Multi-Objective Two-Sided Robotic Mixed-Model Assembly Line Balancing Problem Considering Energy Consumption and Smoothing Workload

Document Type : Research Paper

Authors

1 School of Industrial & Systems Engineering, College of Engineering, University of Tehran, Tehran, Iran.

2 Department of Industrial Engineering, KHATAM University, Tehran, Iran.

3 School of Industrial & Systems Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

In this paper, a type II robotic mixed-model two-sided assembly line balancing problem is considered. This paper presents a new mixed-integer programming model for type II robotic mixed-model two-sided assembly line balancing to minimize the cycle time, energy consumption, and purchased cost of robots for a given number of workstations. We provided an effective framework for optimizing the multi-objective robotic mixed-model two-sided assembly line balancing problem considering energy consumption and smoothing workload in the make to order environment to help the decision makers make the right decisions under stochastic demand. An augmented epsilon constraint and Lp-metric methods applied to solve the problem, and then, with the help of defining two vertical and horizontal criteria, we attempt to help the decision maker to choose a more efficient solution to make the production line more smooth workload. We demonstrate the efficiency of the proposed method by designing the numerical experiments. ZZ ZZ ZZ ZZ ZZ

Keywords


       [1]        Kucukkoc, I., Li, Z., Karaoglan, A.D., Zhang, D.Z.: Balancing of mixed-model two-sided assembly lines with underground workstations: A mathematical model and ant colony optimization algorithm. Int. J. Prod. Econ. 205, 228-243 (2018).
       [2]        Salveson, M.E.: The assembly line balancing problem. J. Ind. Eng. 18-25 (1955).
       [3]        Akpinar, Ş., Baykasoğlu, A.: Modeling and solving mixed-model assembly line balancing problem with setups. Part II: A multiple colony hybrid bees algorithm. J. Manuf. Syst. 33(4), 445-461 (2014).
       [4]        Dai, M., Tang, D., Giret, A., Salido, M.A., Li, W.D.: Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robot. Comput.-Integr. Manuf. 29(5), 418-429‏ (2013).
       [5]        Fysikopoulos, A., Anagnostakis, D., Salonitis, K., Chryssolouris, G.: An empirical study of the energy consumption in automotive assembly. Procedia Cirp. 3, 477-482 (2012).
       [6]        Çil, Z.A., Mete, S., Özceylan, E., Ağpak, K.: A beam search approach for solving type II robotic parallel assembly line balancing problem. Appl. Soft Comput. 61, 129-138 (2017).
       [7]        Borba, L., Ritt, M., Miralles, C.: Exact and heuristic methods for solving the robotic assembly line balancing problem. Eur. J. Oper. Res. 270(1), 146-156 (2018).
       [8]        Rabbani, M., Mousavi, Z., Farrokhi-Asl, H.: Multi-objective metaheuristics for solving a type II robotic mixed-model assembly line balancing problem. J. Ind. Prod. Eng. 33(7), 472-484 (2016).
       [9]        Yagmahan, B.: Mixed-model assembly line balancing using a multi-objective ant colony optimization approach. Expert Syst. Appl. 38(10), 12453-12461 (2011).
     [10]      Akpınar, S., Bayhan, G.M.: A hybrid genetic algorithm for mixed model assembly line balancing problem with parallel workstations and zoning constraints. Eng. Appl. Artif. Intell. 24(3), 449-457 (2011).
     [11]      Liao, L.M.: Construction and comparison of multi-model and mixed-model assembly lines balancing problems with bi-objective. J. Ind. Prod. Eng. 31(8), 483-490 (2014).‏
     [12]      Pereira, J., Ritt, M., Vásquez, Ó.C.: A memetic algorithm for the cost-oriented robotic assembly line balancing problem. Comput. Oper. Res. 99, 249-261 (2018).‏
     [13]      Kucukkoc, I., Buyukozkan, K., Satoglu, S.I., Zhang, D.Z.: A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem. J. Intell. Manuf. 30(8), 2913-2925 (2019).‏
     [14]      Samouei, P., Ashayeri, J.: Developing optimization & robust models for a mixed-model assembly line balancing problem with semi-automated operations. Appl. Math. Model. 72, 259-275 (2019).‏
     [15]      Yang, W., Cheng, W.: Modelling and solving mixed-model two-sided assembly line balancing problem with sequence-dependent setup time. Int. J. Prod. Res. 58(21), 6638-6659 (2020).
     [16]      Zhang, B., Xu, L.: An improved flower pollination algorithm for solving a Type-II U-shaped assembly line balancing problem with energy consideration. Assem. Autom.‏ (2020). https://doi.org/10.1108/AA-07-2019-0144
     [17]      Chutima, P., Jirachai, P.: Parallel U-shaped assembly line balancing with adaptive MOEA/D hybridized with BBO. J. Ind. Prod. Eng. 37(2-3), 97-119 (2020).‏
     [18]      Li, Z., Janardhanan, M.N., Tang, Q., Nielsen, P.: Local search methods for type I mixed-model two-sided assembly line balancing problems. Memet. Comput. 13(1), 111-130 (2021).‏
     [19]      Li, Z., Kucukkoc, I., Tang, Q.: Enhanced branch-bound-remember and iterative beam search algorithms for type II assembly line balancing problem. Comput. Oper. Res. 131, 105235 (2021).‏
     [20]      Liu, X., Yang, X., Lei, M.: Optimisation of mixed-model assembly line balancing problem under uncertain demand. J. Manuf. Syst. 59, 214-227 (2021).‏
     [21]      Rubinovitz, J.: Design and balancing of robotic assembly lines. In: Proceedings of the Fourth World Conference on Robotics Research, Pittsburgh, PA. (1991).
     [22]      Aghajani, M., Ghodsi, R., Javadi, B.: Balancing of robotic mixed-model two-sided assembly line with robot setup times.  Int. J. Adv. Manuf. Technol. 74(5-8), 1005-1016 (2014).
     [23]      Çil, Z.A., Mete, S., Ağpak, K.: Analysis of the type II robotic mixed-model assembly line balancing problem. Eng. Optim. 49(6), 990-1009 (2017).‏
     [24]      ‏Janardhanan, M.N., Li, Z., Bocewicz, G., Banaszak, Z., Nielsen, P.: Metaheuristic algorithms for balancing robotic assembly lines with sequence-dependent robot setup times. Appl. Math. Model. 65, 256-270 (2019).‏
     [25]      ‏Li, Z., Janardhanan, M.N., Ashour, A.S., Dey, N.: Mathematical models and migrating birds optimization for robotic U-shaped assembly line balancing problem. Neural Comput. Appl. 31(12), 9095-9111 (2019).‏
     [26]      Li, Z., Janardhanan, M.N., Tang, Q., Ponnambalam, S.G.: Model and metaheuristics for robotic two-sided assembly line balancing problems with setup times. Swarm Evol. Comput. 50, 100567 (2019).‏
     [27]      Çil, Z.A., Li, Z., Mete, S., Özceylan, E.: Mathematical model and bee algorithms for mixed-model assembly line balancing problem with physical human–robot collaboration. Appl. Soft Comput. 93, 106394 (2020).‏
     [28]      Li, Z., Janardhanan, M.N., Ponnambalam, S.G.: Cost-oriented robotic assembly line balancing problem with setup times: multi-objective algorithms. J.  Intell. Manuf. 1-19 (2020).‏
     [29]      Rabbani, M., Behbahan, S.Z.B., Farrokhi-Asl, H.: The Collaboration of human-robot in mixed-model four-sided assembly line balancing problem. J. Intell.  Robot. Syst. 100(1), 71-81 (2020).‏
     [30]      Sun, B.Q., Wang, L.: An estimation of distribution algorithm with branch-and-bound based knowledge for robotic assembly line balancing. Complex Intell. Syst. 1-14 (2020).‏
     [31]      Li, Z., Janardhanan, M.N., Tang, Q.: Multi-objective migrating bird optimization algorithm for cost-oriented assembly line balancing problem with collaborative robots. Neural Comput. Appl. 1-22 (2021).‏
     [32]      Nilakantan, J.M., Huang, G.Q., Ponnambalam, S.G.: An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems. J. Clean. Prod. 90, 311-325 (2015).
     [33]      Zhang, Z., Tang, Q., Li, Z., Zhang, L.: Modelling and optimisation of energy-efficient U-shaped robotic assembly line balancing problems. Int. J. Prod. Res. 57(17), 5520-5537 (2019).‏
     [34]      Zhang, Z., Tang, Q., Zhang, L.: Mathematical model and grey wolf optimization for low-carbon and low-noise U-shaped robotic assembly line balancing problem. J. Clean. Prod. 215, 744-756 (2019).‏
     [35]      Sun, B.Q., Wang, L., Peng, Z.P.: Bound-guided hybrid estimation of distribution algorithm for energy-efficient robotic assembly line balancing. Comput. Ind. Eng. 146, 106604 (2020).‏
     [36]      Zhou, B., Wu, Q.: Decomposition-based bi-objective optimization for sustainable robotic assembly line balancing problems. J. Manuf. Syst. 55, 30-43 (2020).‏
     [37]      Zhang, B., Xu, L., Zhang, J.: Balancing and sequencing problem of mixed-model U-shaped robotic assembly line: Mathematical model and dragonfly algorithm based approach. Appl. Soft Comput. 98, 106739 (2021).‏
     [38]      Bukchin, J., Dar-El, E.M., Rubinovitz, J.: Mixed model assembly line design in a make-to-order environment. Comput. Ind. Eng. 41(4), 405-421 (2002).
     [39]      Manavizadeh, N., Rabbani, M., Moshtaghi, D., Jolai, F.: Mixed-model assembly line balancing in the make-to-order and stochastic environment using multi-objective evolutionary algorithms. Expert Syst. Appl. 39(15), 12026-12031 (2012).
     [40]      Emde, S., Boysen, N., Scholl, A.: Balancing mixed-model assembly lines: a computational evaluation of objectives to smoothen workload. Int. J. Prod. Res. 48(11), 3173-3191 (2010).
     [41]      Liu, A., Liu, H., Yao, B., Xu, W., Yang, M.: Energy consumption modelling of industrial robot based on simulated power data and parameter identification. Adv. Mech. Eng. 10(5), 1687814018773852 (2018).‏
     [42]      Brossog, M., Bornschlegl, M., Franke, J.: Reducing the energy consumption of industrial robots in manufacturing systems. Int. J. Adv. Manuf. Technol. 78(5-8), 1315-1328 (2015).‏
     [43]      Mohammed, A., Schmidt, B., Wang, L., Gao, L.: Minimizing energy consumption for robot arm movement. Procedia Cirp. 25, 400-405 (2014).‏