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Abstract  

Control charts and maintenance strategies are essential tools in production management. 

However, despite their inherent connection, these tools are often studied and applied 

independently. To better reflect real-world scenarios, this paper focuses on the economic 

design of an integrated production planning model based on a synthetic adaptive 

Exponentially Weighted Moving Average (EWMA) control chart. To mitigate machine 

failure rates, two types of maintenance strategies are incorporated: reactive maintenance 

(RM) and preventive maintenance (PM). The model uses the particle swarm optimization 

(PSO) metaheuristic algorithm to minimize the total production cycle cost while adhering 

to statistical quality constraints. A comparative analysis is conducted to evaluate the 

impact of variable sampling intervals in control charts on overall costs. Sensitivity analysis 

is performed to examine how model parameters influence optimization policies. Finally, 

the results are compared with previous studies to demonstrate the effectiveness of the 

proposed method. 
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Introduction 

 

One of the main models used in the inventory control is the Economic Production Quantity 

(EPQ) model. This model focuses mainly on inventory costs, which consist of maintenance and 

ordering expenses. However, there are some hypotheses/assumptions in the traditional EPQ 

models that exhibit the need to develop more practical ones. 

The first assumption covers the idea that the production process never breaks down (or never 

becomes out-of-control) while the second assumption focuses on the idea that the production 

process always produces the corresponding items (production without considering the non-

compliant product). In a more realistic situation, the production process may not always be 

complete and some disturbances may happen over time which may cause quality loss of the 

products.  On the other hand, in the production systems, in addition to quality loss, machine 

failure may also occur. But in the classic EPQ models, it is assumed that machine failure never 

occurs in the production cycle. In order to reduce the costs of device failure, researchers have 
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stated that production and maintenance planning should be considered simultaneously. Some 

researchers, such as Chen et al. [1] have investigated this problem. Jafari et al. [2] presented a 

model for joint optimization of economic production (EMQ) and maintenance policy to reduce 

the total production cost.  

While Bouslah et al. [3] investigated the optimization of sampling design and preventive 

maintenance of a production system subject to the quality loss constraints, Nourelfath et al. [4]   

studied the integration of production and maintenance for an incomplete process with very large 

dimensions and ignoring the statistical characteristics of the process. Y. Li et al. [5] designed a 

joint model of maintenance policy and CUSUM control chart to minimize the total production 

cost per unit time. In the meanwhile, an integrated problem in terms of production size, quality 

control and condition-based maintenance for a defective production system exposed to both 

reliability and quality reduction was investigated by Guo Qing Cheng et al. [6]. Lin Wang et al. 

[7] developed an integrated model for optimizing the production plan and PM schedule by 

suggesting an overhaul strategy to minimize the total cost. Li Xue et al. [8] studied the economic 

design of EWMA chart with variable sampling intervals (VSI) for monitoring mean and 

standard deviation under preventive maintenance and Taguchi loss functions. Rajesh Saha et 

al. [9] developed an integrated economic model for the joint optimization of quality control 

parameters and a preventive maintenance policy using the CUSUM control chart.  

The hybrid control charts have attracted researchers’ most attention. Spedding et al. [10] 

combined the Shewhart and Conforming Run Length (CRL) charts for the first time. Some 

researchers such as Machado et al. [11], Zhang et al. [12], Khoo et al. [13] and Yeong et al. 

[14] developed the combinatorial charts studies. On the other hand, some researchers have tried 

to combine the hybrid standard charts with adaptive schemes, for example: Khoo et al. [15] 

provided a hybrid Double Sampling chart (DS chart). They combined the DS chart and the CRL 

chart and concluded that the resulting chart was superior to the ordinary chart in terms of 

detection ability. Lee et al. [16] added the VSI feature to their synthetic multivariate model and 

showed that the VSI hybrid multivariate control chart is better than the other types of such 

charts for detecting changes in the covariance matrix. In the following papers researched by Li 

Xue et al. [17], Fallah Nezhad et al. [18] and Jafarian-Namin et al. [19] an integrated model of 

economic design, production planning and maintenance policies has been carried out and solved 

with the help of PSO algorithm. Rasaei et al. [20] investigated the integration of maintenance 

planning (MP) and statistical process control (SPC) decisions for a two-stage dependent 

production process. On the other hand, the combination of different maintenance methods and 

economic design of control charts has been the focus of many researchers in recent years. These 

maintenance policies increase the reliability of a system. Heydari et al. [21] investigated the 

economic design of the X-bar control chart under the Burr XII shock model, as an integrated 

model using preventive maintenance and incomplete maintenance. Shajai et al. [22] created an 

integrated model of production planning and economic design and maintenance policies in 

order to minimize total production costs.  Based  on the information in the following table, the 

background of the research is as follows: 
 

Table 1. Background research 

Number Authors Year Subject Algorithm 

1 
A. Salmasniaa, Z. Hajihosseini, 

M. Namdar, F. Mamashli [23] 
2018 

Joint determination of production 

cycle length, maintenance policy 

and control chart parameters 

considering time value of money 

under random variable size 

particle swarm 

optimization 

algorithm 

(PSO) 

2 M. Namdar [24] 2018 

Solid economic-statistical design of 

adaptive control chart for a secret 

system under maintenance policies 

particle swarm 

optimization 

algorithm 

3 G. Cheng, B. Zhou, Ling Li [6] 2018 Integrated manufacturing, quality Simulation-
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control, and condition-based 

maintenance and repair for defective 

manufacturing systems 

based 

optimization 

Monte Carlo 

simulation 

4 
M. Pasha, M. Bameni 

Moghadam [25] 
2018 

A general version of Ben-Daya-

Rahim (2000) and Rahim Banerjee 

(1993) models in the economic 

design of X̅ control charts in 

systems with just-in-time 

replacement (JIT) and preventive 

maintenance under integrated risk 

reduction. 

Integrated 

hazard over 

sampling 

interval 

6 
Q. Wan, Y. Wu, W. Zhou, 

Xiaohong Chen [26] 
2018 

Integrated economic design of 

hybrid adaptive chart and 

maintenance system management 

Genetic 

algorithm 

7 
A. Salmasnia, F. Soltany, M. 

Noroozi, B. Abdzadeh [27] 
2019 

An economic-statistical model for 

planning production and 

maintenance and repairs in chi-

square non-central comparative 

diagram 

particle swarm 

optimization 

algorithm 

(PSO) 

8 
A. Farahani, H. Tohidi, A. 

Shoja [28] 
2019 

Integrated optimization of quality 

control chart parameters and 

preventive maintenance using 

Markov chain 

Modeling with 

nonlinear 

regression 

9 
A. Salmasnia, M. Namdar, B. 

Abdzadeh [29] 
2019 

An integrated model of quality and 

maintenance and repair for a two-

unit series production system 

particle swarm 

optimization 

algorithm 

(PSO) 

10 
A. Salmasnia, F. Soltani, E. 

Heydari, S. Googoonani [30] 
2019 

An integrated model for joint 

determination of production length, 

adaptive control chart parameters 

and maintenance and repair policy 

particle swarm 

optimization 

algorithm 

(PSO) 

11 L. Xue and Z. He [8] 2020 

Economic Design of EWMA 

Control Charts with Variable 

Sampling Intervals for Monitoring 

the Mean and Standard Deviation 

under Preventive Maintenance and 

Taguchi’s Loss Functions. 

Taguchi’s Loss 

Functions 

12 

S. Jafarian-Namin, M. Saber 

Fallahnezhad, R. 

TavakkoliMoghaddam, A. 

Salmasnia & M. Taghi Fatemi 

Ghomi [18] 

2021 

An integrated quality, maintenance 

and production model based on the 

delayed monitoring under the 

ARMA control chart 

particle swarm 

optimization 

algorithm 

(PSO) 

13 

S. Jafarian-Namin, M.S. Fallah 

Nezhad; R. Tavakkoli 

Moghaddam, A. Salmasnia, and 

M.H. Abooie [19] 

2021 

An integrated model for optimal 

selection of quality, maintenance, 

and production parameters with auto 

correlated data 

particle swarm 

optimization 

algorithm 

(PSO) 

14 
H. Rasay, F. Naderkhani and F. 

Azizi [20] 
2022 

Opportunistic maintenance 

integrated model for a two-stage 

manufacturing process 

genetic 

algorithm (GA) 

15 
A. Heydari, M. Tavakoli & A.  

Rahim [21] 
2023 

An Integrated Model of 

Maintenance Policies and Economic 

Design of X-bar Control Chart 

Under Burr XII Shock Model 

particle swarm 

optimization 

algorithm 

(PSO) 

16 

M. Shojaee, S. Noori, S. 

Jafarian-Namin, A. Johannssen 

[22] 

2024 

Integration of production–

maintenance planning and 

monitoring simple linear profiles via 

Hotelling's T2 control chart and 

particle swarm optimization 

particle swarm 

optimization 

algorithm 

(PSO) 
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The expected total cost (ETC) includes the costs of holding, ordering and sampling of non-

conforming product production. The purpose of this article is to model and minimize the 

expected total cost (ETC) of the production process in the cycle time, according to the statistical 

limitations caused by using maintenance policies. Therefore, based on the research gap obtained 

from the above-shown background table, we are focusing on the advantages of the EWMA 

control chart which are not only using the information of the previous samples, but also its 

sensitivity to small and medium shifts as well as normality distribution assumption free. All 

these make the EWMA chart an attractive tool to use in this study. On the other hand, despite 

the advantages of synthetic adaptive control charts such as lower cost, these types of control 

charts are used in the literature of common EPQ models. Therefore, we have not only focused 

on modelling and minimizing the expected total cost (ETC) of the production process, but we 

have also drawn our attention to an integrated EPQ model based on EWMA synthetic adaptive 

control chart and maintenance policy, all of which is presented.  

The rest of the article is organized as follows. Section 2 describes the problem definition and 

presents the framework for implementing the proposed adaptive synthetic EWMA chart, while 

in Section  3, mathematical modeling based on maintenance approaches in the economic 

production model, is performed. In Section 4, the particle swarm algorithm has been 

investigated to optimize the presented model, followed by Section 5, in which a numerical 

example is performed which is then followed by a sensitivity analysis of the optimal policy in 

the parameters. Section 6 concludes the work. 

 

Problem description 

 

As mentioned in the introduction, in a production system, there are three interrelated problems 

named as inventory control, quality control and maintenance, which should be considered 

simultaneously. Therefore, this paper presents an integrated model for the above-mentioned 

issues by representing the joint optimization of production planning, the parameters of the 

synthetic adaptive EWMA control chart and the maintenance policy. Control and out-of-control 

conditions are carefully considered. The process is assumed to start with the control condition, 

which has a normal distribution with mean μ0 and standard deviationσ0 . After a while, due to 

the mean shift from μ0  to μ0  + δμσ0 the process goes out-of-control. Therefore, in the out-of-

control condition, the quality characteristic follows the normal distribution as  X́~N(μ0  +

δμσ0 , σ0  ) where δμ shows the value of the mean shift which is constant. It should be noted 

that in this paper, only the positive shifts are considered. 

 

Adaptive EWMA control chart 

Salmasnia et al. [30] have shown that traditional control charts with fixed sampling interval 

are not usually economically optimal and are often inefficient for detecting medium shifts. 

Whereas adaptive control charts, in which the sampling interval is not fixed (VSI) and changes 

between the short and long intervals, has the ability of  high-speed detection for most of the 

process shifts. Therefore, in this study, an adaptive EWMA control chart has been used to 

monitor the mean trend. In  (Figure 1), the sampling interval depends on the information 

obtained from the samples. The adaptive control chart uses the warning limits (LWL/UWL) 

and the control limits (LCL/UCL). The performance of the control chart and sampling interval 

varies according to the the place of each sample (Figure 1). If the sample is close to the center 

line (ie in a safe region), it can be concluded that no shifts in the process parameters has occurred 

and therefore a longer sampling distance (hL) should be used for the next sampling attempt. But 

if the sample is away from the center line (ie in an unsafe region),  that should be a signal for 

an out-of-control state.  Therefore, it seems reasonable to use a shorter inspection interval (hS) 

in the next sampling [31]. 
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Figure 1. Sampling interval strategy 

 

Therefore, according to the control limits and warning limits [30] , we consider: 

 

{

hS  if    UWL <   Zi−1  ≤ UCL
hL  if    LWL ≤   Zi−1  ≤ UWL
hS  if    LCL <   Zi−1  ≤ LWL

                                                                                                           (1) 

 

in Equation 1, the chart statistics is based on the quality characteristic  of the synthetic adaptive 

control chart of EWMA. Due to the above-mentioned conditions for sampling interval, we have 

two sampling pairs (n, hS) and (n, hL) as well as the one when the sample is out-of-control, the 

process should be checked to determine the assignable cause. Therefore, the probability of 

placing the sample in the designated areas is as follows [30]:  

 

   P(zi ∈ R1) = P(LWL ≤  zi ≤ UWL) = φ(W) − φ(−W) = 2 φ(W) − 1  

P(zi ∈ R2) = P(LCL <  zi  < LWL) + P(UWL < zi < UCL) = 2[φ(K) − φ(W)] 
P(zi ∈ R3) = 1 − P(LCL < zi < UCL) = φ( K) − φ(−K) = 2φ(K) − 1 

(2) 

 

in these equations W and K are the warning and control limits coefficients, respectively [30]. 

In this paper, it is considered, that the time of change follows the Weibull distribution, because 

the Weibull distribution is suitable to show the failure time of the process . 

 

CRL-EWMA chart 

Conforming Run Length (CRL) control chart is defined based on the observed sample 

number between two nonconforming samples, which includes out of control sample or unit as 

well.  For example, Figure 2 shows that CRL is equal to 4, 6, and 4, respectively [32].  

 

 
Figure 2. CLR control chart 

 

The CLR control chart statistic has the geometric distribution with the function of G(CRL) =
1 − (1 − p)CRL   that  the mean is E(CRL) =   1/p,  where p is nonconforming probability, 

hence the CRL control chart requires a low control limit (L) and it is calculated as follows [32]:             

 

L =  
ln(1- αCRL)

ln(1 - p0)
       where      αCRL = Fp0

(CRL) =  1-(1 − p0)
CRL (3) 

 

where αCRLis the first type error of CRL chart, p0 is the proportion of nonconforming  products 

and L is the lower limit of CRL chart. The value of L must be an integer. In this case, if a CRL 
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sample is less than or equal to L, the probability of a non- conforming  product p0 will increase 

and give an out-of-control signal [33]. 

ARLCRL is the average run length of CRL chart.  Hence, the in-control ARL for the synthetic 

adaptive control chart of EWMA, which is represented as ARLCRL−EWMA, is calculated from 

the Equation 4 [34]: 

 

ARLCRL = 
1

G(L−1)
= 

1

1−(1−p)L
                                                                               

ARLCRL−EWMA  = ARLEWMA × ARLCRL = ARLEWMA  ×
1

1−(1−p)L
                                               

(4) 

 

According to the calculated ARL value, the average time to signal (ATS) can be calculated 

as follows [34]: 

 

ATSCRL−EWMA = ARLCRL−EWMA  ×  FSI                                                                                (5)                                                    

 

where FSI is the shortest time to receive an out-of-control signal. 

 

Synthetic adaptive control chart of EWMA 

The control chart in this article  is a combination of   EWMA VSI adaptive chart and a 

Conforming Run Length (CRL) control chart. The basic concept of the VSI feature is that the 

sampling time interval is determined based on the previous sample place. According to the 

Equation (6), the Synthetic adaptive control chart of EWMA is divided into three regions, which 

are defined as the following equations and are shown in Figure 3. 

 

R1 (Central region):  LWL <  Zi  < UWL ;  
R2 (Warning region):  LCL ≤  Zi ≤  LWL  or  UWL ≤  Zi  ≤  UCL ; 
R3(Signal region): Zi < LCL  or  Zi > UCL; 

(6) 

 

 
Figure 3. A graphical representation of the synthetic adaptive control chart of EWMA regions 

 

The first region in the EWMA three regions is R1 which is considered as a safe region (in 

control condition). The second in line is R2 which is known as the unsafe region of which the 

chart gives an out-of-control signal, and needs to be checked. The last region is R3 which is 

also defined as the out-of-control region. 

In this paper, we consider the variable sampling interval, based on the information in both 

EWMA VSI chart and the CRL chart to design of the control chart as the following steps: 

1. Calculate the optimal values of hS, hL, λ, K, W, n, m based on the economic design model 

to optimize the cost according to the constraints. 

2. Set the control limits (UCL , LCL) and the warning limits (UWL , LWL) for the EWMA chart 
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and specify the lower control limit (L) for the CRL chart. 

3. Select a random sample and calculate the sample mean and obtain the Zi statistic based on 

that. 

4. If the Zi statistic is in the R3 region, the process is declared out of control. Research and 

maintenance may have been begun (the conditions are described in the following sections). 

After that, the control process reaches Step 3 and sampling (n, h S) is used.  

5. If the Zi statistic is in region R1, the chart is declared in control mode. The sample (n, hL) is 

used for the next sampling. 

6. If the Zi statistic is in the R2 region, then the CRL statistic is checked. 

6.1 If the CRL statistic is larger than the lower limit of CRL chart (L), the CRL is in-control, 

but the sampling scheme (n , hS) is used in the next sampling. 

6.2 If the CRL statistic is less than the lower limit of CRL chart (L), then the chart is signalled 

as out-of-control condition, and maintenance may be counted. After that, the control 

process reaches Step 3 and sampling (n, h s) is used. 

Therefore, according to the research by [34], the ARL0 for the synthetic adaptive control 

chart of EWMA is as follows: 

 

(7                       )                                        ARL0  =  1 +  [ARLEWMA − 1 ](ARLCRL) + ARLCRL − 1 

 

As mentioned in Section 2 the chart parameters should be designed in such a way that the 

quality cost, production cost and maintenance cost are optimized. Therefore, charts parameters 

are entered into the optimization model as variables. 

 

Parameters Notation 

The variables that are used in the optimization model is shown in Table 2. 

 
Table 2. Table of variables 

Description symbol 

Coefficient of control limits  K 

Coefficient of warning limits w 

Weight coefficient in EWMA chart λ  

Sample size n 

Number of inspection periods until preventive maintenance m 

Short-term sampling interval hS  

Long-term sampling interval hL  

nonconforming units p 

Lower limit of the synthetic adaptive EWMA chart LCL 

Upper limit of the synthetic adaptive EWMA chart UCL 

Lower warning limit synthetic adaptive EWMA LWL 

Upper warning limit synthetic adaptive EWMA UWL 

lower control limit of the CRL chart  L 

the synthetic adaptive EWMA regions Ri  
Mean of the quality characteristic in normal distribution μ0  

Variance of the quality characteristic in normal distribution σ0  

Shift in the mean parameter (a positive value) δμ  

Weibull distribution parameter a 

Weibull distribution parameter b 

Daily demand d 

Annual demand D 

Proportion of samples in controlled condition with short sampling interval f1  

Proportion of samples in controlled condition with long sampling distance f2  

conditions created for maintenance ci  
Quality characteristic density function for in-control condition f(z)  
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Quality characteristic density function for out-of-control condition f(ź)  
Production rate     P  

Probability of ith condition P(ci)  
Probability of warning detection by Synthetic EWMA (VSI)   P(sig)  
Expected number of samples before out-of-control signal S 

Expected Number of samples in control condition with short sampling interval s1  

Expected Number of samples in control condition with long sampling distance s2  

Quality characteristic of the process at in-control condition z  
Quality characteristic of the process at out-of-control condition ź  
Setup cost A 

Maintenance cost per unit time B 

Fixed cost of sampling CF  

Preventive maintenance cost CP  

Reactive maintenance cost CR  

Variable sampling cost CV  

Cost of false signal investigation CY  

The total cost of the inspection Cs 
Expected maintenance cost E(M)  
Expected quality loss cost E(Q)  
Expected inspection cost E(S)  
Expected inventory maintenance and production start-up costs E(I)  
Expected total cost ETC 

Quality loss cost per unit for in-control condition Q0  

Quality loss cost per unit for out-of-control condition Q1  

Average run length for in-control condition ARL0  

Average run length for out-of-control condition ARL1  

Average time to signal for in-control condition ATS0  

Average time to signal for out-of-control condition ATS1  

Upper bound of the 𝐀𝐓𝐒𝟎 constraint ATSu  

Lower bound of the 𝐀𝐓𝐒𝟏 constraint ATSL   
First type of error in EWMA chart α  

Second type of error in EWMA chart β  

First type of error in CRL chart αCRL  

Time needed to record each sample E 

Expected time that the process is in in-control condition for ith condition  E(T0|Ci) 
Expected time that the process is in out-of-control condition for ith condition  E(T1|Ci) 
Proportion of time spent at in-control condition using short sampling interval P1  

Proportion of time spent at in-control condition using long sampling interval P2  

Time needed to inspection assignable cause T1  

Average time between last sample before  assignable cause and occurrence of an assignable cause 

using 𝐡𝐒 
τ1  

Average time between last sample before  assignable cause and occurrence of an assignable cause 

using 𝐡𝐋 
τ2  

Average time between last sampling before assignable cause and occurrence of an assignable cause. τ 

solution space in PSO optimisation algorithm  v 

 

Modeling conditions 

Regarding on the time that the shift is taking place, three different conditions may occur: 

 

The first condition 

If the process is in-control up to Mth sample, all preventive maintenance activities are 

performed in (M +  1)th sample. Figure 4 shows this condition as condition 1 . 
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Figure 4. Production cycle with condition 1 

 

In this case, the length of the production period is equal to the duration time under control. 

If we call this conditionc1, the predicted time for the process to be in control is [30]: 

 

        E (T0|c1) = (m + 1)hs × P1 + (m+ 1)hL × P2 (8) 

 

where P1 and P2 show the ratio of time spent in control condition using samples with hs and hL 

intervals, respectively, [30]: 

 

P1 =
f1hs

f1hs + f2hL
   P2 =

f2hL
f1hs + f2hL

 (9) 

 

The probability of this condition occurrence is: 

 

(10             )                                                            P(c1) = 1 − [F[(m + 1)hs] × f1 + F[(m+ 1)hL] × f2]  

 

where F(0) is the cumulative function of the Weibull distribution. 

 

The second condition   

The process starts in control condition, but between the jth and (j +  1)th  sample is shifted 

to out of control condition by an assignable cause. The synthetic adaptive control chart of 

EWMA cannot detect a change in (j +  1)th sample due to the type II error. Finally, in the 

(j +  i)th sample, it releases a signal. Reactive maintenance activities are performed to 

discover the assigned cause and restore the process to the best possible situation. The production 

cycle in this condition is shown in Figure 5.  

 

 
Figure 5. Production cycle with conditions 2 

 

In this condition, the predicted time in control condition has a short Weibull distribution and 

the distribution function is as follows [30]: 
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f(h|(m + 1 )h) =

[(b a⁄ )(h a⁄ )
b−1 

e−(
h
a⁄ )

b

]

(1 − e−(
h
a⁄ )

(m+1 )h

)

⁄  (11) 

     

Therefore, if this condition is denoted byc2, the expected time under control condition is as 

follows [30]: 

 

   E(T0|c2) = (∫ hf(h|(m + 1)hs)dh
mhs

0
) × P1 + (∫ hf(h|(m + 1)hL)dh

mhL
0

) × P2       (12) 

 

 The time in out-of-control condition for condition 2 involves three parts. The time of 

occurrence of an assignable cause, sample review time and result interpretation and the time 

required to investigate an assignable cause. Expected time for the out-of-control condition and 

the probability of condition 2 occurrence are calculated as Equations (13-18), [30]: 

 

(13  )                                                                                                                          τ = τ1P1 + τ2P2            

 

where this time equals to the time needed for recording each sample size (n): 

 

 (14    )                                      τ1 = ∫ hf(h|(m + 1)hs)dh − hs(∑ e−(
jhs

a
)b −me−(

(m+1)hs

a
)
b

)m
j=1

(m+1)hs

0
      

(15   )                                       τ2 = ∫ hf(h|(m + 1)hL)dh − hL(∑ e−(
jhL
a
)b −me−(

(m+1)hL
a

)
b

)m
j=1

(m+1)hL

0
 

(16)                                                                                                E(T1|c2) = ATS1 −  τ + nE + T1  

(17  )                                                                   P(c2) = [F(mhs) × f1 + F(mhL) × f2] × P(sig)                               

 

where F is the cumulative function of the Weibull distribution and P(sig) indicates the 

probability of signal propagation by the control chart. [30]:   

 

(18   )                                                                                                                    P(sig) = 1 − βm−1  

 

The third condition   

In condition 3, the process starts in control condition, but between the jth and (j +  1)th 

sample, due to an assignable cause, the process comes to an out-of-control condition. Due to 

type II error, the control chart cannot show the signal up to the mth sample inspection. Thus, in 

the (m +  1)th  sample inspection, planned maintenance is replaced by reactive maintenance 

activities, as shown in Figure 6.  

 

 
Figure 6. Production cycle with condition 3 
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 This condition is calledc3. Hence, time in control condition  follows the distribution of 

Weibull and can be calculated as follows, [30]: 

 

E(T0|c3) = (∫ hf(h|(m + 1)hs)dh × P1) + (∫ hf(h|(m + 1)hL)dh × P2)
(m+1)hL

0

(m+1)hs

0

 (19) 

 

 Expected time for out-of-control condition and the probability of this situation occurrence 

are calculated as Equations (20) and (21), [30]: 

 

E(T1|c3) = [(k + 1)hs × P1 + (k + 1)hL × P2] − E(T0|C3) (20) 

P(c3) = F[(m + 1)hs] × f1 + F[(m + 1)hL] × f2 − [F(mhs) × f1 + F(mhL) × f2] × P(sig) (21) 

 

  Expected production cycle costs 

 Production cycle costs are described below to show how each cost is calculated.  

 

Quality cost 

 In this study, the quality reduction is defined as the distance from the center line in the 

control chart and being in the unsafe region. The cost of the quality reduction in out of control 

condition was examined in the previous section and is formulated according to Equation (22): 

 

E(Q) = ∑ E(CQ|ci)P(ci)                i = 1،2،33
i=1  

when  E(CQ|ci) = {
Q0P × E(T0|ci)                                              for i = 1

Q0P × E(T0|ci) + Q1P × E(T1|ci)            for i = 2،3
 

(22) 

 

in most of previous studies, Q0 and Q1 were considered constant numbers obtained from 

previous data, but in this study, we use Taguchi quality loss function to determine them.           

 

Inspection cost     

 Inspection costs include fixed sampling costs and variable sampling costs. The average 

number of samples in conditions 1 and 3 is equal to m, while the average number in condition  

2 is calculated by adding the average number of samples in out of control and in control 

conditions as follows: 

 

                                                                         E(S) = ∑ E(CS|ci)P(ci)        i = 1،2،33
i=1  

E(CS|ci) = {
(CF + CVn)k       for i = 1،3                   
(CF + CVn)(S + ARL1)         for i = 2

 
(23) 

 

when CF is the fixed sampling cost, CV is the variable sampling cost, ARL1 is the average run 

length for out-of-control state of the synthetic adaptive control chart of EWMA, [30] : 

 

(24             )                                                                                                                    S = s1f1 + s2f2     

 

in Equation (24), the values of s1 and  s2 are calculated as follows: 

 

(25)                               s1 = ∑ e−(
jhs

a
)b −me−(

(m+1)hs

a
)bm

j=1    s2 = ∑ e−(
jhL
a
)b −me−(

(m+1)hL
a

)bm
j=1                                              

 

Maintenance cost 

 Maintenance costs include costs of deviation alerts occurred, implementation of  preventive 

maintenance and implementation of  reactive maintenance. The costs depend on the situations 
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in which they occur. Since in condition 1 the process is in control, the reactive maintenance 

cost should be zero and the only cost is preventive maintenance cost. While in conditions 2 and 

3, due to the out-of-control conditions, the cost of reactive maintenance replaces the cost of 

preventive maintenance. Therefore, the maintenance costs can be obtained from the following 

equations:  

 

E(M) = ∑ E(CM|ci)P(ci)       i = 1،2،33
i=1              

E(CM|ci) =  {

mCY

ARL0
+ CP     for i = 1        

sCY

ARL0
+ CR           for i = 2،3

                
(26) 

 

when CY represents the cost of checking for error alerts, CP represents the cost of preventive 

maintenance and CR represents the cost of reactive maintenance. 

 

Setting up machinery and maintaining inventory costs 

 According to the EPQ model, the cost of setting up and maintaining inventory depends on 

the production rate and the inventory demand rate. Here, these costs are calculated as follows: 

 

(27                    )                                                                                          E(I) =
DA

PT
+

B(P−d)T

2
   

 

in Equation (27), the first part shows the expected ordering cost and the second part shows the 

inventory maintaining cost, where T is the production length, which is calculated as follows: 

 
 T = E(T0|c1) × P(c1) + [E(T0|c2) + E(T1|c2)] × P(c2) + [E(T0|c3) + E(T1|c3)] × P(c3)  (28) 

 

Expected total cost 

The expected total cost of production cycle is calculated by adding the costs mentioned in 

the previous sections to the common costs in the classic EPQ model as Equation (29): 

 

ETC = E(I) + E(Q) + E(S) + E(M) (29) 

                                                                                        

Objective function and constraints  

The purpose of optimization model is to find the values of control chart parameters such as 

sample size (n), sampling variable interval (hs, hL) and control and warning coefficients (K, w). 

Also, the parameter of the EWMA chart (λ), the lower control limit (L) of the CRL_EWMA 

chart and the number of maintenance periods (M). Therefore, the expected cost of the 

production system is minimized and the statistical indicators (ARL0, ATS0, Α, β, α_CRL) stay 

at the desired level. Hence, by adding the statistical constraints to the cost function, the 

optimization model becomes as: 

 

(30)                                                        Min ETC = E(I) + E(Q) + E(S) + E(M)    

                                                                                                   Subject to ∶    

(a-30                                      )                                            m(hsP1 + hLP1) ≥ M   

(b-30                                              )                                            1 ≤ n ≤ nmax  

(c-30                                                )                                          ATS0 > ATSL    

(d-30                                                      )                                   ATS1 < ATSu 

(e-30                                                    )                                 Lmin ≤ L ≤ Lmax  

(f-30           )                                                            hs , hL, k , w , λ, n , m , L > 0      i = 1.2    

(g-30                                                           )                            n ,m , L ∈ integer 
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in terms of the economic design of the control charts, the sample size should be less than a 

predetermined value (it should be noted that the sample size is determined based on the 

sampling cost), as shown in Equation (30-a). In order to improve the statistical characteristics 

of the proposed model, the number of error signals should be limited without affecting the 

control chart performance. Hence, the constraint ATS0 > ATSL is added to the model in 

Equation (30-c)  where ATSL is a predetermined value . In addition, when setting ATS1to less 

than the present value of ATSu, the control chart can detect the occurrence of a determinable 

cause as quickly as possible.  

 

Model solve approach  

 

Particle swarm algorithm (PSO) 

We chose this optimization method due to the features which shall be mentioned as follows: 

1. PSO is a population-based search algorithm, this feature ensures that it is unlikely to fall into 

the local optimization trap. 

2. Since this algorithm uses probability transfer rules, it has high flexibility and good ability in 

the compact and indeterminate region. 

3. One of the unique features of this algorithm is to create a balance between local and global 

exploration in search area, which leads to overcoming untimely difficulties and increasing 

search capabilities. 

4. Unlike some other exploratory methods, the quality of PSO solution does not depend on the 

initial population. The algorithm starts to solve anywhere in the search space, ensuring 

convergence to the desired solution. 

While PSO presents notable advantages in terms of population-based search and flexibility, 

it is crucial to acknowledge the computational complexity of the underlying optimization 

problem. Despite the favorable features of PSO outlined earlier, our subject inherently 

possesses characteristics that align with NP-hard problems:  

1. Computational Complexity: The nature of the optimization problem under investigation 

exhibits computational complexity, and the search space involves intricate relationships and 

dependencies. This complexity contributes to the NP-hard classification, signifying that 

finding an optimal solution within polynomial time remains a formidable challenge. 

2. Non-Deterministic Polynomial-Hardness: The reliance on population-based search and 

probabilistic transfer rules, while advantageous for overcoming local optima and exploring 

complex regions, introduces non-deterministic aspects. The non-deterministic polynomial-

hardness (NP-hardness) of the problem becomes evident, as the algorithm faces challenges 

in achieving a solution with polynomial time complexity. 

3. Global Exploration and NP-Hardness: Despite PSO's ability to strike a balance between 

local and global exploration, the NP-hard nature of our subject introduces inherent 

difficulties. Achieving an optimal solution in a reasonable amount of time is inherently 

challenging due to the combinatorial or complex nature of the problem. 

4. Initial Population Independence and NP-Hardness: Although PSO exhibits 

independence from the initial population for solution quality, the underlying NP-hardness 

implies that the algorithm's efficiency in finding an optimal solution is inherently 

constrained. 

It is important to recognize that while PSO serves as a powerful optimization tool, the NP-

hard characteristics of our subject pose challenges that extend beyond the capabilities of 

heuristic algorithms. Acknowledging these complexities for understanding the inherent 

difficulty associated with solving our optimization problem is quite crucial. 

In the PSO algorithm, each of the potential solutions of the optimization problem is 

considered as a particle with two general characteristics in the solution space. These 
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characteristics are particle location and particle velocity. At first a population of particles with 

random locations inside the solution space is generated. Then, in order to get closer to the 

optimal solution, these particles move at a certain speed in subsequent repetitions. In each 

iteration, the velocity of each particle is updated based on the following three factors: 

• Current particle velocity (vi
t) 

• The best place for that particle to repeat this algorithm (pbest) 

• The best location between all the particles up to this iteration of the algorithm (gbest) 

The steps of PSO algorithm method are shown in Figure 7: 

 

 
Figure 7. PSO algorithm method 

 

Parameter setting 

 To solve the model using PSO method, the  algorithm parameters must first be estimated. It 

should be noted that the parameter setting is based on the research review  by [24].  

 In the proposed model, the answer is a nineteenth dimensional vector including xi
t =

[n,m, L, k, w, λ, hs, hl, ATS0, ATS1, CF, CP, CR, CV, CY, Q0, Q1, E, T1].The variables {n, L,m} are 

considered as discrete variables and the rest are considered as continuous decision variables. It 

is considered a specific interval for discrete variables, which is for n, interval of [nmin, nmax], 
L, interval of [Lmin, Lmax] and m, interval of [mmin, mmax] [24]:  
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(31  )                                                                    n ∈ {nmin, nmin + 1, nmin + 2, … , nmax}  

 

 Then, we take into account a continuous variable, for example R, which generates initially 

random values in the range [0,1]. Then these values are converted into continuous values by 

Equation (32) [24]. 

 

(32   )                                                     n = Min(nmin + ⌊(nmax − nmin + 1) × R⌋, nmax)  

  

This process is also performed for L and m variables. In the case of continuous variables, 

the values are selected from the range between the upper and lower limits randomly. The 

process of the algorithm is performed according to Figure 7 to reach the stop criterion. In 

general, the criterion for stopping PSO depends on the issue under consideration. This stop 

criterion is, in some instances, the achievement of a pre-determined maximum allowable 

repetition, while in some other cases, is the achievement of a predetermined error threshold in 

the g-best value, [24].  To implement PSO, the parameters of the algorithm are set as follows: 

• The solution space is equal to 150. 

• The number of iterations of the algorithm is considered equal to 300. 

 It should also be noted that the model was provided and solved by MATLAB software. 

 

Numerical examples 

 

The performance of the proposed model is illustrated by a modified example from [35]. A 

special food product company operates with a production volume of about 100 units per day. 

The manufacturer sells this product in the packages with normally distribution weight and mean 

of 1 kilogram and standard deviation of 0.2 kilogram. In each interval, n-sized samples are 

taken from the process, with a fixed sampling cost of $ 10 and variable sampling cost of $2. 

The required time to record each sample is 0.01 unit of time.  

 When the sample mean is in out-of-control condition, the synthetic EWMA chart shows a 

signal. The operator should check the accuracy of the out-of-control signal. The required time 

to validate the signal is about 1 unit of time and the cost of checking for each false alarm is $ 

200. If the alert is true, the system pays $ 5,000 reactive maintenance cost. In addition, for a 

Long-term sampling interval, if the process is in control state, the preventive maintenance 

repairs are done and the cost is $ 2400. The quality reduction index is about $ 100 for in control 

condition and $ 300 for out-of-control condition. The annual demand of this product is 10,000 

units and the daily demand is 80 units. The start-up cost is about $ 60 and the cost of maintaining 

of inventory is $ 10 per unit per year. The parameters values are summarized in Table 3.  
 

Table 3. Model parameters 

𝐧𝐦𝐚𝐱 𝐓1 E 𝐐1 𝐐0 𝐂𝐘 𝐂𝐕 𝐂𝐑 𝐂𝐏 𝐂𝐅 B A 𝐏 D d b A 
δ 

μ 
Paramet

er 

20 1 
0.0

1 

30

0 

10

0 

20

0 
2 

500

0 

240

0 

1

0 

1

0 

6

0 

10

0 

1000

0 

8

0 
1 

0.

5 
1 value 

 

Model solution results 

 In this paper, the model is solved by PSO algorithm with regarding of the adjusted 

parameters in Table 3. The solution results are showed in Error! Reference source not found.. 

 
Table 4. Model solution results 

𝐡𝐋 𝐡𝐒 m n w K 𝐄(𝐌) 𝐄(𝐒) 𝐄(𝐐) 𝐄(𝐈) 𝐄𝐓𝐂 variable 

3.0016 0.12 44 18 0.86 1.84 2400.7 184.0 139.4 1824.5 4548.6 value 

UWL LWL UCL LCL 𝛌 ARL1 ARL0 L 𝐀𝐓𝐒0 𝐀𝐓𝐒1 variable 

1.02 0.98 1.043 0.957 0.39 12.9 1183.8 8 857 8 value 
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 In Table 4, it can be seen that the total cost (ETC) is 4548.6, inventory cost (E(I)) is 1824.5, 

quality cost (E(Q)) is 139.4, repair and maintenance cost (E(M)) is 2400.7, inspection cost 

(E(S)) is 184.0. Also, the sample number is equal (n) to 18, the control limit coefficient (λ) of 

the EWMA chart is equal to 0.39, the weight coefficient (w) of EWMA chart is equal to 0.86 

and the control limit of the CRL chart (L) is reported to be equal to 8, for this solution. 

 

Results sensitivity analysis 

 In order to investigate the effect of model parameters or input variables estimation on the 

cost function, sensitivity analysis is performed. Many studies have used the sensitivity analysis 

method with the help of Taguchi test design, for example study of Guo Qing Cheng et al. [6]. 

It should be noted that the software used to implement this method is MINITAB. 

 In the context of our study, we use the unique attributes of the Taguchi method to explore 

and study the system sensitivity to different factors. It is considered three levels for the 

examined parameters as is presented in Table 5. L27 approach is selected to do the design 

experiments by Taguchi method, hence as a result, 27 experiments are reported.  
 

Table 5. Factor levels in Taguchi experiment design 

Level Q0 Q0 CF CV CY CP CR a b δμ 

1 50 200 5 2 200 240 4000 0.1 0.5 0.5 

2 100 300 10 5 400 1200 5000 0.5 0.7 1 

3 150 400 50 10 1000 2400 6000 1 1 1.5 

 

 Taguchi design is one of the known experimental designs to make purposeful changes on 

the model parameters. The results of L27 Taguchi design are shown in Table 6. 

 
Table 6. Taguchi Experimental Designs 

Run Q0 Q1 CF CvV CY CP CR a b δμ 

1 50 200 5 2 200 240 4000 0.1 0.5 0.5 

2 50 200 5 2 400 1200 5000 0.5 0.7 1.0 

3 50 200 5 2 1000 2400 6000 1.0 1.0 1.5 

4 50 300 10 5 200 240 4000 0.5 0.7 1.0 

5 50 300 10 5 400 1200 5000 1.0 1.0 1.5 

6 50 300 10 5 1000 2400 6000 0.1 0.5 0.5 

7 50 400 50 10 200 240 4000 1.0 1.0 1.5 

8 50 400 50 10 400 1200 5000 0.1 0.5 0.5 

9 50 400 50 10 1000 2400 6000 0.5 0.7 1.0 

10 100 200 10 10 200 1200 6000 0.1 0.7 1.5 

11 100 200 10 10 400 2400 4000 0.5 1.0 0.5 

12 100 200 10 10 1000 240 5000 1.0 0.5 1.0 

13 100 300 50 2 200 1200 6000 0.5 1.0 0.5 

14 100 300 50 2 400 2400 4000 1.0 0.5 1.0 

15 100 300 50 2 1000 240 5000 0.1 0.7 1.5 

16 100 400 5 5 200 1200 6000 1.0 0.5 1.0 

17 100 400 5 5 400 2400 4000 0.1 0.7 1.5 

18 100 400 5 5 1000 240 5000 0.5 1.0 0.5 

19 150 200 50 5 200 2400 5000 0.1 1.0 1.0 

20 150 200 50 5 400 240 6000 0.5 0.5 1.5 

21 150 200 50 5 1000 1200 4000 1.0 0.7 0.5 

22 150 300 5 10 200 2400 5000 0.5 0.5 1.5 

23 150 300 5 10 400 240 6000 1.0 0.7 0.5 

24 150 300 5 10 1000 1200 4000 0.1 1.0 1.0 

25 150 400 10 2 200 2400 5000 1.0 0.7 0.5 

26 150 400 10 2 400 240 6000 0.1 1.0 1.0 

27 150 400 10 2 1000 1200 4000 0.5 0.5 1.5 

 

 The results for decision variables and statistical properties in 27 determined experiments are 

given in Table 7-1, 7-2 and 7-3. 
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Table 7-1. The results for decision variables and statistical properties 

Run n L w M 𝐡𝐒 𝐡𝐋 

1 14 8 1.86 85 0.60 0.61 

2 4 7 3.85 85 0.59 0.68 

3 2 8 2.88 83 0.77 0.80 

4 4 14 3.66 84 0.70 0.75 

5 4 10 0.65 84 0.88 0.97 

6 20 9 3.46 70 0.62 0.80 

7 5 6 3.30 65 1.35 1.42 

8 16 6 4.17 75 0.83 0.90 

9 4 19 4.23 60 1.21 1.25 

10 3 14 3.63 70 0.95 1.24 

11 20 14 2.75 54 1.16 1.19 

12 4 7 3.86 20 1.21 1.29 

13 20 6 4.79 80 0.58 0.75 

14 7 7 1.26 18 1.07 1.11 

15 3 19 2.29 52 1.01 1.17 

16 5 17 1.49 17 0.28 0.85 

17 18 8 0.86 44 0.12 3.13 

18 20 6 2.05 87 0.63 0.70 

19 3 7 2.34 51 1.16 1.65 

20 5 7 3.44 18 1.81 1.87 

21 18 7 2.58 43 1.10 1.13 

22 4 19 4.67 56 0.71 0.94 

23 8 8 3.14 56 1.06 1.09 

24 8 9 1.09 75 0.76 0.96 

25 19 17 2.98 87 0.48 0.49 

26 6 7 2.12 87 0.57 0.70 

27 6 7 4.32 60 0.66 0.86 
 

Table 7-2. The results for decision variables and statistical properties 

Run 𝐀𝐓𝐒𝟎 𝐀𝐓𝐒𝟏 ARL1 ARL0 

1 518 7 927.5 10.1 

2 518 7 826.9 10.8 

3 631 7 865.4 8.7 

4 523 6 769.4 9.7 

5 515 6 630.5 8.8 

6 520 6 760.8 7.8 

7 749 5 552.2 6.2 

8 515 6 654.7 7.04 

9 514 6 437.5 5.06 

10 520 7 487.8 7.5 

11 516 7 452.3 6.004 

12 520 5 412.5 5.7 

13 522 5 784.01 9.04 

14 517 5 504.03 4.9 

15 517 7 485.6 9.3 

16 521 5 1215.6 12.7 

17 857 8 1183 12.9 

18 520 6 899.2 9.6 

19 521 7 340.2 5.9 

20 629 5 367.4 5.7 

21 521 8 483.4 7.1 

22 522 8 619.1 8.8 

23 519 7 514.02 5.4 

24 517 8 682.8 10.9 

25 520 3 1863.9 11.9 

26 519 6 954.4 13.1 

27 638 7 1051.2 10.3 
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Table 7-3. The results for decision variables and statistical properties 
Run 𝛌 LCL UCL LWL UWL ETC 

1 0.42 0.413 0.587 0.449 0.551 4998.7 

2 0.68 0.764 1.24 0.724 1.28 5161.9 

3 0.62 1.22 1.78 1.23 1.77 5235.3 

4 0.62 0.783 1.22 0.755 1.25 5579.7 

5 0.42 1.364 1.62 1.47 1.53 5036.6 

6 0.66 0.409 0.591 0.391 0.609 5621.2 

7 0.68 1.33 1.67 1.29 1.71 5006.8 

8 0.62 0.417 0.583 0.360 0.640 5553.8 

9 0.66 0.782 1.22 0.703 1.30 5394.2 

10 0.64 1.26 1.74 1.21 1.79 5679.1 

11 0.55 0.431 0.569 0.424 0.576 5615.04 

12 0.55 0.807 1.193 0.762 1.24 5803.7 

13 0.52 0.417 0.583 0.373 0.627 5790.9 

14 0.44 0.863 1.14 0.949 1.05 5234.2 

15 0.46 1.31 1.69 1.36 1.64 5598.7 

16 0.68 0.772 1.23 0.904 1.09 5097.8 

17 0.39 0.957 1.043 0.988 1.05 4548.5 

18 0.49 0.419 0.581 0.448 0.552 5644.1 

19 0.49 0.772 1.23 0.846 1.15 5400.02 

20 0.54 1.33 1.67 1.31 1.69 5379.9 

21 0.59 0.399 0.600 0.421 0.579 5804.7 

22 0.42 1.36 1.64 1.26 1.74 5509.9 

23 0.42 0.376 0.624 0.386 0.614 5517.7 

24 0.68 0.881 1.12 0.945 1.06 5759.4 

25 0.62 0.394 0.606 0.408 0.592 5705.5 

26 0.62 0.812 1.19 0.884 1.12 5476.7 

27 0.62 1.34 1.66 1.26 1.74 5082.9 

 

According to Table 7-1, the best values of the parameters are n=18, L=8, W=0.86, M=44,  

ℎ𝑆=0.12, ℎ𝐿=3.13. Also, in Table 7-2 the finest values of the parameters are equal to  

𝐴𝑇𝑆0=857, 𝐴𝑇𝑆1=8, 𝐴𝑅𝐿1=1183, 𝐴𝑅𝐿0=12.9. In addition to these, Table 7-3 shows λ=0.39, 

LCL=0.957, UCL=1.043, LWL=0.988, UWL=1.05 and ETC=4548.5 as the best values of the 

parameters.  Also, to show the effect of parameters values on the objective function, the 

diagrams from the analysis of Taguchi experiments are drawn in Figure 8. 

 

 
Figure 8. The main effects plot 

 

In sensitivity analysis, a main effect plot is a graphical representation that helps visualize the 

impact of individual factors (variables) on a chosen outcome or response variable while holding 

other factors constant. This type of analysis is particularly useful in understanding how changes 

in each factor influence the overall system. This plot typically shows the average response at 
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each level of a factor. Each line or bar represents a different factor, and the pattern of the 

lines/bars indicates the influence of that factor on the response. The diagram is drawn from 

Taguchi's experimental design. Based on the main effect diagram, the effective factors and the 

effective value of each factor are shown in the Table 8. 
 

Table 8. Proper values of the parameters 

Q0 Q1 CF CV CY CP CR a b δμ Parameter 

3 2 2 3 3 1 2 2 2 1 Level 

150 300 10 10 1000 240 5000 0.5 0.7 0.5 value 

 

Comparison the results  

To compare the results of the proposed method and show the performance of it, in the 

proposed model (Equation 30) for a certain amount of variability (δμ =  1), the optimal values 

are compared with the research of Salmasnia et al. [30]. It should be noted that in order to make 

a comparison, first we fixed ATS0 on the value of 500 and then compared the value of ATS1 of 

the two methods. The comparison results are given in Table 9. 
 

Table 9. Comparing the values of the proposed method with Salmasnia et al. 
𝐀𝐓𝐒0 𝐀𝐓𝐒𝟏 𝐡𝐋 𝐡𝐒 m n w K 𝐄𝐓𝐂 Research 

500 5 1.11 1.07 18 7 1.26 3.42 5234.2 Proposed method 

500 5.51 0.60 0.58 90 4 0.61 3.24 6995.74 Salmasnia et al. 2019 
 

Table 9, shows adding a synthetic feature to the chart (the lower limit of the CRL control 

chart), while increases the sample size, reduces the ETC and the number of inspection periods 

until preventive maintenance.  Also, the value of 𝐴𝑇𝑆1 in the current study is less than the 

method of Salmasnia et al. [30]. In addition, the expected cost values for the L27 Taguchi test 

designs in the proposed method are compared with Salmasnia et al. [30] in Table 10. 
 

Table 10. Compare expected cost for two models 
Run Proposed method Salmasnia et al. 

1 4998.7 6480.83 

2 5161.9 6860.73 

3 5235.3 7739.82 

4 5579.7 6114.61 

5 5036.6 6880.04 

6 5621.2 9214.03 

7 5006.8 6281.64 

8 5553.8 9350.54 

9 5394.2 8609.32 

10 5679.1 7878.61 

11 5615.04 7402.97 

12 5803.7 7181.83 

13 5790.9 9071.44 

14 5234.2 6280.51 

15 5598.7 7094.08 

16 5097.8 7869.9 

17 4930.5 5900.41 

18 5644.1 8440.22 

19 5400.02 7212.49 

20 5379.9 8029.97 

21 5804.7 7190.39 

22 5509.9 6925.35 

23 5517.7 9885.96 

24 5759.4 6236.64 

25 5705.5 8018.43 

26 5476.7 8084.69 

27 5082.9 5891.11 
 

According to Table 10, it can be seen the performance of the presented method is proper 

than the study by Salmasnia et al. [30]. 
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Conclusion and suggestions  

 

The present study described the economic design of integrated production planning model 

based on adaptive synthetic EWMA control chart and maintenance policies. In this research, a 

mathematical model was presented with the aim of minimizing the total cost. Also, particle 

swarm optimization algorithm was used to solve the model. To show the performance of the 

proposed method, a numerical example according to the research Stephen M et al. [33] was 

used. After solving the sample problem, the sensitivity analysis of the model parameters and 

effect on the objective function was studied. In additions, the comparison of results of the 

proposed method and Li Xue et al. [17] shows that this method has a superior performance to 

decrease of total cost and average time to signal index. 

In addition, this study provides the valuable inspirations for practical implementation in 

managerial decision-making. By reflecting on the key findings, several implications for the 

management can be stand out. The results of this research emphasize the vital importance of 

taking into account for implementing maintenance strategies. Managers in the industry can 

benefit from these inspirations to improve operational efficiency, reduce downtime and cost 

and optimize resource allocation. 

Based on the results of this paper, these suggestions are recommended to study for future:  

➢ Economic-statistical design of other control charts should be examined by determining the 

decision variables and maintenance policies.  

➢ The presented research should be studied to control the variability of the process. 

➢ The results of the presented model in different industries should be examined in conditions 

of uncertainty. 

➢ Other innovative algorithms such as neural networks, genetic algorithms, etc. can be used 

and compared to solve the optimization model. 
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