Yu et al. (2018) have proposed the GA algorithm to minimize job latency in the flexible 

flowshop problem. Khareh and Agrawal (2019) expressed the HSSA algorithm to minimize the 

minimum latency and speed of the job in the case of a flexible flowshop with sequence-
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dependent start-up time. Engine B. and Engine (2020) designed the MGLS algorithm for the 

flexible multi-stage flowshop problem to minimize the maximum completion time. As evident 

in the related literature, different metaheuristics have been used to solve the flexible flowshop 

problem to minimize the maximum completion time. In this regard we can cite the discrete 

artificial bee optimization algorithm (Pan et al., 2014), the extended migratory bird optimization 

algorithm (Zang et al., 2017), the genetic algorithm (Yu et al., 2018), the hybrid squirrel search 

algorithm (Khare and Agraval, 2019), and local and global search algorithm (Engine B. and 

Engine O, 2020). These efforts have shown to have functions and operators that are easily 

adapted to our proposed problem. Therefore, to solve large-size problems, we adapt those five 

meta-heuristic optimization algorithms to the proposed problem and present a hybrid whale 

optimization algorithm. 

Regarding research related to the scheduling of jobs with limited machine and manpower 

resources, Mehravaran and Logendran (2013) have presented a linear mixed integer 

programming model as well as three metaheuristic algorithms to meet the dual criteria of non-

permutation flowshop technology with limited resources. Solve man-machine and sequence-

dependent start-up times to minimize the sum of weight delays and the sum of weight 

completion times. Shahvari and Logandaran (2017) address a two-objective batch process 

problem with limited human resources and unrelated parallel machines to minimize maximum 

completion time plus the total cost of accelerating and delaying jobs in parallel with the total 

cost of the batch process. They have studied. Pinda et al. (2019) have developed a repetitively 

greedy algorithm to solve a scheduling problem with flexible work-flowshop technology with 

limited machine and human resources with a goal that simultaneously considers time and total 

time criteria. Yazdani et al. (2014) have considered the issue of scheduling with flexible work-

flowshop technology with limited resources of human and machine resources. They propose a 

refrigeration simulation algorithm and a hybrid algorithm developed from variable 

neighborhood search algorithms to minimize maximum completion time. Li and Guo (2014), 

Zhang and Wang (2016), Gao and Pen (2016), and Zhang et al. (2017) The problem of 

scheduling with flexible work-flowshop technology with dual human-machine resources to 

maximize Study completion time. Zhang et al. (2019) two mathematical models of hybrid 

integer linear programming based on different modeling ideas and an effective variable local 

search algorithm to solve a scheduling problem with flexible work-technology with limited 

human resources and provided energy to reduce total energy consumption. Yazdani et al. (2019) 

presented the genetic algorithm of faulty ranking and the genetic algorithm of faulty sorting and 

a scheduling problem with flexible work-flowshop technology with limited dual resources, 

multiple objectives, and goals of minimizing maximum completion time, workload the total 

number of machines, and the working volume of the critical machine were presented 

simultaneously. Gong et al. (2018) developed a memetic optimization algorithm to solve the 

scheduling problem with flexible work-technology with limited dual human-machine resources 

and multi-objective machines to minimize maximum completion time, maximum total 

workload of all machines, and suggest the workload of the machines. Wu et al. (2020) have 

studied the two-objective problem of flexible work-schedule scheduling with limited dual 

human-machine resources with loading and unloading time with the aim of minimizing the 

maximum completion time and minimizing start-up time. They have solved a problem by 

designing a new multi-objective genetic algorithm. Figileska (2014), Walder and Nast (2017), 

and Figileska (2018) examined the problem of job scheduling in a flowshop production 

environment with limited dual human-machine resources to minimize maximum completion 

time. Gong, Chiong, Deng, Han, Zhang, Lin, and Li (2019) focus on the issue of flexible hybrid 

flowshop scheduling with limited dual human-machine resources. The existing research focuses 

on the resource flexibility of machines and workers along with process time, factors related to 

energy consumption as well as the cost of wage labor at the same time. Torres et al. (2021) have 
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studied the problem of two-station combined flowshop with limited human resources with the 

aim of minimizing the average delay. They have used an innovative algorithm to solve the 

problem. Han et al. (2021) addressed a bi-objective problem of combined flowshop with human 

resource constraints to minimize the maximum completion time and minimize the sum of 

tardiness simultaneously. They proposed an innovative two-objective evolutionary algorithm 

to solve the problem on a large scale. 

As evident in the related literature, researchers have considered only one unique executive 

skill for job processing, and no effort has addressed the issue of scheduling in the flexible 

flowshop considering manpower skills constraints and its effect on the processing times. In this 

way, considering multi-skilled manpower and the possibility of movement between production 

stages is discussed in this study as a novel innovation. 

The different parts of the article are as follows. In the second part, the research problem is 

described in detail and the linear programming formulation of a compound integer is stated. In 

Section 3, the whale hybrid optimization algorithm will be studied to solve the proposed 

problem. Section 4 provides the computational result and analysis. Finally, Section 5 is devoted 

to conclusions and future suggestions. 

 

Problem Description 

 

A flexible flowshop scheduling problem considering manpower skill-based processing times is 

tackled in this work. All jobs are processed on a flexible flowshop consists of a set of M 

production stations and each job j (j={1,…, n}) must follow the whole sequence process of 

production stations, (so that first production station 1, then production station 2 and up to 

production station m). There are several identical parallel machines at each i∈M of the 

production station, and each machine can perform processing operations by the number (p> 1) 

of workers. Labors have different executive skills as well as performance. Therefore, the 

processing time of each job is not only affected by the capacity of the production station but 

also by the efficiency of labor. Labors can move or dispatche between different production 

stations according to their skills. 

So that the source of parallel machines at a production station is the same, a job can be 

processed by any source of machine l∈m_i at the production station i. A machine resource can 

process only one job at a time, a job can be processed by only one machine resource, each 

manpower can execute only one machine resource, and one machine resource can Processed 

only by one manpower. All sources of machinery, manpower, and jobs are available in zero 

time, and cutting jobs is not allowed. The intermediate buffers between the production stations 

have unlimited capacity. Travel time between the production station and start-up time is part of 

the processing time, and man-walking times between the production station and between the 

sources of parallel machines are not considered. 

In the proposed problem, the machine resource must be allocated to process the jobs and 

determine which labor must be allocated to process the work. In other words, the sequence of 

jobs in each machine source as well as the sequence of jobs in each labor must be decided. So 

that the maximum time to complete the job is minimized. The problem data is assumed definite 

and predetermined. 

 

Indices and sets 

𝒊 Index of stages {1,…, m} 

𝒋, 𝒌 Indices of jobs {1,…, n } 

𝒎𝒊 The source set of machines in the production stage 𝑖, 𝑖 ∈ 𝑀 

𝑷 The manpower set {1,…, p } 
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𝒐𝒊 The set of manpower skilled in the job process at the 𝑖𝑡ℎ stage, 𝑖 ∈ 𝑀 

𝒗𝒘 The set of production stages under the manpower 𝑤, 𝑤 ∈ 𝑃 

 

Parameters 

𝒑𝒋𝒊𝒘 The processing time of job 𝑗 ∈ 𝑁 in stage 𝑖 ∈ 𝑀 by the manpower 𝑤 ∈ 𝑃 

Q A very large number 

 

Decision variables 

𝒙𝐣𝐢𝐤 
A binary variable such that if job 𝑗 is processed in stage 𝑖 after job 𝑘 is equal to 1, 

otherwise 0. 

𝒚𝐣𝐢𝐥 
A binary variable such that if job 𝑗 is processed in stage 𝑖 on the machine source 𝑙 is 

equal to 1, otherwise 0. 

𝒄𝐣𝐢 Continuous variable of completion time 𝑗 in stage 𝑖 

𝒉𝐣𝐢𝐰 
A binary variable such that if job 𝑗 is done in stage 𝑖 by manpower 𝑤 is equal to 1, 

otherwise 0. 

𝒆𝒋𝒘𝒌 
A binary variable such that if job j is done by manpower w after job k is equal to 1, 

otherwise 0. 

 

Based on the abovementioned notations, the considered problem is formulated as a mixed-

integer linear programming (MIP) model as below: 

 

Minimize = 𝐶𝑚𝑎𝑥 (1) 

Subject to 

∑ 𝑦𝑗𝑖𝑙

𝑙∈𝑚𝑖

= 1 ∀ 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁 (2) 

∑ ℎ𝑗𝑖𝑤

𝑤∈𝑜𝑖

= 1 ∀ 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁 (3) 

𝑐𝑗𝑖−𝑐𝑗(𝑖−1) − 𝑝𝑗𝑖𝑤. ℎ𝑗𝑖𝑤 ≥ 0 ∀ 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁, 𝑤 ∈ 𝑜𝑖 (4) 

𝑐𝑗𝑖−𝑐𝑘𝑖 − 𝑝𝑗𝑖𝑤. ℎ𝑗𝑖𝑤 + Q(3 − 𝑥𝑗𝑖𝑘 − 𝑦𝑗𝑖𝑙

− 𝑦𝑘𝑖𝑙) ≥ 0 
∀ 𝑗, 𝑘 ∈ 𝑁: 𝑗 < 𝑘, 𝑖 ∈ 𝑀, 𝑙 ∊ 𝑚𝑖, 𝑤 ∈ 𝑜𝑖 (5) 

𝑐𝑘𝑖 − 𝑐𝑗𝑖 − 𝑝𝑘𝑖𝑤. ℎ𝑘𝑖𝑤 + (Q. 𝑥𝑗𝑖𝑘) + Q(2

− 𝑦𝑗𝑖𝑙 − 𝑦𝑘𝑖𝑙) ≥ 0 
∀ 𝑗, 𝑘 ∈ 𝑁: 𝑗 < 𝑘, 𝑖 ∈ 𝑀, 𝑙 ∊ 𝑚𝑖, 𝑤 ∈ 𝑜𝑖 (6) 

𝑐𝑗𝑖−𝑐𝑘𝑖 − 𝑝𝑗𝑖𝑤. ℎ𝑗𝑖𝑤 + Q(3 − 𝑒𝑗𝑤𝑘 − ℎ𝑗𝑖𝑤

− ℎ𝑘𝑖𝑤) ≥ 0 
∀ 𝑗, 𝑘 ∈ 𝑁: 𝑗 < 𝑘, 𝑖 ∈ 𝑀, 𝑤 ∈ 𝑜𝑖 (7) 

𝑐𝑘𝑖 − 𝑐𝑗𝑖 − 𝑝𝑘𝑖𝑤. ℎ𝑘𝑖𝑤 + (Q. 𝑒𝑗𝑤𝑘) + Q(2

− ℎ𝑗𝑖𝑤 − ℎ𝑘𝑖𝑤) ≥ 0 
∀ 𝑗, 𝑘 ∈ 𝑁: 𝑗 < 𝑘, 𝑖 ∈ 𝑀, 𝑤 ∈ 𝑜𝑖 (8) 

𝑐𝑗𝑖 − 𝑐𝑘𝑠 − 𝑝𝑗𝑖𝑤. ℎ𝑗𝑖𝑤 + 𝑄(2 − ℎ𝑗𝑖𝑤

− ℎ𝑘𝑠𝑤) ≥ 0 
∀ 𝑗, 𝑘 ∈ 𝑁, 𝑖, 𝑠 ∈ 𝑀: 𝑖 > 𝑠, 𝑤 ∊ 𝑣𝑤 (9) 

𝑥𝑗𝑖𝑘 , 𝑦𝑗𝑖𝑙 , ℎ𝑗𝑖𝑤 , 𝑒𝑗𝑤𝑘 ∈ {0,1} ∀ 𝑗, 𝑘 ∈ 𝑁: 𝑗 < 𝑘, 𝑖 ∈ 𝑀, 𝑤 ∊ 𝑃 (10) 

𝑐𝑗𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑀, 𝑗 ∈ (11) 

 

Relation (1) minimizes the maximum completion time of jobs as the considered objective 

function. Constraints (2) and (3) ensure that each job passes through the entire production stage 

and is processed exactly by a qualified machine source and a qualified manpower at each 

production stage. Be. The completion time of each job is specified in the constraints (4) to (9). 

On the other hand, relation (4) ensures that the operation of the i-m stage of a job starts 

processing after the operation of its previous stage. Constraints (5) and (6) indicate that it is not 
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possible to process two jobs at the same time with the same machine source, and one job cannot 

be processed before the end of each previous job in the source. The same machine is to be 

processed. Q is a large number. Constraints (7) and (8) state that it is not possible to process 

two jobs with the same manpower in the same operation at the same time, and one job cannot 

be completed before the end time of each job. The former is processed in the same operation 

with the same manpower. The constraint set number (9) determines that it is not possible to 

process two jobs in different operations with the same manpower at the same time, and one job 

cannot be performed in different operations with the same force before the time of completion 

of each previous job. The same human being is to be processed. Finally, the constraints (10) 

and (11) determine the model variables. 

  

Problem Solving Approaches 
 

In this section, a whale hybrid optimization algorithm is presented to solve the problem at hand. 

This section is divided into four sub-sections. In the first part, we present the background of the 

whale optimization algorithm. The second section details the discrete whale optimization 

algorithm, local search method, and diversity control method. In the third part, we will explain 

the process of the whale hybrid optimization algorithm, and in the fourth part, we will discuss 

how to encrypt and decrypt the answers. 

 

Background of Whale Optimization Algorithm 

 

The whale optimization algorithm is in the category of meta-heuristic algorithms expressed by 

Mirjalili in year 3 (Mirjalili and Lewis, 1). Just as whalers can position prey well and surround 

it, this algorithm is inspired by the mechanism and natural nature of whaling. In other words, 

the whale algorithm simulates the spatial position of bypassing and spiraling and the 

mechanisms of random hunting of the whale. The parts of the algorithm consist of three stages: 

hunting siege, bubble attack, and hunting search. 

Recently, scientists in various fields have paid much attention to the features of the whale 

algorithm and have successfully used it to solve various optimization problems. Issues such as 

photonic crystal filters (Mirjalili et al., 2020) and other flowshop scheduling issues (Jiang et al., 

2018; Abdul Basit, 2018; Liu, 2020). 

 

Hunting siege: 

Since the optimal position in the search space is not known at first, the whale algorithm 

assumes on this basis that the best answer of the current candidate is the target prey or close to 

the optimal state. Once the best search factor has been identified, other search agents try to 

update their positions relative to the best search agent, so that the behavior is shown by the 

equations (12). 

 

𝑋𝑖𝑗
𝑡+1 ≔ 𝑋𝑏𝑒𝑠𝑡,𝑗

𝑡 -𝐴𝑖𝑗 . 𝐶𝑖𝑗 . 𝑋𝑏𝑒𝑠𝑡,𝑗
𝑡 − 𝑋𝑖𝑗

𝑡   (12) 

 

So t recent repetition, 𝐴𝑖𝑗and 𝐶𝑖𝑗coefficients i am the whale in the j dimension, 𝑋𝑏𝑒𝑠𝑡,𝑗
𝑡

 the 

best answer ever obtained in the j dimension, 𝑋𝑖𝑗
𝑡

the position of the i whale in the j dimension. 

It should be noted that if there is a better answer, 𝑋𝑏𝑒𝑠𝑡,𝑗
𝑡

should be updated in each iteration. 

The coefficients 𝐴𝑖𝑗and 𝐶𝑖𝑗are calculated as (13) to (14). 

 

𝐴𝑖𝑗 ≔ 2𝑎𝑖𝑗 . 𝑟𝑖𝑗 − 𝑎𝑖𝑗 (13) 



Advances in Industrial Engineering, June 2024, 58(1): 13-36 

 19 

 

𝐶𝑖𝑗 ≔ 2. 𝑟𝑖𝑗 (14) 

 

So that 𝑎𝑖𝑗decreases linearly from 2 to 0 during each iteration (in both exploration and 

exploitation stages) and 𝑟𝑖𝑗  is a random value between [0,1]. 

 

Bubble attack: 

The bubble attack phase is the operation phase of the optimization algorithm. For 

mathematical modeling of whale bubble attack behavior, two approaches are expressed as 

follows: 

 

Shrinkage blocking mechanism: 

This behavior is formed by reducing the value of 𝑎𝑖𝑗  in relation to number (13). It should 

be noted that the oscillation ranges of 𝐴𝑖𝑗  is also reduced by 𝑎𝑖𝑗Alternatively, 𝐴𝑖𝑗is a random 

value in the interval [𝑎𝑖𝑗 , 𝑎𝑖𝑗] in which 𝑎𝑖𝑗decreases from 2 to 0 during repetitions. By 

randomly assigning 𝐴𝑖𝑗to [-1,1], it can create a new position of a search agent anywhere 

between the main agent position and the current best agent position. Figure 1 shows the possible 

positions from (x, y) to (x *, y *) that can be obtained by 0≤A≤1 in two-dimensional space. 

 

Update the snail position: 

 

 

 

As shown in Figure 1, we first calculate the distance between the whale in the coordinates (X, 

Y) and the prey in (X *, Y *). A spiral equation is then generated between the position of the 

existing whale and the prey to generate the whale-shaped cochlear motion as shown in the 

equation (15) 
 

𝑋𝑖𝑗
𝑡+1 ≔ |𝑋𝑏𝑒𝑠𝑡,𝑗

𝑡 − 𝑋𝑖𝑗
𝑡 |. 𝑒𝑏𝑙. cos (2𝜋𝑙) + 𝑋𝑏𝑒𝑠𝑡,𝑗

𝑡        (15) 

 

So that |𝑋𝑏𝑒𝑠𝑡,𝑗
𝑡 − 𝑋𝑖𝑗

𝑡 |  The distance i from the whale to the prey (best answer ever obtained), 

b denotes a constant value to form a logarithmic helix, l a random number in the interval [0,1]. 

It is necessary to explain that whales swim along a contraction circle and in a spiral path 

around the prey. In order to simultaneously model the above behavior, it is assumed that the 

whales with a probability of 1% choose one of the mechanisms of the helical model or the 

contraction siege to update their position during the optimization. The mathematical model is 

as (16), where P is a random number: 
 

𝑋𝑖𝑗
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡,𝑗
𝑡 − 𝐴𝑖𝑗 . 𝐷𝑖𝑗 , 𝑝 < 0.5

𝑋𝑏𝑒𝑠𝑡,𝑗
𝑡 − 𝑋𝑖𝑗

𝑡 . 𝑒𝑏𝑙 . cos (2𝜋𝑙) + 𝑋𝑏𝑒𝑠𝑡,𝑗
𝑡 , 𝑝 ≥ 0.5

  (16) 

A) Search in two-dimensional space  B) Search in three-dimensional space 

Figure 1. Searching the answer space 
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Hunting search: 

Apart from the bubble attack strategy, the whale randomly searches for prey so that it can 

be used to search for prey (exploration stage). Whale based on 𝐴𝑖𝑗The same strategy is based 

on changing the position vector of each other, the search is done randomly. Therefore, we use 

𝐴𝑖𝑗with random values greater than 1 or less than 1- to urge the search agent to move away 

from the reference whale. In order to update the position of the search agent in the exploratory 

stage, in comparison with the exploitation stage, instead of finding the best search agent so far, 

we use a randomly selected search agent. This method emphasizes exploration and allows the 

algorithm to perform a global search. 

 

𝐷𝑖𝑗 ≔ |𝐶𝑖𝑗. 𝑋𝑟𝑎𝑛𝑑𝑖𝑗
− 𝑋𝑖𝑗|                          (17) 

𝑋𝑖𝑗
𝑡+1 ≔ 𝑋𝑟𝑎𝑛𝑑𝑖𝑗

− 𝐴𝑖𝑗 . 𝐷𝑖𝑗                                (18) 

 

𝑋𝑟𝑎𝑛𝑑𝑖𝑗
 is a random whale in the jth dimension selected from the current population. Figure 2 

shows the pseudo-code of the whale optimization algorithm. 

 
Figure 2. Pseudo-code whale optimization algorithm 

Input: Parameters (PS population size, maximum number of Max-iterations, number of 

variables D) 

Output: Best Whale (𝑋𝑏𝑒𝑠𝑡) 

// Population quantification // 

For i from 1 to PS 

For j from 1 to D. 

𝑋𝑖𝑗 ≔ 𝑥𝑚𝑖𝑛𝑗 + (𝑥𝑚𝑎𝑥𝑗 − 𝑥𝑚𝑖𝑛𝑗) ∗ 𝑟𝑎𝑛𝑑( )  

End 

For each whale, 𝑓
𝑖

≔ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋𝑖) // Calculate the target function for each whale 

𝑖∗ = arg (𝑚𝑖𝑛𝑖=1,..,𝑃𝑆(𝑓
𝑖)) 

𝑋𝑏𝑒𝑠𝑡 ≔ 𝑋𝑖∗// Get the best search agent 

t≔0 

As long as 𝑡 ≤  𝑀𝑎𝑥𝑖𝑡𝑒𝑟 

For i from 1 to PS 

For j from 1 to D. 

Update 𝑎𝑖𝑗, 𝐴𝑖𝑗, 𝐶𝑖𝑗, 𝑙, 𝑝 

If prob <0.5 

If A≥l 

// Exploration method 

Set 𝑟𝑛   to a random integer between 0 and PS 

𝑋𝑟𝑎𝑛𝑑,𝑗 ≔ 𝑋𝑟𝑛,𝑗// Random whale selection 

Update position 𝑋𝑖𝑗
𝑡+1

 (current whale) by Equation (18) 

A <l otherwise if 

// Extraction method 

Update position 𝑋𝑖𝑗
𝑡+1

 (current whale) by Equation No. (12) 

End 

Otherwise if prob≥0.5 

Update position 𝑋𝑖𝑗
𝑡+1

 (current whale) by Equation (15) 

End 

End 
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End 

Update 𝑋𝑏𝑒𝑠𝑡 

t +t + 1 

End 

Return 𝑋𝑏𝑒𝑠𝑡and fitnessfunction (𝑋𝑏𝑒𝑠𝑡) 

End 

 

Whale hybrid optimization algorithm 

In order to improve the quality of the whale optimization algorithm, we design a combined 

whale optimization algorithm to solve the proposed problem by combining the discrete whale 

optimization algorithm with the local search method and the diversity control method. 

 

Application of the whale hybrid optimization algorithm to the proposed problem 

 

Primary population 

The population size of the whale hybrid optimization algorithm is fixed in each iteration, 

which is specified as PS. PS The answer is generated randomly between (0,1) for the initial 

population. To make the PS answer, a random number between 0 and 1 is generated for each 

job. To convert continuous solutions to discrete permutation solutions, the law of least value of 

position is used. For example, encoding and displaying the answer to a problem with 5 jobs is 

shown in Table 1. Suppose a vector answer obtained from continuous numbers in an iterative 

of the discrete whale optimization algorithm is denoted by p and p ̀ is a discrete permutation 

answer. 

 
Table 1. A sample of encoding solution 

   Job   

 1 2 3 4 5 

𝑝 0.22 0.15 0.78 0.36 0.91 

𝑝̀ 2 1 4 3 5 

 

The smallest value in row p is 0.15, which is related to job 2, so according to the law of the 

smallest position value, job 2 is in the first position of row p. The second smallest value in row 

p is 0.22, which is related to job 1, so job 1 is in the second position of row p. Similarly, all jobs 

are rotated in row p. Therefore, the sequence of jobs is p ̀= (2,1,4,3,5). It is clear that by 

presenting such an answer, there is no doubt that a reasonable timeline for the problem of 

scheduling jobs in the production environment with flexible flowshop technology, taking into 

account the innovation in human resource skills. 

Discrete Whale Optimization Algorithm is a biologically inspired meta-heuristic algorithm 

designed to solve continuous problems. In order to use the whale optimization algorithm to 

solve scheduling problems, the structure of the algorithm must be adapted to the discrete 

environment, so we use the law of least value position to convert search agents to permutations. 

It should be noted that there is no evidence that a discrete whale optimization pattern has been 

explored to solve flexible flowshop scheduling problems. The pseudo-code of the discrete 

whale optimization algorithm is shown in Figure 3. It should be noted that the position of each 

search factor is updated by Equations (18), (12), and (15) and the maximum number of 

neighborhoods searched for each answer in each iteration of the proposed algorithm in the 

computational time. Specified by the max-iteration symbol. 
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Figure 3. Pseudo-code of discrete whale optimization algorithm 

Input: Parameters (PS population size, maximum number of Max-iterations, number of 

variables D) 

Output: Best Whale 𝑋𝑏𝑒𝑠𝑡 

// Population quantification // 

For i from 1 to PS 

For j from 1 to D. 

𝑋𝑖𝑗 ≔ 𝑥𝑚𝑖𝑛𝑗 + (𝑥𝑚𝑎𝑥𝑗 − 𝑥𝑚𝑖𝑛𝑗) ∗ 𝑟𝑎𝑛𝑑( ) 

End 

Use the least value position (SPV) rule to convert search agents to discrete permutations 

For each whale, 𝑓
𝑖

≔ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋𝑖) // Calculate the target function for each whale 

𝑋𝑏𝑒𝑠𝑡 ≔ 𝑋𝑖∗ 

𝑋𝑏𝑒𝑠𝑡 ≔ 𝑋𝑖∗// Get the best search agent 

t≔0 

As long as 𝑡 ≤  𝑀𝑎𝑥𝑖𝑡𝑒𝑟 

For i from 1 to PS 

For j from 1 to D. 

Update  𝑎𝑖𝑗, 𝐴𝑖𝑗, 𝐶𝑖𝑗, 𝑙, 𝑝 

If prob <0.5 

If A≥l 

// Exploration method 

Set rn to a random integer between 0 and PS 

𝑋𝑟𝑎𝑛𝑑,𝑗 ≔ 𝑋𝑟𝑛,𝑗// Random whale selection 

Update position𝑋𝑖𝑗
𝑡+1

 (current whale) by Equation (18) 

A <l otherwise if 

// Extraction method 

Update position 𝑋𝑖𝑗
𝑡+1

 (current whale) by Equation No. (12) 

End 

Otherwise if prob≥0.5 

Update position 𝑋𝑖𝑗
𝑡+1

 (current whale) by Equation (15) 

End 

End 

End 

Use the least value position (SPV) rule to convert search agents to discrete permutations 

Update 𝑋𝑏𝑒𝑠𝑡 

t +t + 1 

End 

Return 𝑋𝑏𝑒𝑠𝑡and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋𝑏𝑒𝑠𝑡) 

End 

 

We use a combination of the focus method and diversity method to construct the proposed 

local search method. In the variation method, the combination of inverse and exchange 

operators is used so that α is a control parameter. In the focus method, our strategy is based on 

the fact that the job with the highest completion time is selected as the most problematic job 

and is greedily inserted by the operator. In this method, the motion operators are a combination 

of inverse operators and exchanges in the variation method and the operator is a greedy insert 

in the concentration method. Define π as an answer. Figure 4 shows the local search method. 
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Figure 4. Local search method 

Consider π an answer 

Generate two integers randomly between 1 and n, then place one in w and the other in a, so 

that w> a 

/ Diversity Strategy / 

If α is greater than a random number between 0 and 1, then using w and a, set π equal to the 

application of the exchange operator on π 

Otherwise, set π equal to the application of the inverse operator in the range a to w on π 

End 

Calculate the objective functions π and π. 

If the objective function π ̃ <the objective function π 

Then set π equal to π. 

End 

/ Focus strategy / 

Set k to zero 

As long as | π | +1> K 

Select the job with the most completion time as the most problematic job, exit it from π, 

include it in the best position with the least objective function, and put the result in π  ̃

If the objective function π ̃ <the objective function π 

Then put π π in π. 

End 

k = k + 1 

End 

Return p 

End 

 

With the evolution of the whale optimization algorithm, most answers tend to converge, so 

this is inconsistent with population variability. This causes the search to stop at the local 

optimization. To solve this problem, we propose a variation control method. If the best answer 

obtained, which has not been improved so far, is larger than the γmax counter, the proposed 

method is performed. 

In each run, the best answer is retained in the current population, and some other bad answers 

will be reconstructed by a random method. The diversity control method is shown in Figure 5. 

 
Figure 5. Diversity control method process 

Arrange the answers in the population incrementally based on the value of the objective 

function 

For each 𝜋𝜖𝑃𝑠 

If πϵ [1, ..,./ 4. 𝑃𝑠] 

Then hold π 

otherwise 

if πϵ [./ 4. 𝑃𝑠, .., 𝑃𝑠] 

Randomly generate a new answer and put it in π 

End 

End 

End 

  

After detailing the proposed algorithm in the previous sections, in this section the complete 

process of the proposed algorithm is set out in Figure 6. 
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Figure 6. Pseudo-code of the whale hybrid optimization algorithm 

Input: Parameters (PS population size, maximum number of Max-iterations, number of 

variables D) 

Output: Best Whale (𝑋𝑏𝑒𝑠𝑡) 

/ Setting parameters / 

Quantify the PS parameters, Max-iteration D 

 Set to zero ϑ 

// Population quantification // 

𝑃𝑠: =  {𝑃𝑠(1), 𝑃𝑠(2), … , 𝑃𝑠(𝑃𝑆)} The answer is generated randomly, while another answer is 

generated by the earliest delivery time. 

As long as t<𝑡𝑚𝑎𝑥 

// Discrete Whale Optimization Algorithm Process // 

Perform the whale optimization algorithm for 𝑃𝑠 

// Local Search Method Process // 

For j from 1 to PS 

Put 𝑃𝑠(𝑗) in π 

Run the local search method for π and set it to 𝑃𝑠(𝑗) 

End 

Use the least value position (SPV) rule to convert search agents to discrete permutations 

Update 𝑋𝑏𝑒𝑠𝑡 

If 𝑋𝑏𝑒𝑠𝑡has not changed, ϑ = ϑ + 1 

// Diversity control method process // 

As long as 𝑦
𝑚𝑎𝑥

 = ϑ 

For j from 1 to PS 

Put 𝑃𝑠(𝑗) in π 

Execute the variation control method for π and set it to 𝑃𝑠(𝑗) 

Set ϑ to zero 

End 

End 

End 

Return 𝑋𝑏𝑒𝑠𝑡and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋𝑏𝑒𝑠𝑡) 

End 

  

Five available optimization algorithms, which have shown acceptable efficiency and 

effectiveness in the research literature on scheduling problems, are tuned and applied to the 

problem at hand. These algorithms include the discrete artificial bee optimization algorithm 

(Pan et al., 2014), the extended optimization algorithm for migratory birds (Zang et al., 2017), 

the genetic algorithm (Yu et al., 2018), the hybrid squirrel search algorithm (Khare and Agraval, 

2019), and local and global search algorithm (Engine B. and Engine O, 2020). All of these 

procedures have functions and operators that are easily adapted to our proposed problem. In 

order to be able to solve the proposed problem by the mentioned optimization algorithms, we 

adapt the mentioned algorithms to the proposed problem with the following changes: (1) 

Substitute the objective function of minimizing the maximum time of completion of jobs. (2) 

Replace the method of encoding and decryption of the answers described in the following 

section. 

As explained in the previous sections, the purpose of scheduling jobs in the production 

environment with flexible flowshop technology is to decide on the sequence of jobs on 

machines and manpower, taking into account innovation in human resource skills. Therefore, 

in the method of encoding and decryption of the answer to the proposed problem, both decisions 

must be considered. Therefore, in this research, we express a new answer to the proposed 
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problem. Initially, the shift-based answer is encoded and displayed based on π = {π (1), π (2),…, 

π (n) و, and in each iteration g, 𝑇𝑖𝑚𝑒𝑔 shows the scheduling time in each iteration. Give. Each 

job j has a priority value obtained by the relation 〖𝑝𝑤𝑗: = {𝑗́ ∶  𝜋(𝑗́) = 𝑗}. The first stage 

where job j should be processed is indicated by  𝑓𝑔𝑗. The set of jobs available at 𝑇𝑖𝑚𝑒𝑔 is 

specified by the LJ list. The process completion time on the 𝑀𝑖𝑙machine is indicated by 

repeating gm with 𝐹𝑀𝑖𝑙
𝑔

. The process completion time is indicated by the manpower 𝑃𝑤in the 

repetition of gm with 〖𝐹𝑃𝑤
𝑔

. The pseudocode of the encoding and decryption method is shown 

in Figure 7. The main steps of the encoding and decryption method of the designed answers are 

summarized as follows: 

Schedule all available jobs to be processed. Select jobs to be processed according to their 

priorities. All sources of machinery and manpower are selected for the available job according 

to the minimum workload at the production stage so that at one time a job is processed by only 

one machine and one machine is processed by only one manpower. Job must be scheduled 

throughout the production phase.  

 
Figure 7. Pseudo-code method of encoding and decryption of the answer 

Input: Answer p 

Output: Maximum completion time 

Put 𝑔 ≔ 1 ،𝑇𝑖𝑚𝑒𝑔 ≔ 𝑖𝑡𝑒𝑟؛ 0 ≔  ;؛1

For each j∈π 

 𝑝𝑤𝑗: =  {𝑗́ ∶  𝜋(𝑗́) = 𝑗}   ؛𝐿𝑆𝑗 ≔ {𝑀|𝑗 ∈ 𝜋}  ؛𝐶𝑗
𝑔

≔ {0|𝑗 ∈ 𝜋}  ؛𝐹𝑃𝑤
𝑔 ≔ {0|𝑤 ∈ 𝑃}  ؛

𝐹𝑀𝑖𝑙
𝑔

≔ {0|𝑖 ∈ 𝑃, 𝑙 ∈ 𝑚𝑖} ؛𝐿𝐽 ≔ 𝜋̂؛ ∅ ≔ 𝜋 ؛ 

 

End 

As long as iter = 1 

For each job jϵπ ̂, 
𝑓𝑔

𝑗
≔ min {𝐿𝑆𝑗} 

𝐿𝐽 ≔ {𝑗|𝐶𝑗
𝑔

≤ 𝑇𝑖𝑚𝑒𝑔} // When scheduling 𝑇𝑖𝑚𝑒𝑔, specify all available jobs that need to be 

processed 

End 

𝑗∗ = 𝐴𝑟𝑔(𝑚𝑖𝑛𝑗∊𝐿𝐽(𝑝𝑤𝑗)); // Decide on the selection of jobs to be processed according to their 

priorities 

(𝑙∗, 𝑤∗) = 𝐴𝑟𝑔(𝑚𝑖𝑛𝑙∊𝑚𝑓𝑔
𝑗∗ ,𝑤∈𝑝𝑓𝑔

𝑗∗
(max (𝐹𝑀(𝑓𝑔

𝑗∗ ,𝑙)
𝑔

, 𝐹𝑃𝑤
𝑔 ) + 𝑝(𝑗∗,𝑓𝑔

𝑗∗ ,𝑤))); // Adjust all 

machines and workers for available job according to the minimum workload in the 

production stage 

Assign work𝑗∗to machine 𝑙∗
and worker 𝑤∗ with minimum load time. 

𝐹𝑀
(𝑓𝑔𝑗∗ ,𝑙∗)

𝑔+1
≔ max (𝐹𝑀

(𝑓𝑔𝑗∗ ,𝑙∗)

𝑔
, 𝐹𝑃𝑤∗

𝑔
, 𝑇𝑖𝑚𝑒𝑔) + 𝑝(𝑗∗,𝑓𝑔𝑗∗ ,𝑤∗); // Time to complete the 

operation on 𝑀𝑖𝑙 

𝐶𝑗∗
𝑔+1

: = 𝐹𝑀
(𝑓𝑔

𝑗∗ ,𝑙∗)

𝑔+1
; // Complete job 𝑗∗ in repeat gm 

𝐹𝑃𝑤∗
𝑔+1

: = 𝐶𝑗∗
𝑔+1

); // Time of completion of the operation by the worker 𝑤∗ 

g≔g + 1; 

If 𝐿𝑆𝑗∗ = ∅ 

𝜋̂ ≔ 𝜋̂ − {𝑗∗}; 
End 

If |𝜋̂| = ∅ 
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iter≔2; 

𝑖𝑡𝐿𝑆𝑗∗ ≔ 𝐿𝑆𝑗∗ − {𝑓𝑔𝑗∗}𝑒𝑟 ≔ 2; 

otherwise 

If 𝑚𝑖𝑛𝑗∊𝜋̂ (𝑓𝑔
𝑗
) = 1 

𝑇𝑖𝑚𝑒𝑔 ≔ 𝑚𝑖𝑛𝑙∊𝑚1
(𝐴𝑀1𝑙

𝑔+1
); 

otherwise 

𝑇𝑖𝑚𝑒𝑔 ≔ 𝑚𝑖𝑛𝑙∊𝑚1
(𝐴𝑀1𝑙

𝑔+1
); 

End 

End 

End 

The target function is equal to 𝑪𝒎𝒂𝒙 

End 

 

Computational Results 
 

Data Design 

Since there is no benchmark data for scheduling in the production environment with a 

flexible flowshop considering human resource skills, two sets of experimental production 

examples are designed. The first contains 5 random examples generated for a combination of 

job sets n = {4, 6, 8, 10} and the production stage set m = {2,5} in the category of small and 

medium size examples (40 examples in total). The second one contains 10 random examples 

generated for a combination of job sets n = {15,20,25} and production stage set m = {10,15} 

in the category of large-size examples (60 examples in total) and the number of machine sources 

in each production stage at random Intervals [1,3] such as research (Zohli et al., 2019) are used. 

The structure of the output data for the process time of each job on each production step is 

generated by manpower w (𝑝𝑗𝑖𝑤) in the interval [1,100]. The number of manpower 2 2 m and 

the number of skills of each manpower are randomly generated between [1,3]. The 

mathematical model Designed by GAMS software is checked. The optimized algorithms tested 

are encoded by MATLAB software and the tests are performed on a Core i7 processor system 

with 16.0 GB of memory. 

 

Computational Results 

This section numerically examines the performance of the proposed whale hybrid 

optimization algorithm against the 5 known optimization algorithms in the research background 

that were previously described in the previous section and adapted to the proposed problem. To 

implement the optimization algorithms, we have used the encoding, decryption, and objective 

function methods described in the previous sections. First, the parameters of the proposed 

optimization algorithm are adjusted, and then we examine the overall performance of the tested 

metaheuristic algorithms against the optimal solution of the proposed mathematical model. 

Finally, the proposed optimization algorithm is compared with the 5 optimization algorithms 

adapted to the proposed problem. The stop condition is equal to the required computational 

time, which will be specified as 3 × n × m based on the dimensions of each problem. 

We use the percentage of relative deviation as a performance evaluation criterion, which is 

calculated as follows. 

 

𝑅𝑃𝐷(𝐹) =
(𝐹 − 𝐹∗)

𝐹∗
× 100 
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In the above relation, F is the answer related to the known optimization algorithm in a given 

example and 𝐹∗ is the best answer among the optimization algorithms or in other words the 

optimal answer in that particular example. 

 

Parameter Tuning 

The performance of optimization algorithms is highly dependent on the adjustment of their 

parameters. Taguchi method is used to adjust the parameters of the whale hybrid optimization 

algorithm and also to obtain the best effective parameters. Taguchi method uses the signal-to-

noise ratio (S / N) to measure: 

 

𝑆/𝑁 𝑟𝑎𝑡𝑖𝑜 = −10 × log (𝑅𝑃𝐷)2 

 

The proposed algorithm consists of four main parameters, and each of these parameters has 

four levels, which are specified in Table 2. 
 

Table 2. Parameter levels for the proposed algorithm 

Parameter level 
parameters 

4 3 2 1 

100 75 50 25 𝑃𝑆 

10 8 4 2 Max-iteration 

0.95 0.80 0.50 0.20 α 

20 15 10 5 γmax 
 

The 16 combinations of parameters, or in other words the orthogonal array of 16 lines L_16, 

are used to determine the best parameter combination. For each combination of parameters, the 

algorithm is run 5 times independently and the average percentage deviation of 5 runs is applied 

to the response variable. The Taguchi strategy is applied to the large size problem. The highest 

S / N ratio for the respective levels is selected as the highest level. Figure 8 shows the S / N 

ratio of the different levels of the parameters. As it is clear, PS is the most valuable parameter 

of the proposed algorithm. The specified combination of parameter values for the proposed 

algorithm is shown in Table 3. 
 

Table 3. The result of parameter tuning 

Parameters Final value 

𝑃𝑆 25 

Max-iteration 10 

α 0.95 

γmax 10 
 

 
Figure 8. Signal-to-noise ratio analysis for parameter levels 
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Result of Solving the Small and Medium-Sized Instances 

This section examines the optimized algorithms tested for the performance of small and 

medium-sized examples. To do this, we used 30 small and medium-sized examples that are 

optimally solved by the proposed mathematical model over a time of 1800 seconds, so that the 

proposed mathematical model in Examples 31 to 40 at the specified time has not been able to 

solve. Table 4 shows the results of the proposed mathematical model on small and medium-

sized examples, the "time" column for the average time taken to solve the example optimally, 

and the "gap" column for the relative gap reported by the software. GAMS displays after the 

computational time of 1800 seconds. 
 

Table 4: Computational results of mathematical model 

Gap 

(percentage) 
Time(seconds) m n Example 

Gap 

(percentage) 
Time(seconds) m n Example 

0 3.7 

5 4 

6 0 4.3 

2 4 

1 

0 8.1 7 0 8 2 

0 10.3 8 0 8.1 3 

0 6.8 9 0 4.1 4 

0 7.7 10 0 9.3 5 

0 90.5 

5 6 

16 0 22.3 

2 6 

11 

0 31 17 0 38.6 12 

0 57.6 18 0 65.6 13 

0 20.5 19 0 17.2 14 

0 74.6 20 0 34.4 15 

0 387.2 

5 8 

26 0 622.3 

2 8 

21 

0 1086 27 0 1033.8 22 

0 1288 28 0 9.6 23 

0 1641 29 0 986.7 24 

0 1750 30 0 306 25 

31.3 1800 

5 10 

36 13.2 1800 

2 10 

31 

15.2 1800 37 9.5 1800 32 

24.5 1800 38 25.6 1800 33 

17.2 1800 39 18.4 1800 34 

10.5 1800 40 29.2 1800 35 

 
In this section, the results of adapted algorithms of Discrete Artificial Bee Optimization 

Algorithm (DABC), Extended Migratory Bird Optimization Algorithm (EMBO), Genetic 

Algorithm (GA), Hybrid Salp Swarm Algorithm (HSSA), Memetic Global and Local Search 

(MGLS), and the proposed Whale Combined Optimization Algorithm (HWOA) are compared 

with the optimal results obtained from the proposed mathematical model. Table 5 shows the 

average optimality gap of the algorithms implemented in each problem. 
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Table 5. Performance comparison of algorithms in solving small and medium instances 

Average percentage of deviation 
m n 

HWOA EMBO GA MGLS HSSA DABC 

0.00 0.00 0.00 0.00 0.00 0.00 2 
4 

0.00 0.00 0.00 0.00 0.00 0.00 5 

0.00 0.01 0.06 0.02 0.03 0.02 2 
6 

0.00 0.17 0.04 0.01 0.01 1.02 5 

0.04 0.90 0.05 0.13 0.57 1.50 2 
8 

0.08 0.37 0.80 1.01 0.77 0.63 5 

0.02 0.24 0.16 0.19 0.23 0.53 Average 

 

The whale hybrid optimization algorithm optimally solves 25 examples (about 85%) out of 

30 small and medium examples, leading to an optimization gap of 0.02%. Other algorithms 

solve between 18 and 23 examples optimally. Due to the optimization gap in these small and 

medium samples, all tested optimization algorithms are acceptable in the optimization gap of 

less than 1%. 

 

Result of Solving the Large Size Instances 

As shown in Table 5, there is no significant difference between optimization algorithms for 

solving small and medium-sized examples. In the following, large-size examples including 60 

examples are solved by optimization algorithms to evaluate the performance. Each example is 

solved 10 times by each optimization algorithm. Table 6 shows the results of the best, average, 

and worst relative deviation of the optimization algorithms in examples of different sizes. In 

terms of the average relative deviation percentage, the Whale Hybrid Optimization Algorithm 

(HWOA) with a relative deviation percentage of 0.75% is the best. GA algorithm, MGLS 

algorithm, and HSSA algorithm are in the next ranks with 3.31, 3.52, and 4.02 percent, 

respectively. The worst performance is related to the DABC algorithm with a relative deviation 

of 6.26%. The HWOA ranks first in terms of the best and worst percentage deviations, and this 

reflects the strong performance of the HWOA. Figure 9 shows the convergence diagram 

(objective function) obtained from the HWOA algorithm for the problem size of 20 jobs and 

15 machines. To evaluate the statistical performance of algorithms, the results of the "average" 

column are used. The results show a statistically significant difference between the 

performances of the optimized algorithms tested with zero p-value. For a more accurate 

comparison of the performance of the algorithms, Figure 10 shows the grouping of the 

algorithms and Figure 11 shows the percentage of relative deviation and the test is the least 

significant difference. Based on Figures 11 and 12, the HWOA algorithm performs statistically 

better than other algorithms. The MGLS algorithm and the GA algorithm have similar 

performance and their performance is better than the three algorithms DABC, EMBO, and 

HSSA. Figures 13 and 14 also show the average percentage of relative deviations of the 

algorithms for n and m, respectively. As is evident in these figures, the proposed whale hybrid 

optimization algorithm is reliable in all aspects of the problem in terms of optimality. The good 

performance of the whale hybrid optimization algorithm is achieved by the behaviors related to 

hunting siege, bubble attack, and hunting search, as well as the features related to the local 

search method and the diversity control method, a proper balance between general search 

response space and focus. 
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Table 6. Performance comparison of algorithms in solving large instances 

  

 
Figure 9. Convergence diagram for the problem size n=20 and m=15 

 

 
Figure 10. Grouping Algorithms 
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Percentage of deviation   

Worst Average Best 
m n 

MGLS DABC HSSA MGLS DABC HSSA MGLS DABC HSSA 

7.18 9.63 6.83 2.88 3.79 2.72 0.85 0.20 0.96 

10 

15 

4.17 8.57 5.36 2.80 4.60 2.57 0.22 2.41 0.11 20 

4.63 10.35 5.27 2.88 5.99 3.62 0.69 2.88 0.86 25 

5.13 10.03 6.12 2.88 6.90 2.77 0.12 3.38 0.10 

15 

15 

9.52 14.18 10.90 3.86 7.56 4.77 0.22 0.29 0.18 20 

10.41 16.59 10.54 5.85 8.72 7.65 0.27 0.29 0.07 25 

6.84 11.55 7.50 3.52 6.26 4.02 0.39 1.57 0.38 Average 

HWOA EMBO GA HWOA EMBO GA HWOA EMBO GA  

0.87 5.66 6.00 0.51 3.57 2.76 0.05 0.61 0.52 

10 

15 

1.42 5.38 4.57 0.73 3.67 2.66 0.20 0.47 0.52 20 

1.39 5.57 4.11 0.83 4.36 2.92 0.23 0.94 0.90 25 

0.66 6.79 6.02 0.46 3.58 2.73 0.17 0.28 0.20 

15 

15 

1.24 9.18 8.16 0.76 4.60 3.64 0.20 0.35 0.33 20 

2.49 12.20 9.32 1.24 8.01 5.17 0.07 0.40 0.45 25 

1.36 7.46 6.36 0.75 4.64 3.31 0.15 0.51 0.48 Average 
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Figure 11. Mean percentage of relative deviation and distance Percentage of relative deviation and test of least 

significant difference for optimization algorithms 

 

 
Figure 12. Average percentage of deviation of algorithms related to the number of jobs 

 

 
Figure 13. Mean percentage of deviation of algorithms related to the number of production steps 
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industries with flexible flowshop environments. The outcomes can be used by relevant 
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workforce will lead to achieving more overall equipment efficiency (OEE) as a sustainable 

competitive advantage in the current competitive business environment and better planning for 

the future. The findings of this study can also assist managers of related industries in their 

decision-making processes to reduce job tardiness. Such industries could use the proposed 

model to optimally plan and manage their multiple resources and increase their customer 

satisfaction. At the same time, upstream and supervisory organizations that are responsible for 

economic, social, and environmental matters can use sensitivity analysis to introduce suitable 

and robust legislation on business objectively when dealing with multiple limited resources. 

 

Conclusion 

 
This study aimed to propose and investigate a flexible flowshop scheduling problem (FFSP) 

considering manpower skill-dependent process times. A mixed-integer linear programming 

(MIP) model was developed for the problem at hand to minimize the total completion time 

(Makespan) as the classic objective function in the scheduling field. Due to the Np-Hard nature 

of the considered problem, a hybrid whale optimization algorithm and a new response 

representation method from a cryptographic and decryption perspective were proposed to solve 

the problem on practical scales. In order to evaluate the performance of the proposed algorithm, 

two sets of examples were generated. Small and medium size examples were solved by the 

proposed mathematical model. The results show that the proposed mathematical model can find 

the optimal solution for most of the examples at the time of logical calculations. To evaluate 

the performance of the proposed algorithm in solving large-scale instances, 5 well-known 

approximation algorithms were matched with the proposed problem, and the performance of 

the proposed algorithm against the adapted algorithms was compared. In small examples, 

experiments showed that algorithms are usually very efficient. However, in large-size 

examples, the computational results showed that the proposed optimization algorithm 

performed much better than the adapted algorithms. From a managerial point of view, this paper 

presents a planning tool (solution method and mathematical model) to reduce the maximum 

completion time for factories with production environments with flexible flowshop with 

different human resource skills. For small factories with less than 10 jobs, mathematical 

modeling and optimization software are good planning tools. And large companies need more 

appropriate optimization techniques. Our proposed optimization algorithm has discovered an 

answer that reduces the maximum completion time compared to the adapted optimization 

algorithms by an average of 4%  and in the worst-case scenario, has discovered an answer that 

is 7% better than adapted optimization algorithms. This indicates that the proposed optimization 

algorithm is strong even in the worst case. 

Like every research, this study suffers some limitations. One of the most important limitations 

of this study is that the machine’s breakdown is not considered in the proposed problem. 

Therefore, in order to improve the efficiency of the proposed models, new issues such as 

machine breakdown and maintenance operations could be added to the problem in the future. 

Moreover, the processing time is assumed to be a fixed value. However, we usually face 

uncertainty in the release time and processing time of jobs in real-world conditions. 

There are several suggestions for future research related to this study. First, the current model 

is a deterministic model, which may not reflect reality accurately. Therefore, future studies can 

include uncertainty in the main parameters such as processing times. Moreover, adopting and 

applying other meta-heuristic algorithms for solving this problem and comparing results can be 

another interesting topic for future research. Realistic and functional assumptions such as 

energy savings, variable process speeds, and human resource constraints can also be considered. 

Also, the development of encoding and decryption methods can be considered. 
 



Advances in Industrial Engineering, June 2024, 58(1): 13-36 

 33 

 

References 

 

Andrade-Pineda, J. L., Canca, D., Gonzalez-R, P. L., & Calle, M. Scheduling a dual-resource 

flexible job shop with makespan and due date-related criteria. Annals of Operations 

Research, 1-31. 

Asgari, T. M., & Zandieh, M. (2014). A cloud-based simulated annealing algorithm for order 

acceptance problem with weighted tardiness penalties in permutation flow shop 

scheduling. Journal of industrial engineering and management studies (JIEMS), 1(1): 1-19.  

Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., & Stougie, L. (2000). 

Multiprocessor scheduling with rejection. SIAM Journal on Discrete Mathematics, 13(1), 

64-78. 

Cordone, R., & Hosteins, P. (2019). A bi-objective model for the single-machine scheduling 

problem with rejection cost and total tardiness minimization. Computers & Operations 

Research, 102, 130-140. 

Dabiri, M., Darestani, S. A., & Naderi, B. (2019). Multi-machine flow shop scheduling 

problems with rejection using genetic algorithm. International Journal of Services and 

Operations Management, 32(2), 158-172. 

Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications 

for large-scale industrial engineering problems. Knowledge-Based Systems, 165, 169-196. 

Dudek, R. A., Panwalkar, S. S., & Smith, M. L. (1992). The lessons of flowshop scheduling 

research. Operations Research, 40(1), 7-13. 

Emami, S., Sabbagh, M., & Moslehi, G. (2016). A Lagrangian relaxation algorithm for order 

acceptance and scheduling problem: a globalised robust optimisation approach. International 

Journal of Computer Integrated Manufacturing, 29(5), 535-560. 

Esmaeilbeigi, R., Charkhgard, P., & Charkhgard, H. (2016). Order acceptance and scheduling 

problems in two-machine flow shops: new mixed integer programming formulations. 

European Journal of Operational Research, 251(2), 419-431. 

Figielska, E. (2018). Scheduling in a two-stage flowshop with parallel unrelated machines at 

each stage and shared resources. Computers & Industrial Engineering, 126, 435-450. 

Framinan, J. M., Leisten, R., & García, R. R. (2014). Manufacturing scheduling systems. An 

integrated view on Models, Methods and Tools, 51-63. 

Gao, L., & Pan, Q. K. (2016). A shuffled multi-swarm micro-migrating birds optimizer for a 

multi-resource-constrained flexible job shop scheduling problem. Information Sciences, 

372, 655-676. 

Geramipour, S., Moslehi, G., & Reisi-Nafchi, M. (2017). Maximizing the profit in customer’s 

order acceptance and scheduling problem with weighted tardiness penalty. Journal of the 

Operational Research Society, 68(1), 89-101. 

Gong, G., Chiong, R., Deng, Q., Han, W., Zhang, L., Lin, W., & Li, K. (2019). Energy-efficient 

flexible flow shop scheduling with worker flexibility. Expert Systems with Applications, 

112902. 

Gong, X., Deng, Q., Gong, G., Liu, W., & Ren, Q. (2018). A memetic algorithm for multi-

objective flexible job-shop problem with worker flexibility. International Journal of 

Production Research, 56(7), 2506-2522. 

Gupta, J. N. (1988). Two-stage, hybrid flowshop scheduling problem. Journal of the operational 

Research Society, 39(4), 359-364. 

Hasani, A., & Hosseini, S. M. H. (2020). A bi-objective flexible flow shop scheduling problem 

with machine-dependent processing stages: Trade-off between production costs and energy 

consumption. Applied Mathematics and Computation, 386, 125533. 

Hasani, A., & Hosseini, S. M. H. (2022). Auxiliary resource planning in a flexible flow shop 

scheduling problem considering stage skipping. Computers & Operations Research, 138, 

https://www.sid.ir/en/journal/JournalList.aspx?ID=27929


34  Hosseini et al. 

 

105625. 

Jan, D., & W Patrick, N. (2009). Ergonomics contributions to company strategies. Applied 

Ergonomics, 40, 745-752. 

Johnson, S. M. (1954). Optimal two‐and three‐stage production schedules with setup times 

included. Naval research logistics quarterly, 1(1), 61-68. 

Lei, D., & Guo, X. (2014). Variable neighbourhood search for dual-resource constrained 

flexible job shop scheduling. International Journal of Production Research, 52(9), 2519-

2529. 

Lei, D., & Guo, X. (2015). A parallel neighborhood search for order acceptance and scheduling 

in flow shop environment. International Journal of Production Economics, 165, 12-18. 

Li, J., Huang, Y., & Niu, X. (2016). A branch population genetic algorithm for dual-resource 

constrained job shop scheduling problem. Computers & Industrial Engineering, 102, 113-

131. 

Lin, H. T., & Liao, C. J. (2003). A case study in a two-stage hybrid flow shop with setup time 

and dedicated machines. International Journal of Production Economics, 86(2), 133-143. 

Lin, S. W., & Ying, K. C. (2015). Order acceptance and scheduling to maximize total net 

revenue in permutation flowshops with weighted tardiness. Applied Soft Computing, 30, 

462-474. 

Mehravaran, Y., & Logendran, R. (2013). Non-permutation flowshop scheduling with dual 

resources. Expert Systems with Applications, 40(13), 5061-5076. 

Meng, L., Zhang, C., Zhang, B., & Ren, Y. (2019). Mathematical Modeling and Optimization 

of Energy-Conscious Flexible Job Shop Scheduling Problem With Worker Flexibility. IEEE 

Access. 

Naderi, B., Gohari, S., & Yazdani, M. (2014). Hybrid flexible flowshop problems: Models and 

solution methods. Applied Mathematical Modelling, 38(24), 5767-5780. 

Nakhaeinejad, M. (2019). Production Scheduling Optimization Algorithm for the Steel-Making 

Continuous Casting Processes. Advances in Industrial Engineering, 53(4), 127-147. 

Nguyen S, Zhang M, Johnston M (2014) Enhancing branch-and-bound algorithms for order 

acceptance and scheduling with genetic programming. In: Nicolau M, Krawiec K, Heywood 

MI, Castelli M, Garcia-Sanchez P, Merelo JJ, Rivas Santos VM, Sim K (eds) Genetic 

programming, 1st edn. Springer, Berlin, pp 124–136 

Nguyen, S., Zhang, M., Johnston, M. (2014) A sequential genetic programming method to learn 

forward construction heuristics for order acceptance and scheduling. In: 2014 IEEE 

Congress on Evolutionary Computation (CEC). IEEE, pp. 1824–1831. 

Pan, Q. K., Gao, L., Li, X. Y., & Gao, K. Z. (2017). Effective metaheuristics for scheduling a 

hybrid flowshop with sequence-dependent setup times. Applied Mathematics and 

Computation, 303, 89-112. 

Pan, Q. K., Ruiz, R., & Alfaro-Fernández, P. (2017). Iterated search methods for earliness and 

tardiness minimization in hybrid flowshops with due windows. Computers & Operations 

Research, 80, 50-60. 

Pan, Q. K., Wang, L., Li, J. Q., & Duan, J. H. (2014). A novel discrete artificial bee colony 

algorithm for the hybrid flowshop scheduling problem with makespan minimisation. Omega, 

45, 42-56. 

Pan, Q. K., Wang, L., Mao, K., Zhao, J. H., & Zhang, M. (2012). An effective artificial bee 

colony algorithm for a real-world hybrid flowshop problem in steelmaking process. IEEE 

Transactions on Automation Science and Engineering, 10(2), 307-322. 

Quadt, D., & Kuhn, H. (2005). Conceptual framework for lot-sizing and scheduling of flexible 

flow lines. International Journal of Production Research, 43(11), 2291-2308. 

Ramezanian, R., & Hallaji, M. (2021). A Hybrid Approach for Home Health Care Routing and 

Scheduling Using an Agent-Based Model. Advances in Industrial Engineering, 55(2), 165-



Advances in Industrial Engineering, June 2024, 58(1): 13-36 

 35 

 

176. 

Ruiz, R., & Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence 

dependent setup times and machine eligibility. European Journal of Operational Research, 

169(3), 781-800. 

Shabtay, D., & Gasper, N. (2012). Two-machine flow-shop scheduling with rejection. 

Computers & Operations Research, 39(5), 1087-1096. 

Shahvari, O., & Logendran, R. (2017). A bi-objective batch processing problem with dual-

resources on unrelated-parallel machines. Applied Soft Computing, 61, 174-192. 

Silva, Y. L. T., Subramanian, A., & Pessoa, A. A. (2018). Exact and heuristic algorithms for 

order acceptance and scheduling with sequence-dependent setup times. Computers & 

Operations Research, 90, 142-160. 

Thevenin, S., & Zufferey, N. (2019). Learning Variable Neighborhood Search for a scheduling 

problem with time windows and rejections. Discrete Applied Mathematics, 261, 344-353. 

Thevenin, S., Zufferey, N., & Widmer, M. (2015). Metaheuristics for a scheduling problem 

with rejection and tardiness penalties. Journal of Scheduling, 18(1), 89-105. 

Thevenin, S., Zufferey, N., & Widmer, M. (2016). Order acceptance and scheduling with 

earliness and tardiness penalties. Journal of Heuristics, 22(6), 849-890. 

Udo, G. G., & Ebiefung, A. A. (1999). Human factors affecting the success of advanced 

manufacturing systems. Computers & Industrial Engineering, 37, 297-300. 

Waldherr, S., & Knust, S. (2017). Decomposition algorithms for synchronous flow shop 

problems with additional resources and setup times. European Journal of Operational 

Research, 259(3), 847-863. 

Wang, J., Zhuang, X., & Wu, B. (2017). A new model and method for order selection problems 

in flow-shop production. Optimization and Control for Systems in the Big-Data Era: Theory 

and Applications, 245-251. 

Wang, S., & Ye, B. (2019). Exact methods for order acceptance and scheduling on unrelated 

parallel machines. Computers & Operations Research, 104, 159-173. 

Xiao, Y., Yuan, Y., Zhang, R. Q., & Konak, A. (2015). Non-permutation flow shop scheduling 

with order acceptance and weighted tardiness. Applied Mathematics and Computation, 270, 

312-333. 

Xie, X., & Wang, X. (2016). An enhanced ABC algorithm for single machine order acceptance 

and scheduling with class setups. Applied Soft Computing, 44, 255-266. 

Xu, L., Wang, Q., & Huang, S. (2015). Dynamic order acceptance and scheduling problem with 

sequence-dependent setup time. International Journal of Production Research, 53(19), 5797-

5808. 

Yavari, M., Marvi, M. & Akbari, A.H. (2019). Semi-permutation-based genetic algorithm for 

order acceptance and scheduling in two-stage assembly problem. Neural Comput & Applic 

doi:10.1007/s00521-019-04027-w. 

Yazdani, M., Zandieh, M., & Tavakkoli-Moghaddam, R. (2019). Evolutionary algorithms for 

multi-objective dual-resource constrained flexible job-shop scheduling problem. 

OPSEARCH, 1-24. 

Yazdani, Mehdi; Zandieh, Mustafa; Tavakoli Moghaddam; Reza (2014). "A hybrid meta-

heuristic algorithm for the problem of flexible flowshop job scheduling with limited dual 

human-machine resources." Journal of Industrial Management Studies, 12 (33), 43-74. (in 

Persian). 

Yu, C., Semeraro, Q., & Matta, A. (2018). A genetic algorithm for the hybrid flow shop 

scheduling with unrelated machines and machine eligibility. Computers & Operations 

Research, 100, 211-229. 

Zhang, B., Pan, Q. K., Gao, L., Zhang, X. L., Sang, H. Y., & Li, J. Q. (2017). An effective 

modified migrating birds optimization for hybrid flowshop scheduling problem with lot 



36  Hosseini et al. 

 

streaming. Applied Soft Computing, 52, 14-27. 

Zhang, J., Wang, W., & Xu, X. (2017). A hybrid discrete particle swarm optimization for dual-

resource constrained job shop scheduling with resource flexibility. Journal of Intelligent 

Manufacturing, 28(8), 1961-1972. 

Zheng, X. L., & Wang, L. (2016). A knowledge-guided fruit fly optimization algorithm for dual 

resource constrained flexible job-shop scheduling problem. International Journal of 

Production Research, 54(18), 5554-5566. 

Zohali, H., Naderi, B., & Mohammadi, M. (2019). The economic lot scheduling problem in 

limited-buffer flexible flow shops: Mathematical models and a discrete fruit fly 

algorithm. Applied Soft Computing, 80, 904-919. 

 

 

 

This article is an open-access article distributed under the terms and 

conditions of the Creative Commons Attribution (CC-BY) license. 

 

https://creativecommons.org/licenses/by/4.0/

