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Abstract

Developing and optimizing effective inventory systems considering realistic constraints | Keywords:

and practical assumptions can help managers remarkably decrease inventory and | Inventory, Imperfect
consequently supply chain costs. In this research, we propose a new variant of the multi- | Products, Repair,
item inventory model taking into account warehouse capacity, on-hand budget constraints, | Partial

imperfect products in supply deliveries and partial backordering where the products can | Backordering, Water
be converted into perfect products by a local repair shop. To deal with the proposed model, | Cycle Algorithm,
three solution approaches, including interior-point technique, as an exact method, and two | Interior-Point
metaheuristics based on Simulated Annealing (SA) and Water Cycle Algorithm (WCA), | Algorithm,

are proposed. Extensive computational experiments are conducted on different sets of | Simulated Annealing
instances. Using different measures such as RPD, PRE, and computational time, the | Algorithm
performance of the solution approaches is evaluated within different test instances. The
results show that the WCA outperforms the two other approaches and leads to the best
solutions in the proposed problem.

Introduction

In real-world inventory systems, supply deliveries may contain defective items, leading to
additional costs and reduced customer satisfaction. Traditional deterministic models often fail
to address the complexities introduced by such defects adequately. This study aims to develop
a more sophisticated inventory model that considers partial backordering and imperfect
products, extending the existing single-item models to a multi-item formulation. This extension
is crucial because it more accurately reflects the complexities of real-world inventory systems,
where multiple items with varying defect rates and backordering policies must be managed
simultaneously.

The specific problem addressed in this manuscript closely aligns with the issues studied by
Khalilpourazari et al. (2019a). However, our research introduces significant new contributions
by extending the single-item problem to a multi-item context. While Khalilpourazari et al.
(2019b) addressed a multi-item economic order quantity model with imperfect items, our study
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further enhances this by considering partial backordering and the interactions between multiple

items, which introduces additional layers of complexity. This multi-item approach, coupled

with partial backordering, has not been comprehensively studied in the literature, making our
study a novel contribution.

In previous studies, the complexities of this multi-item inventory model, we utilize a
combination of Simulated Annealing (SA) and the Water Cycle Algorithm (WCA).
Khalilpourazari et al. (2019b) utilized the interior-point method, Grey Wolf Optimizer (GWO),
and Moth-Flame Optimization (MFO) for solving their problem. In contrast, our research
leverages the complementary strengths of SA and WCA to tackle the optimization challenges
effectively. The hybrid application of these methods to a multi-item inventory model
considering partial backordering and imperfect products is novel and offers new perspectives
on solving such complex problems.

Furthermore, we have introduced modifications to the standard implementations of SA and
WCA to enhance their performance specifically for our problem. These modifications include
customized cooling schedules in SA and adaptive runoff coefficients in WCA, tailored to better
handle the non-linear and multi-modal nature of the multi-item inventory optimization problem.
These enhancements ensure more robust and faster convergence to near-optimal solutions
compared to traditional implementations. Unlike Khalilpourazari et al. (2019b), who focused
on the efficiency of MFO and GWO, our study emphasizes the balance between exploration
and exploitation in SA and WCA, making them particularly suited for high-dimensional and
complex optimization problems.

The main contributions of this study can be summarized as follows:

1. New Problem Formulation: We present a novel multi-item inventory model that integrates
partial backordering and imperfect products, expanding the scope of existing single-item
models.

2. Hybrid Optimization Approach: We propose a unique combination of SA and WCA, along
with specific modifications to these algorithms, to effectively solve the complex
optimization problem.

3. Performance Improvement: Our customized SA and WCA implementations demonstrate
superior performance in terms of solution quality and computational efficiency compared to
traditional methods.

Comparison with the research of Khalilpourazari et al. (2019b):

In contrast to the work by Khalilpourazari et al. (2019b), which used stochastic operational
constraints and focused on exact and meta-heuristic methods like GWO and MFO, our study
focuses on the practical implications of partial backordering and defective items in a multi-item
setting. While their study performed well in small to medium-sized problems, our research aims
to extend this to larger, more complex inventory systems by using the hybrid SA and WCA
approach, which provides robust and scalable solutions.

By addressing these new dimensions, our research provides a comprehensive framework for
inventory management that better mirrors real-world conditions and offers practical solutions
for businesses dealing with multiple items and imperfect supplies. These contributions not only
extend the current body of knowledge but also pave the way for further research and practical
applications in inventory optimization.

In summary, this study contributes to the literature by not only addressing the complexities
of inventory models with partial backordering and imperfect products but also by demonstrating
the practical utility of SA and WCA in solving such problems. We believe that the insights
gained from this research will pave the way for future studies and practical applications in
inventory management, leading to more efficient and cost-effective operations.
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Literature Review

Khan et al. (2011) presented an inventory model with defective products, taking into account
the imperfectness of the inspection process [4]. They assumed that the operator may commit
type I and Il errors during the inspection process. They also proposed that the imperfect items
have been classified as perfect ones and used to meet the customers’ demand, would be
immediately returned to the inventory system by the customers. Hsu and Hsu (2013) improved
the formulation presented by Khan et al. (2011) by considering the allowability of backorders
in the EOQ model [5]. They showed the convexity of the total profit function and presented
simple approaches to solve the model. Skouri et al. (2014) extended an inventory model
considering imperfect supply lots [6]. They proposed that the supply deliveries are checked
upon arrival, and if any defective item is found, the entire lot will be rejected. The rejected
batch would be sent back to the supplier, and the supplier should deliver the perfect supply
batch in the next period. Taleizadeh et al. (2016) studied the EOQ model in the presence of
defective items. They supposed that the defective items could be converted into perfect products
by sending them to a local repair shop. They have considered defective products and partial
backordering [7]. Khalilpourazari et al. (2019a) developed a new mathematical model for multi-
item model considering defective supply batches and partial backordering under uncertainity.
The model aims at minimizing the total inventory costs by determining optimal values of the
decision variables including time interval between successive perfect supply deliveries. Basic
Chance Constraint Programming (BCCP) and Robust Fuzzy Chance Constraint programming
(RFCCP) approaches have been utilized to deal with the uncertain parameters of the
mathematical model [8]. In another work, Khalilpourazari et al. (2019b) proposed a new version
of multi-item EOQ model with imperfect items in supply deliveries and uncertain warehouse
capacity and budget constraints. They assumed that the inspection process to classify the items
is not perfect and may contain two types of error: Type-I and Type-Il. Their proposed model
determined the optimal order and back order sizes of the items to achieve maximum total profit.
Three different solution methods including the interior-point and two meta-heuristics named
grey wolf optimizer (GWO) and moth-flame optimization (MFO) algorithms were utilized to
solve the developed constrained nonlinear problem [9].

Taheri-Tolgari et al. (2019) addressed a production system with the defective quality process
considering partial backlogging under uncertainiy, inspection errors and preventive
maintenance. They considered input parameters as a triangular fuzzy environment, and the
output parameters of the model have been solved by the Zadeh's extension principle and
nonlinear parametric programming [10].

Nobil et al. (2020) generalized the inventory model presented by Salameh and Jaber (2000)
by proposing the optimal reorder point, based on the specifications such that inventory systems
do not suffer from shortage. Their model helps managers and researchers to design the
inventory systems considering certain rates of imperfect production, lead-time, and system
costs to maximize system efficiency and profit [11]. Taheri-Tolgari and Mirzazadeh (2021)
represented a multi-item single source production quantity model for random imperfect items
with repair failure, inspection errors, sales return, scraps, and backordering. Their study aimed
at determining the optimum cycle length and the optimal backordered quantity for each item to
minimize the total expected value cost [12].

Table 1 shows some researches focusing on the EOQ models with inperfect products and
indicates the place where our research stands in the related literature. In this paper, we introduce
a multi-item inventory model with defective products in deliveries considering some realistic
operational constraints such as partial backordering, warehouse capacity and on-hand budget
constraints.

Many industries face different types of products in real applications. Therefore, considering
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different items in the mathematical model can significantly improve the model’s applicability,
which has been considered in this research. Also, inventory systems face many operational and
physical constraints, in practice, which can meaningfully reduce the model solution space.
Ignoring such constraints may lead to an unrealistic model, and consequently infeasible
solutions in real-life cases. This research proposes two significant operational constraints in
inventory systems. The first one is the limited capacity of warehouse to keep products in stock.
The second one is the on-hand budget constraint where the retailer has a limited budget to
purchase items at the beginning of the planning period.

This study is an extension of the work presented by Taleizadeh et al. (2016), in which a
multi-item EOQ model is developed with the presence of defective items in supply deliveries,
partial backordering, warehouse capacity and on-hand budget constraints [7]. The interior-point
technique, as an exact method, and two metaheuristics based on Simulated Annealing (SA) and
Water Cycle Algorithm (WCA) have been used. The proposed mathematical model aims at
determining the optimal order and back order sizes of the items in order to maximize the total
profit.

Table 1 A review of the literature of inventory models

Publicati Author Multi-ltem Constraint Back Inspectio Inspection Remark(s)
on Orders n errors
[1] Salameh(2000) No No No No Yes Randon;la?:fectlve
[22] Papgc(:)lg)réitos No No No No Yes Defective items
[23] Chung(2006) No No No No Yes Delay in payments
[24] Wee(2007) No No Yes No Yes Screening cost
[3] Eroglu(2007) No No Yes No Yes Scrap items
0 0 0 0 es n-house inspection
[25] Ko?gga(;‘;?ras N N N N Y In-house inspecti
[26] Maddah (2008) No No No No Yes Several k?z;ches ina
[27] Chung(2009) No No No No Yes Two warehouses
[28] Lin(2010) No No No No Yes Discount
[29] Khan(2010) No No No No Yes Learning effect
[30] Roy(2011) No No No No Yes Partial backordering
[4] Khan(2011) No No No Yes Yes Returns
Permissible delay in
[31] Ouyang(2012) No No No No Yes payments
[5] Hsu(2013) No No Yes Yes Yes Returns
6] Skouri(2014) No No Yes No Yes |§1?:rcl‘22tr]|g{s
[7] Taleizadeh(2016) No No Yes No Yes Repair
8] Kha'(';%‘i‘g)aza” Yes Yes No No No Disruption
9 Khalilpourazari Yes Yes Yes Yes Yes optimization
(2019)
. preventive
[39] Taheri(2019) No No Yes Yes Yes maintenance
[10] Taheri(2019) No No No No No Unce”p""r'i’;:"o‘””
[32] Tahami(2019) No No No No No Lead time
[11] Nobil(2020) No No No No No Reordering
[33] De(2021) No No No No No Fuzzy reasoning
[34] Li(2021) No No No No No Customer credit
[35] Caligkan(2021) No No No No No Deteriorating items
[36] Paul(2021) No No No No Yes G pseer:ggr%t%r:r:ﬁan ]
[12] Taheri(2021) Yes No Yes Yes Yes rework failure
. crisp and fuzzy
[37] Taheri(2022) No No No Yes Yes approach
[38] Masoudi(2022) No Yes No No No Evidence reasoning
[40] Alamri(2022) No No No Yes Yes Learning Effect
[41] Asadkhani(2022) No No No Yes Yes Learning Effect
. Two-stage credit
[42] Kishore(2022) No No No Yes Yes financing
Current 2024 Yes Yes Yes No Ves Repair and partial

Research backlogging
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The mathematical model presented in this research can be applied in any industries dealing
with a different number of various products while ensuring the perfectness of the supply
deliveries. This paper is organized as follows. The proposed problem is described and
formulated in Sections 2. In Section 3, we provide efficient solution methodologies to address
the problem. The computational results are represented in Section 4. Finally, the paper ends
with conclusions and interesting future research suggestions in Section 5.

Problem definition

Let us consider a buyer who purchases some items from a supplier. The supplied batch (lot)
may contain defective products because of quality inspection errors, inappropriate
transportation, etc. The buyer inspects the whole lot upon arrival to detect the defective items
which should be replaced by perfect ones. Since the supplier is far from the buyer, and due to
high ordering costs and lead time, it is impossible to make a new order. Instead of making a
new order, the buyer prefers to repair the defective products. In this research, it is assumed that
all the defective items can be repaired. The defective items are removed from the batch and sent
to a local repair facility. After the reparation period, the buyer will receive the repaired products
as a single batch. Also, multiple items and several operational constraints including warehouse
capacity and on-hand budget constraints have been considered.

Mathematical modeling

In this section, we present the research methodology employed to address the complexities
of multi-item inventory optimization considering defective products and repair processes.
Additionally, we provide a detailed description of the mathematical model developed to
formulate the problem.

Our research focuses on a scenario where a buyer purchases items from a supplier, and the
supplied batch may contain defective products due to various factors such as quality inspection
errors and inappropriate transportation. Upon the arrival of the batch, the buyer conducts a
thorough inspection to identify defective items, which are then sent to a local repair facility for
necessary repairs. It is assumed that all defective items can be repaired, and after the reparation
period, the repaired products are returned to the buyer as a single batch.

In addition to defective products and repair processes, our model considers multiple items
and several operational constraints, including warehouse capacity and on-hand budget
constraints. The inspection process, characterized by a rate denoted as X, is conducted upon

arrival by the buyer to identify defective products. The inspection period is determined by %

and defective goods are subsequently returned to the repair facility. After repair and
transportation, the restored products become available to meet customer demands. It is
noteworthy that the inspection rate x surpasses the demand rate.

The mathematical model developed to address this scenario incorporates decision variables
to represent ordering and backordering quantities for each item, along with binary variables to
indicate the presence of defective items. Constraints are formulated to ensure adherence to
inventory levels, warehouse capacities, and budget constraints throughout the planning horizon.
The objective function aims to maximize total profit, considering costs associated with
ordering, holding, repairing defective items, and potential lost sales due to backordering.

To solve the formulated mathematical model, we introduce modifications to the standard
implementations of Simulated Annealing (SA) and the Water Cycle Algorithm (WCA). These
modifications include customized cooling schedules in SA and adaptive runoff coefficients in
WCA, tailored to better handle the non-linear and multi-modal nature of the multi-item
inventory optimization problem. By emphasizing the balance between exploration and
exploitation in SA and WCA, our study ensures more robust and faster convergence to near-
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optimal solutions compared to traditional implementations. Figure 1 shows the inventory level
over time.

Inventory
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Fig. 1 The inventory level over time Taleizadeh et al. (2016)

Let us introduce the following parameters and decision variables:

Parameters:
t, : inspection time
: repair time
: transportation time of defective items

: demand rate

. reparation rate

- inspection rate

: the fraction of imperfect products

: fixed transportation cost
: buyer's ordering cost
: repair setup cost

: holding cost

- holding cost at the repair
- holding cost of a renovated item

> unit inspection cost

> unit cost

- material and labor cost to repair a product
: unit transportation cost

- unit repair cost charged to the buyer

: cost of lost sales

- backorder cost

> unit price

: markup percentage by the repair shop

: fraction of backordered demand

f (p) : probability density function of imperfect products ( p)
E[x] :expected value of a random variable
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Decision variables:
T : cycle time (time unit)
F : percentage of duration in which inventory level is positive (%)

First, the calculation of the total inventory profit function is presented. At the beginning of
the inventory cycle, the maximum inventory level is accrued, which is equal to FTD. In the
beginning, the buyer inspects the supplied batch upon arrival at rate x. Thus, the inspection time
isequal to t, = FTD/ x . After the inspection process, pFTD items are found as defective ones.

The defective items are then sent to the reparation site. The repair time can be calculated as
t, = pFTD/R+t, . Therefore, the repair cost is equal to (1+ m)H > ;ié} (¢, +2c,+ h'tR}.
Yo
Based on the inventory behavior figure, the total holding and backordering costs can be
calculated as follows:

chh((l—p) F'TD T (FD) )+hR (pF) DT "
2 X 2
sco 2L L paoF)D @

Based on the above-mentioned formulations, the maximization of the total inventory profit
is as follows:

ETP(T,F) = PD(F + B(1 - F))

— n)2\F2 22727
§+Cu(FD+3(1—F)D)+CiFD+hE((l p))FTD+E(p)DFT]

2 X
s+ 24 E(pz)h’D2F2T) (3)

- +(1+m)< + E()FD(c; + 2¢; + h'ty) +

E(p>)DF?’T  B(1—F)*TD
| "lr 2 + 1 2

X

+9(1-p)A-F)D

Although the above mathematical model is applicable in many industries, it still includes
some unrealistic assumptions that can significantly restrict the model’s applicability. First, the
model considers the single-item EOQ model. However, many industries face different types of
products in real applications. Therefore, considering different items in the mathematical model
can significantly improve the model’s applicability. Second, the presented model did not
consider any constraints such as warehouse capacity and economic constraints. For instance,
the warehouse capacity is limited in the industry to keep products in stock. Therefore, it is
needed to consider the warehouse capacity constraint as an operational constraint in the model.
Since these constraints significantly affect the space model, the solutions provided by the model
presented by Taleizadeh et al. (2016) may be infeasible in real cases [7]. The second important
constraint which highly influences the total order quantity is the on-hand budget constraint. In
real-world applications, the retailer has a limited budget to purchase items at the beginning of
the planning period. Thus, it is required to reflect this constraint in the formulation to represent
a more realistic situation.

In the following, we try to extend the model presented by Taleizadeh et al. (2016) to a multi-
item inventory system, which considers defective items in the supply batches and repair options
[7]. In this regard, the objective function is modified as:
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ETP(T' F)

ZPD (F+8,(1-F))

Zn:%+ZCuJ(FD +B;(1— F)D)+ZCUFD +Z

2 -
— ) )BT, +Ej(Pj)Dj25'2Tj2

2 X;
1=1 j=1
sj + 24 , E;(p;?)h;' D;*F;*T
J 1 1 j

+zh BT z M+29(1—m<1 7D,

@)

where index j is related to different items and n indicates the total number of items.
To consider the operational constraints, we need to derive the warehouse capacity constraint.
As itis clear from Figure 1, the maximum inventory level for each product is equal to F;D;T;.

Let suppose that each item requires 7, units of warehouse space for keeping the product in
stock. Therefore, the total warehouse capacity constraint can be presented as follows:

2771 F,D;T, <Cap 5)

j=1

where Cap indicates the total existing warehouse capacity.

The second operational constraint is the on-hand budget constraint. From Figure 1, it is clear
that the retailer receives a single batch for each item, including F,D;T; + B;(1-F;)D;T; units.
Therefore, considering the price c, for each item-unit, the total on-hand budget constraint can
be formulated as follows.

S cu(FDT + 0~ F)DT) < B o
j=1
where the parameter Budget presents the total on-hand budget amount to purchase items at the

beginning of the planning cycle. The developed multi-item EOQ model with defective items
and repair options in a multi-item inventory system with the proposed operational constraints
can be presented as follows:

r, K \
ZT_I+ZCUJ(FJDj+ﬁj(1_Fi)D) CUFJDJ
=t j=1

=

+ihi{El ((1_p12)Z)FJZTIDI + £ (,0 )DJ FJ T| :l
j=1

X,
i

Max ZZZH:PJ’DJ’(FJ’ +5 (1_':1))_

(7
- d [+ 2A h'D’FT
+Z(l+m1)[s'+2A' +E(p,)FD, (¢, +2¢, +ht )+ —J( /) D/F ‘]

T " X

j=1 i i

. E(p')DFT o B(1-F)TD
+th J(pl )2 i J+Z”ﬁ1(1 Z)TIDI+29(1_ﬂ,)(l_FJ)DJ
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Solution methods

Interior-Point method

To optimally solve the proposed problem, an exact solution approach, called the interior-
point technique, is applied. This method is one of the most frequent solution approaches in
resolving challenging Non-Linear Programming (NLP) models (Byrd et al. (2000), Byrd et al.
(1999) and Waltz et al. (2006) [13-15]).

Simulated annealing

Simulated annealing (SA), proposed by Kirkpatrick et al. (1983), is an eminent metaheuristic
algorithm to solve challenging optimization problems [16]. Tang (2004) and Yang (2010)
claimed that SA achieves excellent solutions for many problems [17,18]. The pseudo-code of
the SA is as follows:

Algorithm 1 Simulated Annealing algorithm
1: Set the parameters of Simulated Annealing
2: Create an initial solution
3: it<«—current iteration

4: Maxit «<—maximum number of iterations
5: Ct «<— Current temperature
6
7
8

. Ft <—Final temperature
: while Ct>Ft and it<Maxit
Update the position using Neighborhood

9: C=Calculate the change in objective function value
10: if the new solution is better

11: Accept the new solution
12: end if

13: p = exp[— C/Ct] > rand(0,1)
14: if p > rand(0,1)

15: Accept the new solution
16: end if

17: Update the best solution

18: Iteration=iteration+1

19: end while

Water cycle algorithm

Eskandar et al. (2012), for the first time, suggested the Water cycle algorithm (WCA) which
inspires the water cycle and the flow of streams and rivers to the sea [19]. This approach starts
by creating an initial population. Each solution in the WCA is called a stream or raindrop. In
this research, a raindrop is defined as Raindrop =[T,,...T ,F,...F].

After creating the initial population, the WCA sorts the ralndrops according to their fitness
value. Then, the best solution is considered as the sea. The (Nsr-1) of the sorted population are
regarded as rivers and streams. We note that Nsr is a parameter of the WCA. The WCA updates
the location of the solutions to the position of rivers and the sea, respectively. To perform
updating, the WCA uses the following operator.



206 Babazadeh & Mirzazadeh

x;;rrl = x.étr +RXCX (x:;iv - xsl:tr) (12)

where R and C are coefficients and x%,, and x}};* show the location of the stream before and
after the update, respectively. Eskandar et al. (2012), Sadollah et al. (2015) showed that the
WCA could achieve better solutions than the other algorithms in various unconstraint and
constrained optimization problems [19, 20]. The pseudo-code of the utilized WCA of this paper
to solve the problem at hand is as follows.

Algorithm 2 Water cycle algorithm (WCA)
set the parameters of WCA
. for i=1:number of raindrops
Create a raindrop
Calculate the objective function
end for
sort the raindrops in non-decreasing order of fitness
: Sea <—the first raindrop

© NoegkwbR

. Rivers <— N, -1

9: Stream <— N,- N

10: Determine the flow intensity of streams to rivers
11: While iteration < max it

sr

12: Updating process

13: Fval-stream=0bj_new stream

14: for each raindrop

15: if Fval-stream < Fval-river
16: River= the new stream

17: if Fval-stream < Fval-sea
18: Sea= the new stream
19: end if

20: end if

21: if Fval-river < Fval-sea

22: Sea=river

23: end if

24: end for

25: for each river

26: if the distance between the sea and river < d,mx
27: create new streams

28: end if

29: end for

30: Decrease the dm

31: end while

In response to the insightful suggestion by the reviewer, we recognize the potential value in
reframing the problem as a stochastic optimization problem. This approach allows for the
integration of probabilistic elements such as demand variability and lead time uncertainty into
the decision-making process, thereby enhancing the robustness and adaptability of inventory
management policies.

To address the stochastic nature of the problem, we propose to extend the current
deterministic optimization framework to incorporate probabilistic constraints and objectives.
Specifically, we intend to model demand fluctuations and lead time uncertainties using
probability distributions, such as normal or exponential distributions, to capture the inherent
variability in real-world inventory systems.

Building upon existing optimization methods, both exact and approximate, we aim to adapt
these techniques to solve the stochastic optimization problem effectively. For instance, by
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relaxing capacity or budget constraints, we can explore the application of Chance-constrained
approaches or Lagrangian dual relaxation methods. These methods offer systematic ways to
handle uncertainty while optimizing inventory policies, leveraging the rich literature on
stochastic optimization techniques.

The proposed extension of the problem to a stochastic optimization framework represents a
significant research contribution to the Inventory and Operations Management (OM) literature.
By investigating new solution methodologies tailored to stochastic environments, we can
provide practical insights and tools for decision-makers to optimize inventory policies under
uncertainty. Furthermore, this research direction aligns with the growing demand for robust and
adaptive inventory management strategies in dynamic and unpredictable business
environments.

In conclusion, the integration of stochastic optimization techniques into our research
framework offers a promising avenue for future exploration and contribution to the field. By
leveraging probabilistic models and innovative solution methods, we can address the inherent
uncertainties in inventory systems and enhance decision-making capabilities for practitioners
in various industries.

Performance evaluation and numerical examples

In this paper, we consider three criteria utilized to assess the efficiency of the proposed
algorithms. For small-size instances, the best solution is determined using the interior-point
method. In this case, the Percentage Relative Error (PRE) shows the gap between the solutions
obtained by metaheuristics and the exact method as follows [21]:

PRE = %202 » 100, (13)

where Alg,,; is the solution of the metaheuristic algorithms, and O is the optimal solution.

Since the interior-point method is not able to obtain the optimal solution in a practical
computational time for large-size instances, the Relative Percentage Deviation measure (RPD)
Is used to compare the efficiency of the algorithms.

—Ming;

RPD = oL x 100, (14)

Nsol

where Ag,,; is the solution obtained by WCA and SA, and Ming,, is the best solution determined
among these two algorithms.

The other important measure to evaluate the effectiveness of the proposed approaches is the
computational time (CPU-Time). In the next section, various test problems with different sizes
are solved to evaluate the performance of the algorithms using the above-mentioned measures.

Small-size test problems

In the following, a different number of products are considered. In each problem (with a
specific number of products), four randomly generated test problems are considered. Then, each
problem is resolved by interior point to find the optimal solution. Also, each problem is resolved
ten times (repetition) using WCA and SA. Table 2 presents the computational results.

As it can be seen in Table 2, the two meta-heuristic algorithms find near-optimal solutions.
Although the results show that the two algorithms can efficiently solve the problem, more
examination is required to draw a consistent conclusion. First, by increasing the number of
products in the problem, the interior-point method needs more computation time. It means that
solving the constrained non-linear model of the problem using this method becomes too hard
for large sizes.
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Table 2 Computational results of the small instances

# of Interior-Point SA WCA
item  Run Opt PREay Std CTar PREa Std
S Sol CT \ Best worst Dev ) ) Best worst Dev CTavg
26901 -
131E- -7.43E-  6.74E- 041  1.34E- 6.71E- 0.26
1 3301  19.664 o1 09 01 0.253 5 o1 7%3{;5 o1 gsq 0422
22092 3.79E-  -1.69E-  1.27E 0.40 - ; ; 3.16
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To make the results more comprehensible, the schematic view of the performance of the

algorithms is presented in figures 2-5.
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One of the most commonly used approaches to find a significant difference between
metaheuristics and exact methods is to use single-factor ANOVA. Therefore, in this research,
single-factor ANOVA is employed to disclose significant variances among algorithms. For this
purpose, first, the CPU-Time measure is considered, and the ANOVA test is carried out to
compare the average computation times. Table 3 shows the outcomes of the ANOVA for the
CPU-Time measure.

Table 3 Results of ANOVA for CPU-Time measure

Groups Count Sum Average Variance
Interior-Point 280 147333.5 526.191 479149.9
SA 280 609.4477 2.176599 1.656705
WCA 280 416.9529 1.489117 0.524729
Source of Variation SS df MS F P-value F crit
Between Groups 51324335 2 25662167 160.6724 8.8E-60 3.00648
Within Groups 1.34E+08 837 159717.4
Total 1.85E+08 839

Since the p-value is smaller than 0.05, there is an essential variance between the utilized
methods considering computation time measure with a 95% confidence level. Since there are
more than two groups in the test, a post hoc analysis is needed to find out which algorithms are
performing significantly different. For this purpose, Tukey’s multiple comparison test is
utilized to find significant differences. Table 4 presents the results of Tukey’s HSD.

Table 4 Results of Tukey’s HSD test for CPU-Time measure

leffrence of Difference of _SE of 95% CI T-value  Adjusted P-Value
evels Means Difference
SA - Interior-Poi -524.0 33.8 (-603.1, -445.0) -15.51 0.000
WCA - Interior-Poi -524.7 33.8 (-603.8, -445.6) -15.53 0.000
WCA - SA -0.7 33.8 (-79.7, 78.4) -0.02 1.000

From Table 4, it is evident that the interior-point method performs meaningfully diverse
from SA and WCA in terms of computation time measure. Considering the average
computation time of the algorithms from Table 3, it is clear that the SA and WCA can perform
significantly better than the interior-point method in the resolution of the complex mathematical
model in less computational time. Also, the WCA with less average and variance computation
time performs slightly better than the SA since there is no significant difference between SA
and WCA (refer to Table 4). Figures (6-7) show detailed information about Tukey’s HSD test.
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The other important measure that shows the SA and WCA's efficiency and effectiveness
compared to the interior point is the PRE measure. It is essential to mention that in some cases,
the average and best PRE of the SA and WCA are negative. In these cases, the SA and WCA
were able to find a better solution than the interior-point method. This is due to the complexity
and existence of many local optima’s in the problem, which significantly decrease the efficiency
of the interior-point method. In this section, single-factor ANOVA is applied to discover
important variances between SA and WCA at a 95 percent confidence level considering the
average PRE measure. Table 5 presents the results.

Table 5 Outcomes of ANOVA for PRE

Groups Count Sum Average Variance
Average PRE SA 280 258.0277 0.921528 1.332824
Average PRE WCA 280 77.17516 0.275626 0.531715
Source of Variation SS df MS F P-value F crit
Between Groups 58.4065 1 58.4065 62.6498 1.34E-14 3.858178
Within Groups 520.2064 558 0.932269
Total 578.6129 559

From the results, it is evident that the WCA performs significantly better than the SA in
solving the problem and finding a very near-optimal solution since the p-value of the AVONA
test is less than 0.05, which shows a significant difference between algorithms. The WCA with
an average of 0.275 and a variance of 0.531 performs significantly better than SA. Although
the above-mentioned results show the superiority of the WCA in solving the problem, it is
worthwhile to consider the best and worst-case analyses of the algorithms. In this regard, single-
factor ANOVA is used to find significant differences considering the best and worst PRE. Table
6 presents the results.
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Table 6: Results of ANOVA for best and worst PRE measures

Groups Count Sum Average Variance P-value

Worst PRE SA 28 57.091 2.038964 2.043585 0.000584
Worst PRE WCA 28 26.004 0.928714 0.540294 '

Best PRE SA 28 1.3487 0.048168 0.406541 0.056304
Best PRE WCA 28 -7.9126 -0.28259 0.398565 )

In the best-case analysis, the p-value of the test is higher than 0.05; thus, there is no
significant difference between SA and WCA. However, the WCA with a better average
performs slightly better. In the worst-case analysis, the value of the p-value in the ANOVA test
reveals that the WCA achieves better solutions compared to the SA in obtaining near-optimal
solutions. This shows that the WCA can avoid trapping in local optima.

Large-size test problems

In this section, we consider large-size test problems (more than 40 products). In each
problem (with a specific number of products), four randomly generated test problems are
considered. Then, each test problem is solved using SA and WCA algorithms ten times
(repetition). Table 7 presents the computational results.

Table 7 Computational results of large instances

4 of SA WCA
items Run RAF:? Best W(; rs gte(\j/ CTay RPDayg Best  worst [S)g\j/ CTavg
1 0.385 0 0.903 0.269 6.823 0.017 0 0.169 0.051 3.638
40 2 0.602 0 0.963 0.316 6.475 0.007 0 0.075 0.022 3.624
3 0.316 0 0.749 0.237 6.425 0.006 0 0.061 0.018 3.499
4 0.455 0 0.841 0.236 6.372 0.007 0 0.074 0.022 3.48
1 0.145 0 0.409 0.156 7.179 0.118 0 0.31 0.098 3.848
45 2 0.118 0 0.401 0.157 7.013 0.057 0 0.201 0.072 3.797
3 0.697 0.176 1.119 0.338 7.035 0 0 0 0 3.753
4 0.596 0.205 1.156 0.264 7.136 0 0 0 0 3.859
1 0.127 0 0.468 0.167 8.179 0.079 0 0.386 0.119 4.332
50 2 0.097 0 0.445 0.148 7.819 0.072 0 0.212 0.076 4,192
3 0.04 0 0.172  0.058 7.738 0.039 0 0.123 0.045 411
4 0.278 0 0.532 0.189 7.851 0.015 0 0.153 0.046 4,243
1 0.144 0 0.373  0.147 9.795 0.065 0 0.377 0.13 5.128
55 2 0.057 0 0.21  0.063 8.515 0.116 0 0.755 0.233 4,554
3 0.071 0 0.337 0.103 8.562 0.025 0 0.102 0.039 4.618
4 0.179 0 0.453 0.188 8.81 0.053 0 0.239 0.081 4,726
1 0.07 0 0.227 0.074 10.103 0.034 0 0.221 0.068 5.273
60 2 0.221 0 0.515 0.186 9.307 0.022 0 0.101 0.037 4,909
3 0.213 0.014 0.496 0.159 9.303 0 0 0 0 5.005
4 0.057 0 0.153 0.058 9.481 0.005 0 0.033 0.01 5.036
1 0.076 0 0.249 0.077 10.94 0.047 0 0.241 0.079 5.724
65 2 0.026 0 0.079  0.03 10.038 0.02 0 0.078 0.031 5.299
3 0.139 0 0.325 0.124 10.225 0.034 0 0.209 0.062 5.438
4 0.119 0 0.439 0.127 10.121 0.018 0 0.127 0.038 5.416
1 0.008 0 0.062 0.019 11.434 0.039 0 0.114 0.034 5.917
70 2 0.053 0 0.221 0.069 10.922 0.041 0 0.162 0.055 5.805
3 0.017 0 0.064 0.021 10.88 0.036 0 0.168 0.062 5.776
4 0.123 0 0.285 0.115 11.01 0.013 0 0.123 0.037 5.864

From Table 7, we can infer that the two algorithms perform very competitively. In other
words, in some cases, the SA can find a better solution, and in some cases, WCA outperforms.
To present a graphical representation of the outcomes, the following figures are presented.
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Since the performance of the two algorithms is competitive, more analyses are needed. As
in the previous section, the ANOVA test on average is performed for each measure at a 95
percent confidence level to find significant differences among algorithms. Table 8 presents the
results of the ANOVA test of different measures.

Meanwhile, the p-value on average RPD is smaller than 0.05 which means a substantial
difference between SA and WCA in solving the composite model. Considering the average and
variance of the average RPD measure, it is clear that the WCA can discover better solutions
than SA. In the best RPD measure, the p-value is higher than 0.05, which shows that both
algorithms can find near-optimal solutions to the problem. Considering the results, the WCA
achieves better solutions compared to SA. In addition to the above criteria, it is vital to assess
the robustness of the algorithms. For this purpose, we consider the worst RPD and std of the
RPD measures. These measures show which algorithm can obtain near-optimal solutions in all
the repetitions. Based on the results, the p-value of the ANOVA test of both measures shows
significant differences among algorithms. Therefore, we can infer that the WCA is significantly
more robust than the SA in avoiding trapping in local optima. The results show that the WCA
uses updating operators to update the particles' position in the solution space, which enables the
WCA to perform very well in both exploration and exploitation phrases. Based on the results,
the WCA is the best approach to solve the problem in near optimality in small and large test
problems. In addition to the measures mentioned above, the CPU-Time measure has its
importance. The ANOVA test results reveal that the WCA can solve the problem in large sizes
significantly better than the SA. Based on the results, the WCA with less average and variance
of the CPU-Time criterion achieves better results than SA in terms of computation time.

Table 8: Results of ANOVA for different measures

Measure Groups Sum Average Variance P-value
AverageRPD  USSOWOA  oses  oomsiresi  ooooaise  SSTSEDS
WorStRPD \CUOSDWOA 4814 oa7ioosri  ogpiavas  OTSMEEDS
Best RPD BlzstStR F;E)D V\?CAA 0%95 0.014%07143 0.0025004618 0141627752
StdRPD SURPDWOA 1560 00uaoms7  000kc0sy  L2SHOE05
CPUTIMERPD  col)'ring oA 13086 asraeresrs  oesrasress 17407
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Conclusion

The conclusion of the research highlights the development of a novel formulation of the
Economic Order Quantity (EOQ) model to address the presence of defective products in supply
deliveries and partial backordering, where defective items can be repaired locally. This study
aimed to address gaps in the literature by incorporating realistic assumptions into the
mathematical model. By extending the model to a multi-item inventory system and considering
various operational constraints such as warehouse capacity and on-hand budget constraints, the
research enhances the model's applicability.

The first significant contribution lies in extending the EOQ model to accommodate imperfect
products and partial backordering, which is crucial given the prevalence of such scenarios in
inventory management. The inclusion of these factors results in a Constrained Non-Linear
Programming (CNLP) model, reflecting the complexity of real-world inventory systems.

To effectively solve the developed mathematical model, three solution approaches were
proposed: an exact method and two meta-heuristics. The performance of these approaches was
evaluated using various measures, including Relative Percentage Deviation (RPD), Percentage
Relative Error (PRE), and computational time, across different test instances.

The findings indicate that the Water Cycle Algorithm (WCA) outperforms the other two
approaches, demonstrating superior efficiency in addressing the complexities of the proposed
problem. This underscores the potential of meta-heuristic algorithms, particularly the WCA, in
optimizing multi-item inventory systems with imperfect products and partial backordering.

In conclusion, this research contributes to the advancement of inventory management by
introducing a comprehensive EOQ model capable of handling real-world complexities. The
findings provide valuable insights for practitioners in optimizing inventory systems and lay the
groundwork for future research directions in this domain.

Based on the results obtained from the research, a promising avenue for future investigation
could be the development and validation of hybrid optimization techniques for multi-item
inventory systems with imperfect products and partial backordering.

Firstly, hybridization involves combining different optimization algorithms or techniques to
leverage their respective strengths and mitigate their weaknesses. In the context of inventory
management, hybrid meta-heuristic algorithms could be developed by integrating the Water
Cycle Algorithm (WCA) with other efficient optimization methods, such as Genetic Algorithms
(GA), Particle Swarm Optimization (PSO), or Simulated Annealing (SA).

Secondly, the performance of these hybrid algorithms could be evaluated using a
comprehensive set of test instances representing diverse real-world scenarios. This evaluation
process should consider various performance metrics, including solution quality, convergence
speed, computational efficiency, and robustness.

Furthermore, the impact of different problem parameters and constraints on the performance
of the hybrid algorithms could be investigated through sensitivity analysis. This analysis would
provide valuable insights into the behavior of the algorithms under different operating
conditions and help identify critical factors influencing their performance.

Additionally, future research could explore the application of machine learning techniques,
such as reinforcement learning or deep learning, in optimizing multi-item inventory systems.
These techniques have shown promise in solving complex optimization problems and could
potentially enhance the efficiency and effectiveness of inventory management strategies.

Overall, the proposed research direction aims to advance the state-of-the-art in inventory
management by developing innovative optimization approaches tailored to address the
challenges associated with imperfect products and partial backordering. By combining insights
from operations research, optimization theory, and machine learning, researchers can contribute
to the development of more robust and adaptive inventory management systems capable of
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meeting the demands of modern supply chain environments.
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